Creative weed management approaches in sugarbeet

Thomas Peters, Alexa Lystad, Ryan Borgen and David Mettler

Extension Sugarbeet Agronomist, Research Specialist, Student and Research Agronomist

EXTENSION

UNIVERSITY OF MINNESOTA EXTENSION

Waterhemp is our most important weed control challenge in sugarbeet

- 635,000 acres sugarbeet in Minnesota and eastern North Dakota in 2020.
- Waterhemp was the most important weed control challenge on 373,100 acres, 59% of acreage according to survey.
- 94% and 95% of surveyed Producers attending 2019 Willmar and Wahpeton Grower seminars, respectfully, used chloroacetamide herbicides for waterhemp control.
- Adoption of layered application technique (PRE fb POST, EPOST fb POST or PRE fb EPOST fb POST) increased 805% between the 2014 and 2019 growing seasons.

Layered Soil Residual Herbicides Objective: Prolong PRE activity until canopy fills

Adapted from a slide created by B Hartzler, ISU

Producer evaluation*, waterhemp control from chloroacetamides' applied EPOST and POST

Waterhemp control POST in sugarbeet

- Desmedipham plus phenmedipham
- Cultivation to supplement residual herbicides (N. Haugrud)
- Ethofumesate POST at rates up to 3.75 lb/A POST (A. Lystad)
- Acifluorfen alone and in mixtures (E. Burt)
- Hooded sprayers
- Electrical discharge systems

Herbicide post-directed though a hooded sprayer

- Common practice in cotton production
- Spray small weeds with a POST herbicide
- Contact herbicides / sugarbeet safety
- Equipment manufactured and sold by Willmar Fabrication

Objectives of Research

 Determine sugarbeet tolerance and weed control when glufosinate or paraquat are applied at different rates and timings through a hooded sprayer

Hooded sprayer designed by Willmar Fabrication

Materials and Methods

Sugarbeet Tolerance

- RCBD and 6 reps
- 2- to 4-,6- to 8- and 10 to 12-lf sugarbeet
- Liberty at 86 fl oz/A plus AMS at 3 lb/A
- Gramoxone at 32 fl oz/A plus non-ionic surfactant at 32 fl oz/A
- 19.4 gpa spray volume through 8002E Flat Fan nozzle
- Growth reduction
- Damage (num of spots on leaves, treated rows)
- Root yield, % sucrose, and recoverable sucrose

Materials and Methods

Waterhemp and Common Lambsquarters

- RCBD and 4 reps
- 19.4 gpa spray volume through 8002E Flat Fan nozzle
- Liberty at 32 and 43 fl oz/A plus AMS at 3 lb/A
- Gramoxone at 21 and 32 fl oz/A plus non-ionic surfactant at 32 fl oz/A
- Lambsquarters and waterhemp control at two sizes
 - Small waterhemp, 2- to 4-inch
 - Large waterhemp, 6- to 8-inch

Phenotype observed on sugarbeet following Liberty POST directed through a hooded sprayer at the 6- to 8-If stage

Phenotype observed on sugarbeet following Gramoxone POST directed through a hooded sprayer at the 6- to 8-lf stage

Growth reduction (%) and damage (number in treated row rows) in response to herbicides, Crookston and Lake Lillian, 2020^a

		Crookston, MN		Lake Lillian, MN	
Herbicide treatment	Growth Stage	GR	Damage	GR	Damage
	lvs	%	Num	%	Num
Glyphosate / glyp	2-4/6-8	3	6 c	2 C	4 C
Liberty	2-4	8	11 C	22 ab	81 ab
Liberty	6-8	5	5 C	5 C	19 bc
Liberty	10-12	9	8o a	7 bc	13 C
Gramoxone	2-4	15	23 bc	26 a	134 a
Gramoxone	6-8	18	46 b	12 abc	31 bc
Gramoxone	10-12	7	27 bc	13 abc	30 bc
P-value		0.4596	0.0001	0.0002	0.0001

^aCrookston, 7 to 8 DAT; Lake Lillian, 4 to 9 DAT

Root yield, % sucrose, and recoverable sucrose in response to herbicides, Crookston, Lake Lillian and Prosper, 2020

Herbicide	Sugarbeet			Recoverable
treatment	stage	RootYield	% Sucrose	sucrose
	lvs	Ton/A	-%-	lb/A
Glyp / glyp	2-4/6-8	30.1	16.2	8,628
Liberty	2-4	27.9	16.4	8,055
Liberty	6-8	29.3	16.2	8,789
Liberty	10-12	29.2	16.0	8,468
Gramoxone	2-4	27.9	16.4	8,392
Gramoxone	6-8	29.2	16.1	8,680
Gramoxone	10-12	28.6	16.0	8,362
P-value		0.3146	0.8799	0.6049

Waterhemp^a control in response to herbicide treatments, 2020

Herbicide	Rate	Size	Lake Lillian	Moorhead
	fl oz/A		%	
Gly/gly	28/28	S/L	45 b	64 cd
Liberty	32	S	8o a	81 bc
Liberty	32	L	51 b	61 d
Liberty	43	S	81 a	90 ab
Liberty	43	L	57 b	82 ab
Gramoxone	21	S	94 a	87 ab
Gramoxone	21	L	88 a	91 ab
Gramoxone	32	S	96 a	96 a
Gramoxone	32	L	95 a	96 ab

^aSmall and large waterhemp, Lake Lillian, 4- to 8-inch; Moorhead, 2- to 6-inch

Gramoxone at 21 fl oz/A, Lake Lillian, MN

Glufosinate at 32 fl oz/A, Lake Lillian, MN

Summary

- 1. Liberty and Gramoxone are not approved for POST directed application in sugarbeet.
- 2. Growth reduction was negligible at Prosper and Crookston. Liberty or Gramoxone at the 2- to 4-leaf stage caused more injury than application after 6-lf sugarbeet.
- 3. Number of damaged leaves was transient and random; caused by operation or environment related factors.
- 4. Liberty and Gramoxone did not reduce yield, % sucrose or recoverable sucrose.
- 5. Liberty and Gramoxone improved control of 4- and 6-inch waterhemp as compared to repeat glyphosate applications.

Should a farmer make the Investment?

BASF Corp. is developing a 24c local needs label for Liberty through the hooded sprayer for waterhemp control in sugarbeet. We believe the hooded sprayer could be a component of a weed management strategy in sugarbeet but should not be a substitute for soil applied herbicides for controlling glyphosate resistant weeds.

Pros:

- Liberty (and Gramoxone) control waterhemp escapes in sugarbeet
- Liberty (and Gramoxone) represent SOA currently not used in sugabeet production. Gramoxone is rarely used in crop production.
- An alternative for the producer not willing to consider inter-row cultivation

Cons:

- Equipment purchase
- Hooded sprayer in 12-row, 18-row, and 24-row models does not offer the same application efficiency as the commercial equipment currently used for POST application

EDS, generation II, 2020:

- The WeedZapper™, Sedalia, MO
- Developed in 2018
- 200,000 watts
- 40 to 44 ft boom front-end mounted
- PTO driven generator
- Requires a 275 PTO HP tractor
- 2 to 6 mph
- Safety improvements

Voltage, Wattage, and Amperage using the analogy to water:

Metric	Analogy to water through a pipe	Electricity	Weed Zapper
Voltage	pump forcing water to flow, i.e., water pressure	pressure, how strongly electricity is pushed in a circuit	up to 15,000
Amperage	volume of water	the rate at which electricity flows	peak at 20
Wattage	power produced i.e., propel a wind mill	measure of how much / how hard current is flowing, voltage x amps	200,000

Objectives

- Determine waterhemp (and kochia) control using the WeedZapper
- Determine if increasing pass number will enhance control
- Determine the viability of waterhemp seed at sugarbeet harvest

Materials and Methods

- On-farm research in eight sugarbeet fields in July and August 2020.
- The WeedZapper[™] was operated uniformly across the field.
- Data collection from two 5 x 5 square foot quadrats. Quadrats arranged in areas best representing weed density in fields. Quadrats were evaluated 1, 3, 7, and 14 days after treatment.
- Necrosis, wilting phenotype, and control (% visual control) were collected.
- Plant samples were collected from quadrats before sugarbeet harvest.

Waterhemp control from the WeedZapper[™], across locations, 2020

Waterhemp: Timeline after treatment

Day 1:

Day 3-4:

Untreated vs. 14-day treated

Day 7:

- Images were collected in field near Hillsboro, ND.
- Data was collected on the given day.

Waterhemp control by treatment, Kragnes, MN, 2020

Waterhemp control by treatment, Felton, MN, 2020

Next Steps:

- Producers operated the WeedZapper[™] middle of July, August, and early September.
- Some waterhemp plants had likely produced viable seed.
- Plant samples were collected before harvest to determine seed viability.
- Cold treatment to simulate winter.
- Growth room/greenhouse seed viability experiments will begin in January.

Summary:

- The WeedZapper[™] provided greater than 80% waterhemp control, 14 DAT.
- Operating speed did not influence waterhemp control (Univ of Missouri research).
- Multiple passes provided better waterhemp control in an open canopy; tended to provide better waterhemp control in a dense canopy.
- Waterhemp control (primary stem) from the WeedZapper[™] was better than kochia control (highly branched).
- Will the seed viability experiment provide evidence that treatment timing is critical for true control?

Should a farmer make the Investment?

The Weed Zapper Weed Zapper is not a replacement for soil residual herbicides, but can be a component of a weed management program in sugarbeet. The Weed Zapper, Hooded Sprayer, and Inter-Row Cultivation are effective management tools to control glyphosate resistant weed escapes.

Pros:

- Weed Zapper provided greater than 80% waterhemp control, 14 DAT
- Weed Zapper may reduce weed biomass in fields, improve harvest efficiency, and improve quality of sugarbeet stored on piles

Cons:

• Weed interference and resultant yield loss likely occurred since the Weed Zapper was operated after weeds extend above the crop canopy.

Thank you for your Support

Tom Peters

NDSU

• Extension Sugarbeet Agronomist and Weed Control Specialist

UNIVERSITY OF MINNESOTA

EXTENSIC

- thomas.j.peters@ndsu.edu
- 💟 BeetWeedControl @tompeters8131

EXTENSION

- 701-231-8131 (office)
- 218-790-8131 (mobile)