Weed Genetics Project Update

Michael Christoffers, Ph.D. Department of Plant Sciences North Dakota State University

Genetic Weed Management

Gene Drive Research

- Yeast (as a model)
- Insects
 - Mosquitoes, fruit flies
- Rodents
 - Mice and other rodents
- Viruses
 - Herpesviruses
- Weeds

• Arabidopsis (as a model), waterhemp and Palmer amaranth

Gene Drives for Weed Management

If Genes were Coins

Chance of heads is 50%

Chance of heads is 100%

Gene Drives for Weed Management

Waterhemp Tissue Culture

Germinated seeds

Waterhemp Cell Suspension Culture

Cell suspension culture

Successful Production of Waterhemp Protoplasts

Waterhemp protoplast

72-78% of protoplasts are alive

Waterhemp protoplasts

Protoplast Transformation

Transformation of Waterhemp Protoplasts

Waterhemp protoplasts after transformation with the gene for GFP

- Arrows indicate likely expression of GFP in waterhemp protoplasts
- Additional confirmation and optimization is needed

Current Research

- Optimizing waterhemp protoplast transformation
- Recovery and growth of protoplasts
- Gene editing of the acetolactate synthase (ALS) gene (Group 2 herbicides) in waterhemp (and yeast as a model)

Acknowledgments

- Robert Sabba and Peter Beerbower
- ND Agricultural Experiment Station
- ND Corn Council
- ND Soybean Council
- ND State Board of Agricultural Research and Extension – Soybean
- USDA National Institute of Food and Agriculture