Weed Genetics Project Update

Michael Christoffers, Ph.D. Department of Plant Sciences North Dakota State University

Genetic Biocontrol

Example: Reversion of Pesticide Resistance

Example: Reversion of Pesticide Resistance

Example: Reversion of Pesticide Resistance Natural repair of the cut, one of two possibilities:

1 Use susceptible gene as a template

Example: Reversion of Pesticide Resistance Natural repair of the cut, one of two possibilities:

(2) Join the broken ends together (common in plants)

New Models for Plant/Weed Gene Drives

Toxin-Antidote [CRISPR-Assisted Inheritance utilizing NPG1 (CAIN)]

- Yang Liu et al., Chinese Academy of Sciences and Peking University
- Target gene: *NPG1* for pollen development in *Arabidopsis*
- Nature Plants 10:910–922 (2024)

<u>Cleave and Rescue</u> (ClvR)

- Georg Oberhoffer et al., California Institute of Technology
- Target gene: YKT61 for pollen and ovule development in Arabidopsis
- Nature Plants 10:936–953 (2024)

New Models for Plant/Weed Gene Drives

Critical Research

- Specific and efficient targeting of gene by guide RNA is critical
- In our research, the target gene is waterhemp acetolactate synthase (ALS)

Target gene

Editing of the ALS Gene of Yeast

Saccharomyces cerevisiae, SEM image by MD Murtey and P Ramasamy [CC BY 3.0], via Wikimedia Commons

Production of Waterhemp Protoplasts

Targeting Waterhemp ALS

- 1 of 4 tested guide RNAs successfully targeted and cut *ALS* in <u>isolated waterhemp DNA</u>
- We did not achieve successful targeting and repair of *ALS* in <u>waterhemp protoplasts</u>
- Waterhemp protoplasts also <u>would not express</u> <u>a transgene and would not divide</u>, likely because they were under <u>oxidative stress</u>

Waterhemp protoplast with Cas9 protein

Breakthrough: Waterhemp Protoplast Cell Division

We have achieved waterhemp protoplast recovery and cell division by treating cells with 2-aminoindane-2-phosphonic acid (AIP)

Next Steps

- Evaluate transgene expression and targeting of ALS in waterhemp protoplasts treated with AIP
- Achieve continued cell division beyond just a few divisions
- Extend research to Palmer amaranth

Acknowledgments

- Robert Sabba and Peter Beerbower
- ND Agricultural Experiment Station
- ND Corn Utilization Council
- ND Soybean Council
- ND State Board of Agricultural Research and Extension – Soybean
- NDSU RCA Research Support Grant
- This research was supported, in part, by the intramural research program of the U.S. Department of Agriculture, National Institute of Food and Agriculture, Hatch project accession number, 7006983. The findings and conclusions in this preliminary presentation have not been formally disseminated by the U.S. Department of Agriculture and should not be construed to represent any agency determination or policy.