Competitive Crops & Diverse Crop Rotation as Tools for IWM

Charlie Lim, Ph.D. Extension Weed Specialist Williston Research Extension Center NDSU Extension

> 17-JAN-2023 Wild World of Weeds, Fargodome, Fargo, ND

Competitive Crops & Diverse Crop Rotation as Tools for IWM

- My Background
- Crop Competition & Crop Rotation Diversity
- Summary/Conclusion

- Philippines
- 2008 BSc in Agriculture (Agronomy)
- 2014 MSc in Agronomy (Weed Science)

International Rice Research Institute

- Degree in Plant Science in 2020
- Montana State University [MSU]
 MSU Southern Ag. Research Center, (Huntley, MT)
 - screened & characterized kochia populations for multiple herbicide resistance.
 - e.g. to glyphosate, dicamba, ALS-inhibitors

- Four-year field study on management of herbicide-resistant kochia seedbank.
- herbicide efficacy and crop safety trials for product development.

Barley Corn

Eastern Ag. Research Center

Seeding rates

MSU – EARC Sidney, MT [2021]

> Yield Oil content Seed size

identify traits associated NUE to facilitate selection Identify lines with high NUE Camelina variety trials N rates Seeding dates

NDSU – WREC Williston, ND [JUL, 2022]

Extension Weed Specialist

Role: Outreach and research efforts to tackle weed issues in ND with focus in the western ND (and eastern MT).

Competitive Crops & Diverse Crop Rotation as Tools for IWM

My Background

- Crop Competition & Crop Rotation Diversity
- Summary

Why crop rotation is important?

- Crops with different times of planting, harvesting, growth habit, and different production practices allow a variety of cultural techniques to be used to optimize crop competitiveness at the expense of weed growth and reproduction.
- Rotation between different crop types can help break the cycle of adapted weeds.
- Highly competitive crops prevent weeds from thriving and producing seeds.
- Herbicides used in the broadleaf crop can effectively control grass weeds that were not controlled well in the grass crop.
- Allows the introduction of herbicides having different effective MOAs to avoid successive use of a single MOA.

(Buhler 2002; Forcella et al. 1993; O'Donovan et al. 2007; Melander and Rasmussen 2001)

Why diversify crop rotation?

- Crops with different times of planting, harvesting, growth habit, and different production practices allow a variety of cultural techniques to be used to optimize crop competitiveness at the expense of weed growth and reproduction.
- "provide an unstable and frequently inhospitable environment that prevents the proliferation of a particular weed species/biotypes."

(Liebman & Dyck 1993)

- Herbicides used in the broadleaf crop can effectively control grass weeds that were not controlled well in the grass crop.
- Allows the introduction of herbicides having different effective MOAs to avoid successive use of a single MOA.

Effect of Crop Competition

kochia growth and fecundity

crop situation x weed density

followed usual planting date and practices for each crop situation

trial repeated

kochia emerged before crops did

Effect of Crop Competition

barley, tall wheat varieties, corn, cereal rye, winter triticale,

Table 4. *Bassia scoparia* density and seed production (estimated marginal means) as affected by ALS-inhibiting herbicide treatment and crop at four locations near Huntley, MT, Powell and Lingle, WY, and Scottsbluff, NE, in 2014.

	Herbicide	Crop	B. scoparia		
			plants ha ⁻¹	seeds plant ^{–1}	seeds m ⁻²
Field had kochia	ALS inhibitors	Corn	1,870 d ^a	1,480 n	297 y
resistant to		Dry bean	329 c	2,660 n	173 y
		Spring wheat	180 abc	952 mn	53.4 xy
ALS-inhibitors		Sugar beet	1,740 d	23,800 o	3,980 z
	Non–ALS inhibitors	Corn	61.8 ab	225 m	10.8 x
		Dry <mark>b</mark> ean	204 bc	5,330 n	310 y
		Spring wheat	10.9 abc	0	0
		Sugar beet	22.8 a	3,260 no	171 xy

Diversity in Crop Rotation, Tillage, and Herbicide Use Pattern

Table 2. Average <u>kochia plants/m²</u> within each tillage practice, crop rotation, and herbicide use pattern in the <u>3rd year</u> of the study.

	Herbicide Treatment						
Crop Rotation	ALS	ALS rotation	ALS/NonALs	ALS	ALS rotation	ALS/NonALs	
	only		mixture	only	ALS IOLATION	mixture	
	Minimum Tillage			Intensive Tillage			
Continuous corn	67	2	3	37	2	1	
Corn – Sugarbeet – Corn – Sugar beet	481	56	4	296	43	11	
Corn – Dry bean – Corn - Sugarbeet	64	65	4	31	7	3	
Corn – Dry bean – Wheat -Sugarbeet	28	2	3	8	1	1	
			L				

With a known <u>ALS-resistant kochia seedbank</u> in all sites (5%).

Multisite-years: Huntley MT, Powell and Lingle WY, Scottsbluff, NE)

(Mosqueda et al. 2018)

10-yr study (2000-09)

- effect of in-crop herbicide omissions
- weed seedbank density
- 16 cores soil samples/plot (2009)
- exhaustive germination
- crops present each year

(Gulden et al. 2011)

Same study

- But 2yrs of alfalfa in the rotation
- instead of canola and wheat

(Gulden et al. 2011)

Figure 1. Total germinable weed seedbank density in an annual-crop only (top) and alfalfa-crop (bottom) rotation after 10 yr of in-crop herbicide omissions during oats and flax and oats. Crop and herbicide-omission treatments followed by different letters are statistically significantly different based on Fisher's Protected LSD means comparison conducted within each main effect. Bars indicate standard errors of the means.

So, even with a diverse crop rotation and with competitive crops (oats, alfalfa), effective herbicides are still needed in the rotation to keep weed seedbanks low.

I can see similar scenario with resistant weeds.

e.g. failed to control G. foxtail in wheat with Discover NG then applying Assure II in the succeeding pulse crop.

A diverse crop rotation must be paired with effective MOA in the rotation. (Gulden et al. 2011)

Natural Log of (Diverse/Simple) Weed Response

Meta-analysis

"Does diversifying crop rotations suppress

Weed Unit				
Increased PI	anting Inte	rval Variar	nce	-
Tillage Syste	em			
Latitude Cla	SS			
Herbicide Us	sage			
Increased S	oecies Rich	nness	-	
Perennial Us	age			
Fallow Usag	e			
Diversificatio	on From M	onoculture)	

Simple rotation: 1 crop species 1 crop and fallow 2 crops species in 2yrs

"crop planting dates was more effective in suppressing weeds than increasing crop species richness alone."

(Weisberger et al. 2019)

Weed Density (-65%) Zero-Tillage 45(15) (-41%) Tilled 187(40) -90 -60 -30 0 Change From Simple Rotation [%]

Not Significant

Significant (p<0.01)

"Increasing rotational diversity reduced weed density more under zerotillage conditions (65%) than tilled conditions (41%)."

(Weisberger et al. 2019)

Summary/Conclusion

- Competitive crops and crop rotational diversity should be viewed as viable tools for weed control and weed seedbank management.
- Herbicides remain the backbone for weed control, but should not be viewed as a separate tool.
- Integration of cultural and ecological weed management approaches with our effective herbicide programs remains our best hope to stay ahead of weeds.

Thank you!

EXTENSION

Charlie Lim Extension Weed Specialist

charlemagne.lim@ndsu.edu

701-774-4351 (office)

701-651-6221 (mobile)

14120 Hwy 2, Williston, ND 58801