Rotational crop sensitivity to fall-applied Valor. Jenks, Willoughby, and Hoefing. The objective of this study was to determine the sensitivity of spring-planted crops to fall-applied Valor. Valor was applied at 2 and 3 oz/A on September 11, October 16, and November 4 in 2008. Dry pea, lentil, chickpea, and flax were planted in mid-May of 2009. The study area was hand-weeded for broadleaf weeds and grasses were controlled with a postemergence application of Select Max. Thus, weeds had no effect on crop yields.

Very little crop response was observed with any crop or treatment. There were no treatment differences in yield or test weight for any crop.

Table. Rotational crop sensitivity to fall-applied	tional cr	op sensitiv	ity to f	all-ap	plied	Valor ((0927)												
			Ö	Chickpea	ğ		Flax			Lentil		Chickpea	cpea	Flax	X	Lentil	ıtil	Dry pea	pea
			Jun	Jul	Jul	Jun	Jul	Jul	Jun	Jul	Jul								
Treatment ^a Rate	Rate	Timing	13	80	22	13	08	22	13	08	22	Yield	ЪТ	Yield	ΣĽ	Yield	₹	Yield	V T
		(2008)				%	injury					A/dI	nq/qI	Ib/A	nq/q	Ib/A	lb/bu	A/dI	nq/q
Prowl H2O	2 pt	Sept	0	0	0	0	0	0	0	0	0	2699	62.5	35	54.7	1483	58.9	3250	66.7
Valor	2	Sept	0	0	0	0	ο	0	0	0	0	2434	61.7	38	54.3	1417	58.6	3004	66.5
Valor	2 oz	Oct .	0	0	0	0	0	0	0	0	0	2758	60.1	31	54.4	1626	59.1	2781	66.6
Valor	2 oz	Nov	0	0	0	0	0	0	0	ო	0	2965	60.2	37	54.4	1894	59.3	3255	66.6
Valor	3 oz	Sept	۲	0	0	0	0	0	0	2	0	2836	60.4	43	54.5	1596	58.6	2814	66.6
Valor	3 oz	oct O	4	0	0	0	0	0	0	2	0	2777	59.9	37	54.5	1529	58.8	2747	66.5
Valor	3 oz	Nov	ဖ	0	0	1	0	0	0	4	0	2842	60.1	37	54.2	1769	59.2	2591	66.8
LSD (0.05)			2.3	NS	NS	SN	SN	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
, S			88	0	0	529	0	0	0	158	0	ω	4	13	-	21	-	12	-
			:	.															

Alind Malor (0027) 102 07 itin itu . Dototo Toblo

^a No dry pea injury was observed in any treatment

Follow crop response to Saflufenacil. Howatt, Roach, and Harrington. Treatments were applied near Fargo in the fall of 2008 with a tractor sprayer delivering 8.5 gpa at 35 psi through 11001 TT nozzles to an area 20 ft wide the length of 25 by 30 ft plots. Bioassay strips of '8N 386CL' sunflower, 'Finch' safflower, 'Beta 4554R' sugar beet, 'IS 3057RR' canola, 'York' flax, and 'Admiral' field pea were seeded perpendicular to treatment direction near Fargo in rows 3 inches wide on May 29. The experiment was a randomized complete block design with four replicates.

			6/15	6/29	7/13
Treatment	Rate	Spray volume	All species	All species	All species
	oz/A	gal/A	%	%	%
Paraquat+NIS	6+0.25%	17	0	0	0
Saff+MSO+AMS	0.26+1%+24	8.5	0	0	0
Saff+MSO+AMS	0.36+1%+24	8.5	0	0	0
Saff+MSO+AMS	0.72+1%+24	8.5	0	0	0
Glyt+MSO+AMS	12+1%+24	8.5	0	0	0
Glyt+Saff+MSO+AMS	12+0.26+1%+24	8.5	0	0	0
Flumioxazin+MSO+AMS	5.7+0.25G+24	8.5	0	0	0
Glyt+Flum+MSO+AMS	12+1+0.25G+24	8.5	0	0	0
Untreated	0		0	0	0
CV			0	0	0
LSD 5%			0	0	0

Treatments were applied to sunflower canopy as a preharvest desiccant. Possible residues of saflufenacil and flumioxazin may have been present, but there was not any indication of residual treatment effect on any of the species in the study area.

Crop response to Saflufenacil preemergence. Howatt, Roach, and Harrington. 'York' flax, 'IS3058RR' canola, '8N 386CL' sunflower, 'Finch' safflower, and 'Admiral' field pea were planted in 3 foot wide bioassay strips near Fargo on May 28. Preemergence treatments were applied May 29 with 68°F, 46% relative humidity, 0% cloud cover, 6 to 7 mph wind at 225°, and damp soil at 60°F. Treatments were applied with a backpack sprayer delivering 8.5 gpa at 35 psi through 11001 TT nozzles to an area 21 feet wide the length of 25 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

		6/15	6/15	6/15	6/15	6/15	6/29	6/29	6/29	6/29	6/29
Treatment	Rate	Flax	Field pea	Canola	Sunflower	Safflower	Flax	Field pea	Canola	Sunflower	Safflower
		%	%	%	%	%	%	%	%	%	%
Saflufenacil	0.18	3	0	10	22	18	13	0	27	50	30
Saflufenacil	0.36	8	0	15	47	27	40	0	33	75	43
Saflufenacil	0.72	8	0	27	73	60	50	0	60	92	88
Pyroxasulfone	2.8	0	0	3	0	0	0	0	10	0	7
Untreated	0	0	0	. 0	0	0	0	0	0	0	0
C.V.		68	0	64	28	50	60	0	40	19	51
LSD 5%		5	0	13	15	20	23	0	19	15	32

Field pea did not demonstrate a response to saflufenacil. All other crops exhibited substantial injury as a result of saflufenacil soil residues. Expression of injury generally worsened as the season progressed, mainly because plants in control plots continued to grow at a normal rate. Saflufenacil did not cause significant plant death in the susceptible crop species over the duration of the study but condition continued to decline. Pyroxasulfone caused minimal injury across these crop species and may be a viable candidate for further development.

Metribuzin use in alfalfa. Howatt, Roach, and Harrington. An established alfalfa plot was treated May 21 with 54° F, 61% relative humidity, 0% cloud cover, 10 mph wind at 360°, and moist soil at 52°F. Wild mustard (coty to two-leaf, 5 to 10 plants/ft²), field pennycress (two- to four-leaf, 15 plants/ft²), shepherd's-purse (two- to four-leaf, 10 plants/ft²) and common lambsquarters (two- to three-leaf, 10 to 50 plants/ft²) were present. All treatments were applied with a backpack sprayer delivering 17 gpa at 40 psi through 8002 TT nozzles to an area 7 feet wide the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates.

		5/28	6/4	6/16	6/16	6/16	6/16	6/16
Treatment	Rate	Alfalfa	Alfalfa	Alfalfa	Wimu	Fipc	Shpu	Colq
	oz/A	%	%	%	%	%	%	%
Metribuzin-CN ^a	16	6	2	3	99	94	86	90
Metribuzin-CN	32	11	5	4	99	97	96	96
Metribuzin-DF	16	4	2	· 2	99	97	90	87
Hexazinone	16	9	5	4	99	95	86	91
Imazamox+MSO+UAN	0.5+0.187G+16	2	0	0	99	97	77	·82
Untreated	0	Ō	0	0	0	0	0	0
CV		32	35	31	0	4	9	7
LSD (P=0.05)		2	1	1	0	5	9	7

^a Two formulations of metribuzin were included. CN was not commercially available. DF was available as Sencor.

All herbicide treatments caused visible injury to alfalfa 7 DAT. Alfalfa recovered quickly from imazamox injury that was observed as slight chlorosis. Metribuzin and hexazinone injury persisted as small necrotic lesions on a small percentage of leaves in the upper canopy. The injury did not slow growth or development but was present until first cutting. Injury was not observed on alfalfa regrowth. All herbicides provided excellent control of wild mustard and field pennycress. Shepherd's-purse and common lambsquarters were not controlled as well by imazamox as they were by metribuzin or hexazinone. Metribuzin formulation did not provide different weed control and alfalfa response marginally differed between the two formulations.

Weed control with sulfonylurea herbicides. Howatt, Roach, and Harrington. IS3057RR canola was planted May 22. Treatments were applied June 24 with 68° F, 61% relative humidity, 0% cloud cover, 1 to 3 mph wind velocity at 270°, and damp soil at 63° F. Treatments were applied to six- to eight-leaf canola, cotyledon to eight-leaf wild mustard (10 to 50/yd²), two- to five-leaf wild buckwheat (2 to 10/yd²), cotyledon to 5-inch redroot pigweed (50 to 100/yd²), 2- to 5-inch common lambsquarters (5 to 20/yd²), and spike to two-leaf yellow foxtail (20 to 50/yd²). Treatment following (/) was applied July 10 with 66° F, 73% relative humidity, 80% cloud cover, 4 to 7 mph wind velocity at 270°, and moist soil at 67° F. All treatments were applied with a backpack sprayer delivering 8.5 gpa at 35 psi through 11001 TT nozzles to an area 7 feet wide the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates.

		6/30	6/30	6/30	6/30	6/30	6/30	7/11	7/11	7/11
Treatment	Rate	Canola	Wimu	Wbw	Rrpw	Colq	Yeft	Can	Wimu	Wibw
· · · ·	oz/A	%	%	%	%	%	%	%	%	%
Glyt ^a +NIS+AMS	6.4+0.25%+12	0	80	67	89	85	50	0	86	87
Glyt+NIS+AMS/	6.4+0.25%+12/	0	80	75	91	89	55	0	87	87
Glyt+NIS+AMS	6.4+0.25%+12	U		10	51	00	00	-		
Glufosinate ^b +AMS	7+48	85	85	90	95	90	80	89	90	86
Thif&trib ^c +clet ^d +NIS	0.45+1.4+0.25%	70	70	55	69	37	27	94	96	92
Thif&trib+nico+NIS	0.45+0.6+0.25%	70	70	62	70	35	30	97	98	96
Imazamox+NIS+UAN	0.5+0.25%+32	65	65	60	67	37	30	92	95	89
Thif-sg ^e +NIS	0.45+0.25%	65	65	52	69	42	30	91	93	91
Thif&trib+NIS	0.45+0.25%	65	65	62	71	32	27	93	95	92
Thif-sg+trib-sg+NIS	0.34+0.11+0.25%	65	65	57	. 70	37	27	91	91	87
Thif-sg+trib-sg+NIS	0.36+0.09+0.25%	65	65	62	67	37	27	92	93	91
Quin+thif&trib+NIS	0.71+0.22+0.25%	70	70	55	71	40	32	91	91	90
Quin+thif&trib+NIS	0.71+0.45+0.25%	70	70	55	67	40	25	91	92	91
Quin+thif&trib+clet+NIS	1.76+0.45+1.4+0.25%	70	70	57	70	35	25	93	94	92
Thif-sg+trib-sg+clet+NIS	0.36+0.09+1.4+0.25%	70	70	52	71	37	25	91	91	89
Thif-sg+trib-sg+nico+NIS	0.36+0.09+0.6+0.25%	70	70	62	71	37	32	95	96	94
Primisulfuron+NIS	0.75+0.25%	70	70	60	72	40	32	91	92	87
Untreated		0	0	0	0	0	0	0	0	0
C.V.		8	7	10	5	9	14	2	2	3
LSD 5%		7	7	9	5	6	7	2	3	4

^a Glyphosate as Buccaneer from West Central.

^b Glufosinate as Ignite from Bayer CropSciences.

^c Thifensulfuron&tribenuron formulation provided by study cooperator.

^d Clethodim as Select Max from Valent.

^e Soluble granule (-sg) formulations provided by DuPont.

Glufosinate initially provided the best control because of rapid desiccation of exposed tissue. Glyphosate also gave better control of some species at the first evaluation than most of the treatments. After the first evaluation, plots treated with glufosinate, imazamox, or primisulfuron were easily discernible because of the number of surviving plants that resumed growth. Imazamox control held fairly well with at least 70% control of each species. Primisulfuron had particular difficulty with wild buckwheat and common lambsquarters. And glufosinate allowed substantial survival and regrowth of many species. Lack of canola competition was a distinct factor for glufosinate. This must be considered when comparing any of the treatments with glyphosate which benefited from exceptional crop competition. Canola was not present in any of the other herbicide treatments because SU-resistant canola was not available for this study, yet broadleaf control was excellent with treatments containing thifensulfuron and tribenuron. Clethodim provided 94% control of yellow foxtail and nicosulfuron gave 88 to 90% control while control with primisulfuron was only 81%. Table continued.

		7/11	7/11	7/11	7/22	7/22	7/22	7/22	7/22	7/22
Treatment	Rate	Rrpw	Colq	Yeft	Canola	Wimu	Wibw	Rrpw	Colq	Yeft
	oz/A	%	%	%	%	%	%	%	%	%
Glyt ^a +NIS+AMS	6.4+0.25%+12	97	91	95	0	97	95	99	96	97
Glyt+NIS+AMS/	6.4+0.25%+12/	98	87	94	0	99	98	99	99	99
Glyt+NIS+AMS	6.4+0.25%+12									
Glufosinate ^b +AMS	7+48	81	81	75	89	95	81	57	35	67
Thif&trib ^c +clet ^d +NIS	0.45+1.4+0.25%	95	95	87	98	99	94	98	97	94
Thif&trib+nico+NIS	0.45+0.6+0.25%	97	96	91	99	99	92	96	98	88
Imazamox+NIS+UAN	0.5+0.25%+32	90	86	88	96	97	81	91	71	90
Thif-sg ^e +NIS	0.45+0.25%	94	94	40	89	98	96	94	98	0
Thif&trib+NIS	0.45+0.25%	94	93	42	98	99	95	97	96	0
Thif-sg+trib-sg+NIS	0.34+0.11+0.25%	93	92	40	90	98	97	98	99	0
Thif-sg+trib-sg+NIS	0.36+0.09+0.25%	92	93	40	97	99	94	99	98	0
Quin+thif&trib+NIS	0.71+0.22+0.25%	93	92	40	97	99	92	95	97	0
Quin+thif&trib+NIS	0.71+0.45+0.25%	90	91	45	97	98	90	93	92	0
Quin+thif&trib+clet+NIS	1.76+0.45+1.4+0.25%	91	90	79	97	99	94	94	96	94
Thif-sg+trib-sg+clet+NIS	0.36+0.09+1.4+0.25%	91	91	76	97	99	94	95	96	94
Thif-sg+trib-sg+nico+NIS	0.36+0.09+0.6+0.25%	91	90	85	98	99	96	96	95	90
Primisulfuron+NIS	0.75+0.25%	91	50	77	97	99	62	89	69	81
Untreated		0	0	0	0	0	0	0	0	0
C.V.		2	4	6	2	1	5	3	4	6
LSD 5%		2	5	6	2	1	6	4	5	5

^a Glyphosate as Buccaneer from West Central.
 ^b Glufosinate as Ignite from Bayer CropSciences.
 ^c Thifensulfuron&tribenuron formulation provided by study cooperator.
 ^d Clethodim as Select Max from Valent.
 ^e Soluble granule (-sg) formulations provided by DuPont.

Chickpea tolerance to Sharpen applied PRE. Jenks, Willoughby, and Hoefing. 'B90' chickpea was seeded May 15 at 140 lb/A into 7.5-inch rows into wheat stubble. Glyphosate was applied preplant over the entire study area on May 14. Herbicides treatments were applied preemergence (PRE) on May 18. Individual plots were 10 x 30 ft and replicated three times.

while 100 g caused about 8% crop injury. Sharpen & Pursuit caused slightly more injury with 15% about 5 WAT. There were no treatment differences in chickpea yield; however, there was a slight trend for higher yield as rate increased. Since the study was not maintained weed free, The objective of the study was to evaluate chickpea response to high rates of Sharpen. There was no visible injury with Sharpen at 50 or 75 g, the slight yield increase may be due do better weed control with higher rates.

				Chi	Chickpea		
Treatment ^a	Rate/ha	Jun 12	Jun 24	Jul 01	Jul 16	Yield	Test wt.
			% injury	njury		bu/A	lb/bu
Untreated		0	0	0	0	1244	60.1
Sharpen	50 g	0	0	0	0	1239	60.2
Sharpen	75 g	0,	0	0	0	1557	60.3
Sharpen	100 g	0	с С	ω	ω	1815	60.9
Sharpen & Pursuit		0	15	6	12	1862	61.1
LSD (0.05)		SN	4.9	۹SN	6,6	۹SN	NS
CV		387	70	137	89	18	1
^a Obamon of EO albo is cauminalant to 0 fl ca/A	adorin occurring	V/20 8 0 7 + 1					

Table. Chickpea tolerance to Sharpen applied PRE (0918).

Sharpen at 50 g/ha is equivalent to 2 fl oz/A

^b Significant at α =0.10.

Chickpea tolerance to experimental herbicides. Jenks, Willoughby, and Hoefing. 'B90' chickpea was seeded May 15 at 140 lb/A into 7.5-inch rows into wheat stubble. Glyphosate was applied preplant over the entire study area on May 14. Herbicides treatments were applied preemergence (PRE) on May 18. Individual plots were 10 x 30 ft and replicated three times.

and Valor are not labeled for PRE use in chickpea. At the July 25 evaluation, all treatments except Express + Spartan and Valor (2 oz) provided 2 80% control of redroot pigweed. Treatments including Spartan or Sharpen provided ≥ 89% control of lambsquarters, while KIH-485 and Valor provided poor to fair lambsquarters control. Only treatments containing Spartan provided excellent kochia control. Treatment containing Spartan, Sharpen (4 oz), and Valor (3 oz) provided good to excellent wild buckwheat control. No visible chickpea injury was observed in any treatment. The objective of the study was to evaluate chickpea response to experimental herbicides applied PRE. As of December 2009, Express, KIH-485,

			Rrpw ^b			Cold ^b			Kocz ^b		Wibw ^D	Chic	Chickpea ^c
		Jun	Jul	Jul	Jun	Jul	Jul	Jun	Jul	Jul	ղոր		
Treatment ^a	Rate	30	1	25	30	7	25	30	11	25	30	Yield	Test wt.
						% CC	introl					Ib/A	lb/bu
Untreated		0	0	0	0	0	0	0	0	0	0	1069	60.1
Express + Spartan	0.25 oz + 4.5 fl oz	80	76	77	94	95	94	93	8	8	89	1809	62.1
Sharpen + Spartan	1 fl oz + 4.5 fl oz	84	81	80	3 8	<u> 8</u> 6	97	66	95	96	95	1908	61.5
Sharpen	8	92	88	85	92	89	<u>8</u>	85	77	77	97	2108	61.7
KIH-485	0.15 lb ai	89	89	88	40	40	43	53	50	52	43	1732	61.1
KIH-485	0.3 lb ai	91	91	94	47	62	63	67	63	63	47	1849	59.9
Valor	2 oz	71	78	78	69	62	67	59	62	65	65	1703	61.3
Valor	3 oz	86	85	86	77	74	76	79	72	75	83	2032	61.8
Spartan	4.5 fl oz	84	86	87	95	95	95	95	96	93	95	1967	61.4
Handweeded ^d		100	100	66	100	100	66	100	100	97	100	1855	60.8
LSD (0.05)		10.3	10.9	10.5	15.3	12.4	11.5	12.5	13	10.5	9.6	480	NS
Č V		œ	ω	ω	12	10	ი	10	1	ი	8	16	5

Table. Chickpea tolerance to experimental herbicides (0911).

^a All treatments applied PRE

^b Rrpw =Redroot pigweed; Colq =Common lambsquarters; Kocz =Kochia; Wibw =Wild buckwheat

^c No visual chickpea injury was observed in any treatment

^d Prowl H20 (3 pt) was applied PRE to aid handweeding

Chickpea desiccation with Sharpen, Valor, and Paraquat. Jenks, Willoughby, and Hoefing. 'B90' chickpea was seeded May 15 at 140 lb/A into 7.5-inch rows into wheat stubble. Desiccation treatments were applied pre-harvest on September 2. There were essentially no weeds present in the study. Individual plots were 10 x 30 ft and replicated four times. At 1 week after treatment (WAT), Gramoxone provided slightly faster desiccation (99%) than other treatments (88-94%). Sharpen + Glyphosate was slightly more effective than Sharpen alone or Valor. At 2 WAT, desiccation was still slightly better with Gramoxone compared to other treatments. There were no significant differences in chickpea yield or test weight between treatments. Note: As of December 2009, Sharpen and Valor are not labeled for use as desiccants in chickpea.

			Chickpea	ea	
Treatment ^a	Rate	1 WAT	2 WAT	Yield	Test wt.
		% desiccation	cation	A/dI	bu/A
Untreated		83	86	2238	59.9
Sharpen + MSO + AMS	2 fl oz + 1% + 2%	92	93	2126	59.6
Sharpen + Glyphosate + MSO + AMS		94	97	2138	60.3
Valor + MSO	8	88	92	2209	60.2
Gramoxone Inteon + NIS	1.5 pt + 0.25%	66	66	2114	60.2
LSD (0.05)		4.9	3.2	NS	NS
CV ,		ო	0	თ	~

Table. Chickpea desiccation with Sharpen, Valor, and Paraguat (0909).

^a All treatments applied pre-harvest and evaluated 1 and 2 weeks after treatment (WAT)

<u>Crop response and weed control with preplant Valor in pinto bean, Carrington, 2009.</u> (Greg Endres)

The field experiment was conducted in cooperation with Valent at the NDSU Carrington Research Extension Center to examine pinto bean tolerance and weed control with preplant (PP) Valor. The experimental design was a randomized complete block with three replicates. Herbicide treatments were applied with a CO₂-hand-boom plot sprayer delivering 20 gal/A at 35 psi through 8002 flat fan nozzles to the center 6.7 ft of 10 by 30 ft plots. Early PP treatments were applied on May 5 with 56 F and 69% RH to 2- to 3-leaf volunteer barley, 6-inch tall quackgrass, 1- to 5-inch tall sheperdspurse, and 0.5-inch wide kochia. The second PP treatments were applied on May 16 with 55 F and 28% RH to 0.5- to 1.5-inch wide kochia. 'Lariat' was direct-planted into barley stubble on May 22 in 30-inch rows and replanted on June 12 due to a variable and low-density initial stand. The trial was over-sprayed with Rezult at 3.2 pt/A plus Reflex at 12 fl oz/A plus MSO at 20 fl oz/A on July 2, except the untreated check.

Weed control generally was excellent (88-99%) among herbicide treatments 24 d after application (Table). Kochia control generally was similar among herbicide treatments and ranged from 69 to 76% when evaluated on June 30. A visual evaluation of the initially-established dry beans on May 12 (data not shown) indicated no distortion of leaf foliage. Also, shoot lesions or discoloration was similar among treatments when visually evaluated on June 15. An evaluation was made on June 30 of the replanted stand with no distortion of leaf foliage noted (data not shown). Leaf malformation was noted during evaluations in July and August, but appeared to be caused by the POST herbicide tank mixture applied on July 2.

Table.										
			١	Need	control ¹	ĺ		Crop	respon	se ²
Herbicide				5/29			6/30	6/15	7/21	8/24
		-						Shoot	Le	eaf
Treatment ³	Product/A	Voba	Qugr	Shpu	KOCZ	Colq	KOCZ	lesions	malfor	mation
					%			%)	0-9
untreated check	х	0	0	0	0	0	0	7	0	0
May 5:										
Valor SX + Roundup PowerMax	2 oz + 22 fl oz	89	93	99	94	98	69	27	80	1
Valor SX + Roundup PowerMax	3 oz + 22 fl oz	88	97	98	97	99	75	7	80	1
May 16:										
Valor SX + Roundup PowerMax	2 oz + 22 fl oz	98	97	98	95	99	74	20	70	2
Valor SX + Roundup PowerMax	3 oz + 22 fl oz	98	95	96	93	99	76	20	70	1
Prowl H2O + Roundup PowerMax	40 + 22 fl oz	95	98	95	91	99	72	13	77	2
C.V. (%)		5.3	1.6	3.4	3.0	1.2	6.2	132.1	21.5	42.4
LSD (0.05)		7	2	5	4	2	7	NS	25	1
¹ Voba=volunteer barley; Qugr=qu	ackgrass; Shpu=	shepe=	rdspur	se:KO	CZ=ko	chia; (Colq=co	mmon la	mbsqua	arters.
² Shoot lesions=incidence among t 9=visual evaluation of plot (0=no i					%=incid	ence	among	10 plants	/plot an	d 0-
3 All has the arts is shade AMC (Correction										1

³All treatments include AMS (Cornbelt Amstik) at 64 fl oz/A.

Eptam and Permit in dry beans. Zollinger, Richard K., Jerry L. Ries, and Angela J. Kazmierczak. An experiment was conducted near Thompson, ND to evaluate weed control in dry bean with various tankmix treatments and applications. June 2, 2009, PPI treatments were applied and double incorporated with a field cultivator to a 2 to 3 inch depth. Two rows of 'Ensign' navy bean and 'Lariat' pinto bean were planted in each plot followed by the application of PRE treatments. PPI and PRE treatments were applied at 10:20 and 10:50 am, respectively, with 55 F air, 52 F soil at a four inch depth, 39% relative humidity, 20% clouds, 7 to 10 mph NW wind, dry soil surface, moist subsoil, and no dew present. POST treatments were applied on July 7 at 11:35 am, with 80 F air, 78 F soil surface, 48% relative humidity, 98% clouds, 1 to 3 mph N wind, dry soil surface, moist subsoil, and no dew present at the time of POST applications were: 1 to 4 inch (2/yd²) common lambsquarters and 1 to 3 inch (1 to 3/yd²) redroot pigweed. Treatments were applied to the center 6.7 feet of the 10 by 40 foot plots with a backpack-type plot sprayer delivering 17 gpa at 40 psi through 11002 Turbo nozzles for the PPI and PRE treatments and 8.5 gpa at 40 psi through 11001 Turbo TeeJet nozzles for POST treatments. The experiment had a randomized complete block design with three replicates per treatment.

All PRE and PPI treatments gave greater than 96% control of common lambsquarters 21 DAT (data not shown). Injury was slight stunting and chlorosis. (Dept of Plant Sciences, North Dakota State University, Fargo).

Table. Eptam and Permit in dry b	Table. Eptam and Permit in dry beans (Zollinger, Ries, and Kazmierczak)												
			35 DAT - PPI/PRE		14 D/	14 DAT - POS1	ST	Ñ	<u> 28 DAT - POST</u>	- POST		Yield	
Treatment	Rate .	Navy Pinto	Colq	Rrpw	Navy Pinto	to Colq	lq Rrpw	Navy Pinto	Pinto	Cold	Rrpw	Navy Pinto	² into
	(product/A)	- % injury -	- % control -	itrol -	- % injury -	1	% control -	- % injury -	jury -	- % control	- Itrol	Y/qi	
Idd									1	1	ł		000
Eptam	4pt	0 4	88	<u> </u>	0	œ		0	0	65	67	1219	886
Eptam+Sonalan	4pt+1.25pt	0	<u> 8</u> 6	95	0	თ		0	0	94	88	1539	1453
Fotam+Sonalan	3.5pt+2pt	0 4	97	97	0	6		0	0	94	93	1944	1443
Entam+Prowl H ₂ O	3.5ot+2ot	0	94	97	0	თ	94 97	0	-	88	83	1337	1257
Entam+Sonalan+Permit	3.5ot+2ot+0.67oz	0	67	<u> 8</u> 6	0	σ		0	0	91	<u> </u>	1577	1438
Entam+Permit	4nt+0.67oz	0	67	97	0	თ	97 97	0	ო	87	89	1514	1523
			ç	00	с С	σ		c	*	97	94	1976	1403
Sonalan+Permit	3pt+0.6/oz		AA	20		D		.	-	5	5		2021
PPI/PRE													
Eptam/Permit	4pt/0.67oz	0 0	66	96	0	o	96 66	0	0	96	94	1807	1574
Prowl H ₂ O+Permit	3.33pt/0.67oz	0	96	86	0	0	96 98	0	-	91	96	1698	1295
DDI/ED/CT													
Eptam+Sonalan/Permit+R-11+	3.5pt+2pt/0.67oz+0.25% v/v+	0	67	67	0	o	96 95	7	7	93	92	1613	1383
28% N	1%o V/V												
PRE/EPOST													
Permit/Reflex+Scoil	0.67oz/0.75pt+1.5pt	0	66	66	0	0	93 92	2	2	88	88	1824	1414
		c	c	c	0		c c	c	c	c	c	667	661
Untreated		5	5	5				þ	2	2	þ	8	
LSD (0.05)		NS 2	8	4	NS 2		8	2	в	6	8	577	339

Pyroxasulfone tolerance of Navy and Pinto Bean. Hunt, Ryan L. and Richard K. Zollinger. Experiments were setup in both 2008 and 2009 near Prosper, Hatton, and Thompson, ND. Beans were planted in 2008 on May 22, June 2, and May 23 in Prosper, Hatton, and Thompson respectively. PRE applications were made on May 22, June 4, and May 23 at Prosper, Hatton, and Thompson. Beans were planted in 2009 on May 30, June 6, and June 10. Prosper, Hatton, Thompson. PRE applications were made on June 10, and June 10 in Prosper, Hatton, and Thompson. No weeds were present at time of PRE applications. Cultivation and standard POST herbicides were used to maintain plots weed free.

Navy Bean. In 2008, yield at Hatton and Thompson significantly decreased as rate of pyroxasulfone increased. Prosper was unable to be harvested due to weather conditions. In 2009, yield at Prosper and Thompson significantly decreased as pyroxasulfone rate increased, but did not change at Hatton.

<u>Pinto Bean</u>. In 2008, yield at Hatton significantly decreased as pyroxasulfone rate increased; however, Thompson did not significantly change and Prosper was unable to be harvested due to weather conditions. In 2009, yields were not significantly different at all locations.

Injury values for both navy and pinto beans were higher in 2008 compared to 2009. The increased injury in 2008 may be due to an activating rainfall occurring in 2008 while the beans were in the cracking stage, in 2009 an activating rainfall did not occur until the beans were well established.

(Dept. of Plant Sciences, North Dakota State University, Fargo).

2000 Navy Dedil I Ulei alice tu ryi uzasuli ule	rance to l	Pyroxasulto	ne	(Hunt and Zollin	collinger)								
			Prosper				Hatton				Thompson		
		14 DAE	28 DAE	56 DAE		14 DAE	28 DAE	56 DAE		14 DAE	28 DAE	56 DAE	
Treatment	Rate				yield				yield				yield
	(g/ha)	% injury			(kg/ha)	% injury			(kg/ha)	% injury			(kg/ha)
Pvroxasulfone	84	18c	6c	2c	ı	qo	po	q0		1c	မိ	റ്റ	1297b
	125	30c	17c	12c	ı	q6	10c	1b	1636ab	1c	1c	1bc	1486ab
	166	71b	40b	26b	ı	21a	18b	5b	1694ab	10b	Лb	q6	1243b
	332	96a	93a	99a	ı	28a	30a	19a	1272b	46a	23a	21a	927c
Dimethanamid-p	1100	1d	С	ő	I	qo	ро	qo	2108a	ပိ	ပိ	ő	1594a
LSD		12.8	20	11.9	1	11.9	7.1	8.4	566.1	8.9	4.2	8	283.6

d			Prosper				Hatton				Thompson		
		14 DAE	28 DAE	56 DAE		14 DAE	28 DAE	56 DAE	-	14 DAE	28 DAE	56 DAE	
Treatment	Rate				yield				yield				yield
	(g/ha)	% injury			(kg/ha)	% injury			(kg/ha)	% injury			(kg/ha)
Pvroxasulfone	84	18c	9C	2c	I	qo	ро	qo	1920a	1c	о О	റ്റ	1297t
	125	30c	17c	12c	ı	q6	10c	1b	1636ab	1c	1c	1bc	1486a
	166	71b	40b	26b	ı	21a	18b	5b	1694ab	10b	7b	q6	1243b
	332	96a	93a	99a	I	28a	30a	19a	1272b	46a	23a	21a	927c
Dimethanamid-p	1100	1d	ы С	о О	ı	qo	ро	qo	2108a	မိ	ဗ	о О	1594
ISD		12.8	20	11.9	1	11.9	7.1	8.4	566.1	8.9	4.2	8	283.6
14			Prosper				Hatton			-	Thompson		
		14 DAE	28 DAE	56 DAE		14 DAE	28 DAE	56 DAE	ľ	14 DAE	28 DAE	56 DAE	
Treatment	Rate				yield				yield				yield
	(g/ha)		% injury		(kg/ha)		% injury		(kg/ha)		% injury		(kg/ha)
Pvroxasulfone	. 84	1c	2c	qo	•	qo	qo	qo	2277ab	qo	qo	qo	1411a
	125	11b	9c	2b	ı	qo	qo	qo	1862b	qo	qo	qo	1540a
	166	18b	23b	14b	,	qo	2b	3b	2051ab	qo	qo	qo	1740a
	332	35a	75a	39a	ł	12a	9a	11a	1819b	9a	8a	4a	1369a
Dimethanamid-p	1100	ő	ပိ	ob do	,	qo	qo	qo	2415a	qo	qo	qo	1560a
5		8.2	11.3	20.6	ı	4.1	2.8	3.4	485.8	2.1	3.8	3.9	439.1

											Thompson		
			Prosper				Hatton						
	DAE	14	28	56		14	28	56		14	28	56	
Treatment	Rate				vield				yield				yield
	(g/ha)	% injury			(kg/ha)	% injury			(kg/ha)	% injury			(kg/ha)
Pvroxasulfone	84		qo	0a	3306a	ő	qo	qo	2149a	qo	qo	qo	2401ab
	125	q0	qo	Oa	3338a	2c	qo	qo	2198a	qo	2b	qo	2242ab
	166	qo	qo	0a	3159a	10b	1b	qo	2207a	2b	Зb	1b	2415ab
	332	20a	8a	1a	3035b	33a	12a	qo	2123a	14a	38a	19a	2112b
Dimethanamid-p	1100	qo	qo	0a	3247a	ő	qo	9a	2310a	qo	qo	qo	2539a
LSD		2.8	1.6	1.7	251.1	4.5	2.5	3.3	386.6	3.7	8.7	3.9	402
			Prosper				Hatton				Thompson		1
	DAF	14	28	56		14	28	56		14	28	56	
Treatment	Rate				yield				_ yield	I			yield
	(g/ha)	% injury			(kg/ha)	% injury			(kg/ha)				(kg/ha)
Pvroxasulfone	84		Oa	Oa	3271a	qo	qo	qo	2379a		о О	qo	2352a
	125	Oa	0a	0a	3377a	qo	qo	qo	2392a	qo	о О	qo	2385a
	166	Oa	0a	0a	3444a	3b	1b	1ab	2443a		5b	qo	2548a
	332	Oa	0a	0a	3354a	21a	11a	ба	2531a		14a	4a	2340a
Dimethanamid-p	1100	Oa	0a	0a	3538a	qo	qo	qo	2537a		qo	qo	2399a
		C	С	C	342.1	4	3.3	5.4	601.5		4	2.1	227.5

Gowan Dry Edible Bean Desiccation. Zollinger, Richard K., Jerry L. Ries, and Angela J. Kazmierczak. An experiment was conducted near Thompson, ND, to evaluate Gowan's 'Vida' desiccant. Hyland 'T9905' navy bean was planted on June 6, 2009, and maintained by the cooperator throughout the growing season. Desiccation treatments were applied on September 4 at 9:30 am with 62 F air, 76 F soil surface, 93% relative humidity, 15% cloud cover, 4 to 6 mph S wind, dry soil surface and moist subsoil. Applications were applied earlier than normal do to high levels of white mold and late blight that was occurring in the field. Applications were made at 25 to 75% leaf drop; 0 to 20% vine desiccation; 30 to 50% green pods; 50 to 70% yellow pods; and 0% dry/leather pods. White mold was present on the entire plant including on the seed. The higher the percentages at application were do to plants that were seriously infected by white mold. Crop destruct was done after the last ratings were taken. Treatments were applied to the entire 6.7 by 30 foot plots with a backpack-type plot sprayer delivering 17 gpa at 40 psi through 11002 Turbo TeeJet nozzles for all applications. The experiment had a randomized complete block design with six replicates per treatment.

Vida, active ingredient pyraflufen, is a new desiccant that we used in dry bean desiccation. The higher rate of Vida increased the speed of desiccation than the lower rate. At 14 DAT Vida had similar control ratings to Valor. All Vida treatments, the pH was lowered to 5.0 to 5.1 with Tri-Fol. (Dept of Plant Sciences, North Dakota State University, Fargo).

ימבוה ו: כסוומו הו) במוכו הכמון הכמונה לבמוויואמו ו מכו מומו ומבוווומו הממולי				·												
				7 DAT				•	10 DAT				•	14 DAT		
Treatment	Rate	leaf ¹	vine ²	green ³	vine ² green ³ yellow ⁴ brown ⁵	brown ⁵	leaf	vine	green	vine green yellow brown	brown	leaf	vine	vine green yellow browr	yellow	orown
	(product/A)	1	1 1 1 1	% contro	% control	1 1 1	1 1 1	%	contro	% control	L L I		%	% control		
Vida+Scoil	4.125fl oz+1% v/v	83	23	4	84	12	<u> </u>	23	4	99	30	97	28	~	37	62
Vida+Scoil	2.75fl oz+1% v/v	77	17	7	78	17	86	22	ი	63	30	92	37	ო	49	48
Vida+Rounup WeatherMax+Scoil 2.75fl oz+22fl oz+1% v/v	2.75fl oz+22fl oz+1% v/v	82	13	10	80	10	06	22	7	64	28	96	33	4	54	45
Valor+Scoil	1.5oz+1% v/v	88	33	ß	83	12	95	32	4	56	41	66	47	0	33	67
Untreated		45	9	22	73	ស	62	2	13	78	თ	68	~	17	52	35
TSD (0.05)		ъ	4	4	9	4	4	5	4	4	വ	ę	80	4	8	S
¹ Leaf = % leaf desiccation and leaf drop. ² Vine = % vine desiccation. ³ Green = % green pods. ⁴ Yellow = % yellow pods. ⁵ Brown = % dry pods.	if drop.															

Table 1. Gowan Dry Edible Bean Desiccation (Zollinger, Ries, and Kazmierczak).

Sharpen as a desiccant in dry edible beans. Zollinger, Richard K., Jerry L. Ries, and Angela. J. Kazmierczak. Five dry bean studies were conducted in the fall of 2009, two near Thompson, ND, and three near Portland, ND. At Thompson, Study 1, Sharpen was used at various application rates to evaluate dry bean desiccation. At Thompson, Study 2, Sharpen was applied at one rate with varying adjuvants and application volumes to evaluate dry bean desiccation. At Portland, Study 3, 4, and 5, Sharpen was applied at one rate to 3 dry bean types to screen for Sharpen residue in the harvested seed.

Study 1 and 2: Hyland 'T9905' navy bean was planted on June 6, 2009, and maintained by the cooperator throughout the growing season. Study 1, desiccation treatments were applied on September 4 at 9:40 am with 77, 62 F air, 76 F soil surface, 93% relative humidity, 15% cloud cover, 4 to 6 mph S wind, dry soil surface and moist subsoil. Study 2, desiccation treatments were applied at 10:00 am with the same environmental data.

Studies 1 and 2, the applications were applied earlier than normal do to high levels of white mold and late blight that was occurring in the field. Applications were made at 25 to 75% leaf drop: 0 to 20% vine desiccation; 30 to 50% green pods; 50 to 70% yellow pods; and 0% dry/leather pods. White mold was present on the entire plant including on the seed. The higher the percentages at application were do to plants that were seriously infected by white mold. Crop destruct was done after the last ratings were taken for both studies. the first strategy and A spectra Million and a second eviduate dry bc.

Study 3; 4,35: At Portland, 'Ensign' navy bean, 'Montcalm' dark red kidney, and 'T-39' black bean were planted on June 10, 2009. The bean types were maintenance sprayed and hand-weeded during the growing season. There was little to no disease pressure at the Portland location. Applications were made at greater than 80% leaf drop for all bean types. Navy bean applications were applied on Sept 24 at 9:50 am With 73 air, 74 F soil surface, 86% relative humidity, 33% cloud cover, 0 mph wind, dry soil surface and moist subsoil. Navy bean was at 85 to 92 % leaf drop; 45 to 60% vine desiccation; 2 to 5% green pods; 10% yellow pods; and 85% dry/leather pods. Black and Dark Red Kidney bean applications were applied on Sept 17 at 10:30 am with 75 air, 78 F soil surface, 44% relative humidity, 10% cloud cover, 1 to 3 mph SW wind, dry soil surface and moist subsoil. Black bean was at 75 to 99% leaf drop; 35 to 85% vine desiccation; 5 to 10% green pods; 5 to 20% yellow (purple) pods; and 75 to 85% dry/leather pods. Dark Red Kidney bean was at 65 to 85% leaf drop; 25 to 50% vine desiccation; 10% green pods; 10% vellow pods; and 80% dry/leather pods. Seeds from each bean type were collected at 14 DAT from the top, middle, and bottom of each plant. Each plant section of seeds collected were bagged by their plant part and sent for residue samples. Crop destruct was done after the last ratings and seed was harvested.

Treatments for all studies, at all locations, were applied to the entire 6.7 by 30 foot plots with a backpacktype plot sprayer delivering 17 gpa at 40 psi through 11002 Turbo TeeJet nozzles for all applications. The experiment had a randomized complete block design with six replicates per treatment.

Sharpen and Valor are PPO inhibitor that work very well at low use rates as a dry bean desiccant. At Thompson, Study 1, Sharpen at three use rates, there are little rate response differences, 0.72 to 2 fl oz. Valor is also an herbicide that works very well as a desiccant that is generally equal to that of Sharpen. Aim also worked well, but takes longer to get adequate desiccation. Study 2 at Thompson, 5 gpa generally desiccated as well as 10 gpa.

At Portland, residue seed samples were not available at the time of this report. Applications were made at normal desiccation timing so residue samples could be harvested, so there is little difference in the ratings of the residue studies. Treatments gave excellent desiccation.

(Dept of Plant Sciences, North Dakota State University, Fargo).

Table 1. Study 1, Rate response to Sharpen, Thompson	nse to Sharpen, Thompson (Zollinger,	-	Ries, and Kazmierczak). 7 DAT	erczak). 7 DAT				DAT	10 DAT				-	14 DAT		
Treatment ¹	Rate	leaf	vine ^a	green ⁴ yellow ⁵	/ellow ⁵ t	brown ⁶	√ leaf	vine	stavine to green a yellow		brown	leaf	vine	green yellow		brown
	(product/A)	i i N		% control	5 5 5 5 5 5 5		3	%	% control	1 1 1 1 1	1	1	%	% control	1 1 1 1	:
Sharpen+Scoil+AMS	0.72fl oz+1% v/v+17lb/100gal	6	47	S	22	73	94	48	2	51	47	98	72	0	10	06
Sharpen+Scoil+AMS	1fl oz+1% v/v+17lb/100gal	92	83	5	20	75	96	05	0	42	58	66	<u> 06</u>	0	9	94
Sharpen+Scoil+AMS	2fl oz+1% v/v+17lb/100gal	94	88	8	20	75	97	- 78	0	25	42	66	98	0	2	<u>98</u>
RUPM+Scoil+AMS	22fl oz+1%	78	48	48	48	33	83	15	13	52	35	87	47	0	36	62
Sharpen+RUPM+Scoil+AMS	0.72fl oz22fl oz+1% v/v+17lb/100gal	91	45	9	23	72	95	47	0	37	63	66	91	0	14	86
Valor+Scoil	1.5oz+1% v/v	91	48	9	25	68	96	73	-	31	68	66	93	0	6	91
Aim+Scoil+AMS	2.63fl oz+1% v/v+17lb/100gal	82	38	11	30	58	87	43	വ	33	65	98	72	2	16	82
Untreated		48	4	22	68	12	52	9	18	73	÷	60	ø	10	57	32
LSD (0.05)		ო	4	ო	9	4	ო	4	ო	4	12	2	4	~	5	5
² Leaf = % leaf desiccation and leaf drop. ³ Vine = % vine desiccation. ⁴ Green = % green pods. ⁵ Yellow = % yellow pods. ⁶ Brown = % dry pods.	d leaf drop.															
Table 2. Study 2, Volume an	Table 2. Study 2, Volume and adjuvant response to Sharpen, Thompson		(Zollinger, F	Ries, and Kazmierczak)	Kazmiei	rczak).										
	· · ·		۰.	7 DAT			1999 1997 1997		10 DAT				~	14 DAT		
Treatment ¹	Rate	leaf	vine ³	green ⁴	yellow ⁵ t	brown ⁶	: leaf	vine	green	yellow t	brown	leaf	vine	green V	yellow t	brown
	(product/A)	1		% control		- 	1.	%	% control	1 1 1 1	;	1 1 1	%	% control		1
10 GPA Sharpen+R-11+AMS	1fl oz+0.25% v/v+17lb/100gal	91	42	S	15	80	63	38	~	49	40	6 6	65	0	22	73
Sharpen+Herbimax+AMS	1fl oz+1% v/v+17lb/100gal	92	45	4	16	80	96	48	-	43	57	66	83	0	15	87
Sharpen+Scoil+AMS	1fl oz+1% v/v+17lb/100gal	94	47	ю	19	78	98	73	0	27	73	66	93	0	10	92
5 GPA		Ċ	2 1	•	ç	L F	L C	ţ		ч. с	ľ	ç	ç	c	L	Į
onarpen+ocon+Alvio	111 02+1% V/V+1/10/10/03al	ne	2	4	<u>x</u>	c/	G	10	-	55	10	88	23	0	10	8/
Untreated		52	4	18	22	сı	62	9	13	73	13	68	1	[63	27
LSD (0.05)	a and a state of the state of	4	5	3	4	3	3	9	3	9	11	2	ю	~	4	ъ
¹ RUPM = Roundup PowerMax. ² Leaf = % leaf desiccation and leaf drop.	k. 1 leaf drop.			-												

19

....

³Vine = % vine desiccation. ⁴Green = % green pods. ⁵Yellow = % yellow pods. ⁶Brown = % dry pods.

Table 3. Study 3, Black Bee	Black Bean Desiccation, Portland (Zollinger, Ries, and Kazmierczak)	es, and Kaz	miercza	k). 5 DAT			÷.	it a C	10 DAT					14 DAT		
Treatment	Rate	leaf	vine ²		yellow ⁴	yellow⁴ brown ⁵	leaf	vine	vine green yellow		brown	leaf	vine		yellow	brown
	(product/A)	8 8 1	6	- % control		5 5	1. 1 1	т Т Т	% control		1	1 1 1	6 	% control		1 1
Sharpen+Scoil+AMS	1fl oz+1% v/v+17lb/100gal	98	96	0	0	66	66	66	0	0	66	66	66	0	0	66
Untreated		93	93	0	ю	26	. 95	95	0	0	66	66	95	0	0	66
LSD (0.05)		8	٢	SN	-	÷		~	SN	NS	NS	NS	-	NS	NS	NS
¹ Leaf = % leaf desiccation and leaf drop. ² Vine = % vine desiccation. ³ Green = % green pods. ⁴ Yellow = % yellow pods. ⁵ Brown = % dry pods.	nd leaf drop.															
Table 4. Study 4. Dark Rec	Dark Red Kidnev Bean Desiccation, Portland (Z	Zollinger, Ries, and Kazmierczak).	ies, and	Kazmie	rczak).											
				5 DAT					10 DAT					14 DAT	:	
Treatment	Rate (product/A)	leaf ¹	vine ²	green ³ % control	vellow	brown ⁵	leaf	vine	green % control	yellow	brown	leaf 	vine .	green % control	yellow	brown
Sharpen+Scoil+AMS	1fl oz+1% v/v+17lb/100gal	67	48	0	0	66	66	62	0	0	66	66	82	0	0	66
Untreated		85	28	~	~~	98	89	37	0	0	66	65	40	0	0	66
LSD (0.05)		9	6	Ļ	е ³ Ю	с С	7	6	NS	SN	SN	9	13	SN	NS	NS
¹ Leaf = % leaf desiccation and leaf drop. ² Vine = % vine desiccation. ³ Green = % green pods. ⁴ Yellow = % yellow pods. ⁵ Brown = % dry pods.	nd leaf drop.															
Table 5. Study 5, Navy Be	Navy Bean Desiccation, Portland (Zollinger, Ri	lies, and Kazmierczak)	Izmiercz	ak).												
				5 DAT					10 DAT					14 DAT		
Treatment	Rate	leaf	vine ²	green ³	yellow ⁴	brown ⁵	leaf	vine	green	yellow	brown	leaf	vine	green	yellow	brown
	(product/A)	8	1 1 1 1	% control	1 1 1 1	1		1 1 1 1	% control		-	1 1 1		% control		:
Sharpen+Scoil+AMS	1fl oz+1% v/v+17lb/100gal	66	66	0	0	66	66	66	0	0	66	66	66	0	0	66
Untreated		92	78	-	16	83	67	93	0	5	95	66	66	0	0	66
LSD (0.05)		7	7	4	e	7	4	7	NS	NS	NS	NS	SN	NS	NS	NS

LSD (0.05) ¹Leaf = % leaf desiccation and leaf drop. ²Vine = % vine desiccation. ³Green = % green pods. ⁴Yellow = % yellow pods. ⁵Brown = % dry pods.

Dry pea tolerance to Sharpen applied preemergence. Jenks, Willoughby, and Hoefing. 'Majoret' dry pea was seeded May 12 at 140 lb/A into 7.5-inch rows into wheat stubble. Herbicides treatments were applied preemergence (PRE) on May 12. Individual plots were 10 x 30 ft and replicated three times. There were very few weeds present at application time or during the growing season.

saw about 15-20% growth reduction and about 100 lb/A lower dry pea yield with the high rate of Sharpen. Note that the normal use rate in dry pea The objective of the study was to determine dry pea sensitivity to higher rates of Sharpen. There was essentially no visible injury with any of the treatments. However, there was a downward trend in yield as Sharpen rate increased. We observed a similar trend in 2008 where we actually will be 25 g/ha, which is equivalent to 1 fl oz/A.

				Dry	Dry pea		
Treatment ^a	Rate/ha	Jun 04	Jul 01	Jul 08	Jul 22	Yield	Test wt.
			% injur	/		Ib/A	nq/ql
Untreated		0	0	0	0	2515	66.0
Sharpen ^b	63	0	0	0	0	3027	66.0
Sharpen	 20,0360 	0	0	0	0	2805	66.2
Sharpen			0	0	0	2684	65.8
Sharpen & Pursuit	it 143 g	0	0	0	0	3501	66.6
LSD (0.05)	3	NS	NS	NS	NS	485	NS
C N		164	0	0	0	ნ	~
	a cooliced DDE						

Table. Dry pea tolerance to Sharpen applied PRE (0938).

^a All treatments were applied PRE.

^b Sharpen at 50 g/ha is equivalent to 2 fl oz/A

Dry pea tolerance and weed control with Sharpen. Jenks, Willoughby, and Hoefing. 'Majoret' dry pea was seeded May 12 at 140 lb/A into 7.5inch rows into wheat stubble. Herbicides treatments were applied preenergence (PRE) on May 12. Individual plots were 10 x 30 ft and replicated three times. There were very few weeds present at application time. Wild buckwheat was the only broadleaf weed present in significant densities during the season. All treatments received two applications of Select Max for grass control.

that Sharpen can have a residual benefit with adequate soil moisture and rainfall. However, growers should not always expect this type of residual Glyphosate. None of the treatments caused visible crop injury. By 16 days after treatment (DAT), wild buckwheat control dropped below 90% for Glyphosate alone and Aim + Glyphosate. By 4 weeks after treatment (WAT), wild buckwheat control dropped below 60% for Glyphosate alone and Aim + Glyphosate, whereas control with treatments containing Sharpen still provided greater than 90% control. By 6 WAT, Sharpen at 25 g provided 83-87% wild buckwheat control compared to 95% with 50 g and 93% where 25 g was tank mixed with Prowl H20. This study showed The objective of the study was to evaluate residual weed control with Sharpen + Glyphosate compared to Glyphosate alone as well as Aim + benefit

			Dry pea			Wit	Nibw ^b		Dry pea	ea
		May	Jun	Jul	May	May	Jun	Jul		
Treatment ^a	Rate/ha	28	13	6	23	<u>2</u> 8	13	0	Yield	2
			% injury-			cont	- control		A/dI	nq/q
Untreated		0	0	0	0	0	0	0	2742	65.2
Givphosate + NIS	840 g + 0.25%	0	0	0	93	80	55	48	3335	66.4
Sharpen + Glvphosate + MSO	25 g + 420 g + 1%	0	0	0	66	66	94	83	3510	65.6
Sharpen + Glvphosate + MSO	8 -	0	0	0	66	98	91	87	3745	66.1
Sharpen + Glyphosate + MSO	50 g + 840 g + 1%	0	0	0	100	100	96	95	3923	66.0
Aim EW + Glvphosate + COC	ŝ	0	0	0	94	89	59	42	3510	65.3
osate + MSO	25 g	و 0	0	o	100	66	95	93	4106	66.4
LSD (0.05)		NS	NS	NS	2.9	6.3	14.4	14.6	478	NS
CV		0	0	0	7	4	12	13	œ	۲
^a All treatments were applied PRE; AMS (2%) was applie	s applied with each treatment; Sharpen at 25 g/ha is equivalent to 1 fl oz/A	harpen at 2	5 g/ha is	equivaler	it to 1 fl o	iz/A				

Table. Dry pea tolerance and weed control with Sharpen (0939)

^bWibw =Wild Buckwheat

Dry pea tolerance to experimental herbicides. Jenks, Willoughby, and Hoefing. 'Majoret' dry pea was seeded May at 140 lb/A into 7.5-inch rows into wheat stubble. Herbicides treatments were applied preemergence (PRE) on May 12. Glyphosate and AMS (0.75 lb ae + 1%) were included with each treatment. Individual plots were 10 x 30 ft and replicated three times.

buckwheat density was generally low throughout the study area. Dry pea yield and test weight were similar across all herbicide treatments. Yield and Valor are not labeled for PRE use in dry pea. Less than 10% crop injury was observed in all treatments 4 weeks after treatment (WAT) and The objective of the study was to evaluate dry pea response to experimental herbicides applied PRE. As of December 2009, Express, KIH-485, no injury observed at 8 WAT. All treatments provided good to excellent wild buckwheat control except for KIH-485 and Valor (2 oz). Wild and test weight in the untreated check were significantly lower than all herbicide treatments.

			Dry pea		Wibw ^b	°2	Dry	Dry pea
		unſ	Jul	Jul	Jun	Jul		
Treatment ^a	Rate	12	05	25	12	05	Yield	Test wt.
1.00011011		6	% injury		% control	ntrol	lb/A	nq/qI
Untreated		0	0	0	0	0	2099	62.5
Express + Spartan	0.25 oz + 4.5 fl oz	101	0	0	91	06	3014	65.2
Shartan + Sharpen + MSO + AMS	4.5 fl oz + 1 fl oz +/1% + 2.5%	52 2	Ó	0	97	- 97	2748	65.2
Sharnen + MSO + AMS	4 fl oz + 1% + 2.5%	6	0	0	97	98	2921	65.3
KIH-485	0,15 lb ai	~~2	· i0	0	47	43	2829	64.1
KIH-485	0.3 lb ai	4	ò	0	70	67	3067	64.9
Valor	2 oz	2	Ô	0	89	74	2939	64.9
Valor	3 oz	8	0	0	95	83	2988	64.9
Shartan	4.5 fl oz	8	0	0	95	95	2802	65.0
Handweeded ^c		0	0	0	100	100	2725	65.1
I SD (0.05)		3.3	NS	NS	23.8	18.5	476	1.0
CV		0	0	0	14	11	10	-
	AND							

Table. Dry pea tolerance to experimental herbicides (0917).

^a All treatments applied PRE ^b Wibw =Wild buckwheat ^c Prowl H2O was applied PRE to aid handweeding

Weed control in field pea, Williston 2009. Neil Riveland

notill drill with 7 inch row spacing at 150 lbs/a. All PE treatments were applied on May 7 to a was 6.67 ft wide area the length of 10 by 30 ft plots. Glyphosate was applied to the whole plot plot sprayer with wind cones, mounted on a G-Allis Chalmers tractor to apply all treatments. PE inch Russian thistle (Ruth), prostrate pigweed (prpw) and nightshade less than 0.5 inches, and area on April 20 to control emerged weeds. First rain received after PE applications was 0.04 inch on May 7. First rain event after post treatment was 0.34 inches on June 6. The experiment Plots were evaluated for crop treatments were applied though 8001 flat fan nozzles delivering 10 gal/a at 40 psi. Plot size from 230 degrees, dry plant and soil surfaces, with soil temperature at 50 F. We used a small topsoil at 54 F. The post emergence treatment was applied on June 5 to 5-6 inch peas and 1-3 green foxtail (grft) 3-5 leaf stage with 41 degree F, 65% RH, 95% clear sky, wind at 2-3 mph 'Majoret' green field pea was planted on April 21 into 2008 safflower stubble using a JD 750 dry soil surface with 55 F, 36% RH, 80% clear sky and wind at 1-4 mph from 234 degrees with treatments were applied through 8002 flat fan nozzles delivering 20 gals/a at 40 psi. Post plants/sq ft, green foxtail at 6-8 plts/sq ft and pigweed, common lambsquarters and eastern injury and weed control June 14 and August 2. Russian thistle density was heavy at 4-5 black nightshade at 1/2-2 plts/sq ft. Peas were machine harvested on August 3. was a randomized complete block design with three replications.

			°°	Crop	Test	Grain	Ruth	Ruth	Ebns		Grft	Prpw	Colq
Treatment	Product		Ĺ'nŢ	Injury	Weight	Yield	6/14	8/2	8/2	6/14	8/2	8/2	8/2
;	Rate-Unit/a 1	Труе	6/14	N	lbs/bu-	bus/a			0.: 	-8. Control			
		,	¢			, , , , , , , , , , , , , , , , , , ,	ć	¢	Ċ	c	·	¢	¢
Untreated			C	S		13.1	>	>	2	2)	2	5
Express & Spartan 0.25	10.25&4.5 oz/a	Pre	4	m	64.5	19.7	97	98	66	82	78	98	66
Sharpen & Spartan 1 &	1 & 4.5 oz/a	Pre	4	ო	64.6	19.6	98	66	6 6	80	80	66	98
Sharpen		Pre	0	0	64.5	15.0	е С	37	17	œ	0	58	23
KIH-485	0.15 Ib/a	Рге	N	0	64.6	15.8	17	17	ო	0	65	0	0
KIH-485	0.30 lb/a	Pre	4	0	64.3	17.5	53	45	25	62	82	65	0
Valor	2 oz/a	Рге	80	ო	64.7	17.4	92	16	83	60	48	86	77
Valor		Pre	7	7	65.2	23.2	06	95	94	86	73	88	77
Spartan	4.5 fl oz/a	Pre	N	N	•	22.8	95	66	95	80	89	98	95
Frowl H20 3 pt/a		Pre	4	0	64.5	14.2	82	67	33	73	78	77	87
Metribuzen 6 oz/a	t 6 oz/a	Post	Ч	N	64.8	16.4	22	0	10	13	40	17	63
Raptor + Rezult	4 +	Post	m	ഹ	64.6	12.4	53	27	30	48	50	82	33
Pursuit	2 fl oz/a	Post	2	m	64.9	15.5	37	60	33	37	83	55	0
			126	182	V	17 8	E C	60	49	29	34	23	31
				NS	SN	5.1	23	28	40	24	34	24	26
LSD 18			SN	SN	NS	7.0	30	38	54	32	46	33	36
ours actual free as [sit		14 4 00 7	[נ ט 4		+ wouch	ted ted	010 010	ç				

Valor and Spartan gave good weed control with some tendency to have crop injury. Post emergence treatments did not control weeds adequately

Preemergence weed control in field pea, Carrington, 2008 (Greg Endres). Weed control and field pea response to selected preemergence-applied (PRE) herbicide were evaluated in a randomized completeblock design with three replicates. The field experiment was conducted at the NDSU Carrington Research Extension Center on a conventional-tilled Heimdahl-Emrick loam soil with 2.8% organic matter and 6.8 pH. On April 30, inoculated 'Admiral' field pea was seeded in 7-inch rows at a rate of 300,000 pure live seeds/A. Herbicide treatments were applied with a CO₂ pressurized hand-held plot sprayer at 35 psi through 80015 flat-fan nozzles. PRE treatments were applied at 17 gpa on May 6 with 64 F, 33% RH, 100% cloudy sky, and 11 mph wind. Rainfall totaled 1.1 inches within 24 d following PRE application. POST treatments were applied on June 24 with 47 F, 78% RH, clear sky, and no wind to 3- to 4-inch tall field pea, 1- to 3-leaf foxtail (green and yellow) and 2-leaf redroot pigweed. POST treatments were applied on June 12 with 55 F, 75% RH, clear sky, and 14 mph wind to 5- to 6-inch tall field pea, 1- to 4-leaf yellow and green foxtail, 1- to 3-inch tall common lambsquarters, and 1- to 2-inch tall wild buckwheat.

No crop response with PRE treatments was observed when visually evaluated on June 10 (data not shown). Broadleaf weed control was poor to nonexistent with PRE treatments (Table). This was due to delayed rainfall (> 3 wk) to activate PRE herbicides. Foxtail generally was suppressed with POST grass herbicides. Common lambsquarters control ranged from 77 to 90% with POST broadleaf herbicides while wild buckwheat control was poor. Crop injury occurred with POST broadleaf plus grass herbicides.

Table.									
				Wee	d con	trol ¹		Cr	•
	Herbicide		6	/10		6/27		respo	onse ²
	Application								
Treatment ³	timing⁴	Rate	colq	wibw	fota	colq	wibw	6/27	7/9
		product/A				%			·
Untreated check	х	0	0	0	0	0	0	0	0
Lorox/Assure II + COC	PRE/POST	16 oz/8 fl oz + 1% v/v	40	0	68	0	0	0	0
Lorox/Assure II + COC	PRE/POST	32 oz/8 fl oz + 1% v/v	67	22	68	0	13	0	0
KIH485/Assure II + COC	PRE/POST	2.8 oz/8 fl oz + 1% v/v	27	0	68	0	0	0	0
KIH485/Assure II + COC	PRE/POST	5.6 oz/8 fl.oz + 1% v/v	53	0	90	0	0	0	0
Sharpen/Assure II + COC	PRE/POST	2 fl oz/8 fl oz + 1% v/v	47	22	67	0	0	0	0
Sharpen/Assure II + COC	PRE/POST	4 fl oz/8 fl oz + 1% v/v	55	24	65	0	0	0	0
Sharpen + Pursuit	PRE	2 fl oz + 2 fl oz	53	х	67	0	0	0	0
Spartan + Pursuit	PRE	3 fl oz + 2 fl oz	66	22	75	0	0	0	0
Raptor + Basagran + COC		4 fl oz + 16 fl oz + 1%							
+ UAN	POST	v/v + 32 fl oz	Х	X	76	90	40	15	2
Raptor + RezultB +		2 fl oz + 12.8 fl oz +							-
RezultG + COC + UAN	POST	12.8 + 1% v/v + 32 fl oz	X	х	70	88	53	18	6
RezultB + RezultG + COC		25.6 fl oz + 25.6 fl oz +							_
+ UAN	POST	1% v/v + 32 fl oz	Х	X	66	77	27	15	8
C.V. (%)			26.0	120.1	6.7	18.2	97.2	37.2	132.0
LSD (0.05)			20.0	NS	7	7	18	3	3
, , ,	ers' wibw=wil	d buckwheat; fota≕yellow a	nd are		ail		1 1	1	
² Crop response=plant heigl		a buokunicat, iota yonow a	na gre						
³ COC=Destiny (Winfield); L		monium nitrate			······································				
⁴ PRE=May 6; POST=June									
FRE-May 0, POST-Julie	12.								

2009 Rate and Timing of Assure II on Tough Grassy Weeds in Field Pea

Eric Eriksmoen, Hettinger, ND

'Korando' field pea was seeded on May 12. Early POST (EPOST) treatments were applied on May 27 to 2 node (1" tall) field pea and to downy brome (dobr) in the early boot, tillering volunteer spring wheat (vwht) and 4 leaf Persian darnel (peda) with 76° F, 36 % RH, partly cloudy sky and west wind at 6 mph. Late POST (EPOST) treatments were applied on June 4 to 3 node (3" tall) field pea and to heading downy brome, 5 leaf volunteer spring wheat and to tillering Persian darnel with 61° F, 49 % RH, clear sky and northwest wind at 2 mph. Treatments were applied with a tractor mounted CO₂ propelled plot sprayer delivering 10 gpa at 30 psi through PK-01E80 nozzles to a 5 foot wide area the length of 10 by 28 foot plots. The soil is classified as a silt-loam with a pH of 6.2 and OM of 3.2%. The trial was a randomized complete block design with four replications. Downy brome, volunteer wheat and Persian darnel populations averaged 50+, 1 and 5 plants per square foot, respectively. Plots were evaluated for crop injury on June 4 and June 17, and for weed control on June 17. The trial sustained severe hail damage on June 22 and June 24 and was abandoned at that point.

		Application	6/4		Jur	ne 17	
Treatment	Product Rate	Timing	inj	inj	dobr	vwht	peda
	oz / acre						
1 Untreated			0	0	0	0	0
2 Assure II + MSO	8.0 + 1.0%	EPOST	0	0	91	98	55
3 Assure II + MSO	10.0 + 1.0%	EPOST	0	0	95	99	70
4 Assure II + MSO	12.0 + 1.0%	EPOST	0	0	97	99	70
5 Clethodim + MSO	6.0 + 1%	EPOST	0	0	88	97	50
6 Clethodim + MSO	9.0 + 1%	EPOST	0	0	92	99	72
7 Assure II + MSO	8.0 + 1.0%	LPOST	0	0	58	45	5
8 Assure II + MSO	10.0 + 1.0%	LPOST	0	0	50	55	6
9 Assure II + MSO	12.0 + 1.0%	LPOST	0	0	38	50	4
10 Clethodim + MSO	6.0 + 1%	LPOST	0	0	50	60	8
11 Clethodim + MSO	9.0 + 1%	LPOST	0	0	42	50	4
C.V. %			0	0	12	8.4	27
LSD .05			NS	NS	11	8	12

NS = no statistical difference between treatments.

Summary

Cool and wet weather delayed the seeding of this trial by about a month. This delay resulted in application timings that were beyond the optimal growth stages of the targeted weeds. Crop injury was not observed. All early POST treatments provided very good control of downy brome and volunteer wheat. Although all herbicide treatments had activity on Persian darnel, control ratings were quite poor. Additional data is needed to answer rate and timing questions on these weeds.

Pre-harvest weed desiccation in dry pea with Sharpen, Valor, and Paraquat. Jenks, Willoughby, and Hoefing. 'Majoret' dry pea was seeded May 11 at 140 lb/A into 7.5-inch rows into wheat stubble. Desiccation treatments were applied pre-harvest on August 4. Weeds present were common lambsquarters (Colq), kochia (Kocz), and wild buckwheat (Wibw). Individual plots were 10 x 30 ft and replicated four times

Sharpen + Glyphosate provided at least 90% desiccation of all weeds two weeks after treatment (WAT), whereas desiccation with Sharpen alone ranged from 77-83%. Valor provided 43-66% desiccation and Gramoxone Inteon provided 64-73% desiccation. There were no significant differences in dry pea yield or test weight between treatments. A black sooty mold blanketed the dry peas just before application, thus dry pea desiccation could not be estimated. Note: As of December 2009, Sharpen and Valor are not labeled for use as desiccants in dry pea.

		Cold ^b	Kocz ^b	Wibw ^b	Dry pea	pea
Tratmont ^a	Rate	2 WAT	2 WAT	2 WAT	Yield	МТ
			% control		A/dI	nq/qI
htreated		0	0	0	2743	66.4
Sharnen + MSO + AMS	2 fl oz + 1% + 2%	83.	77	83	2757	66.2
- 5	ASO + AMS 1 fl oz + 1 at + 1% + 2%	91:	91	60	2672	66.1
		43	66	55	2457	66.2
Gramovone Inteon + NIS	1.5 pt + 0.25%	68	64	73	2595	65.6
		9.6	9.3	12	NS	NS
		11	6	13	11	-

27

Table. Pre-harvest weed desiccation in dry pea with Sharpen, Valor, and Paraquat (0907).

^a All treatments applied pre-harvest and evaluated 2 weeks after treatment (WAT)

^b Colq =Common lambsquarters; Kocz =Kochia; Wibw =Wild buckwheat

2009 Sharpen Herbicide in Summer Fallow

Eric Eriksmoen, Hettinger, ND

Treatments were applied on June 17 to 4 inch tall kochia (kocz), 4 inch tall Russian thistle (ruth) and to 8 inch long wild buckwheat with 73° F, 62% RH, partly cloudy sky and southwest wind at 4 mph. Treatments were applied with a tractor mounted CO₂ propelled plot sprayer delivering 10 gpa at 30 psi through PK-01E80 nozzles to a 5 foot wide area the length of 10 by 28 foot plots. The soil is classified as a silt-loam with a pH of 6.2 and OM of 3.2%. The trial was a randomized complete block design with three replications. Kochia, Russian thistle and wild buckwheat populations averaged 28, 11 and 3 plants per square foot, respectively. Plots were evaluated for weed control on June 26, July 21 and on August 11.

[Product	ل	une 2	6		July 21		A	ugust 1	1
	Treatment	rate	kocz	ruth	wibw	kocz	ruth	wibw	kocz	ruth	wibw
		oz/A				C	% cont	rol			
1	Untreated		0	0	0	0	0	0	0	0	0
2	glyphosate + NIS + AMS	32 + 0.25% + 17 lb	96	99	57	93	99	50	92	99	40
3	Sharpen + glyph + MSO + AMS	1.0 + 32 + 1% + 17 lb	99	99	91	96	94	82	93	94	93
4	2,4-D ester + glyph + NIS + AMS	16 + 32 + 0.25% + 17 lb	98	99	87	93	99	62	91	95	27
5	Distinct + glyph + MSO + AMS	2.0 + 32 + 1% + 17 lb	99	99	92	93	98	90	93	93	92
6	Sharpen + Distinct + glyph + MSO + AMS	1.0 + 2.0 + 16 + 1% + 17 lb	96	98	88	95	95	83	93	85	78
7	Sharpen + Distinct + glyph + MSO + AMS	1.0 + 1.0 + 16 + 1% + 17 lb	95	98	96	90	90	88	63	63	63
8	Sharpen + glyph + MSO + AMS	2.0 + 32 + 1% + 17 lb	99	99	99	95	95	93	92	92	95
	C.V. %		2.9	1.4	10.8	3.9	4.5	20.5	10.4	10.9	41.3
	LSD 5%		4	2	14	6	7	25	14	16	44

Summary

All herbicide treatments provided excellent season long kochia and Russian thistle control except for Sharpen + Distinct + glyphosate (trt 7). That treatment provided excellent control initially but declined as the season progressed to unacceptable levels by mid-August. Both 1.0 and 2.0 oz/A Sharpen + glyphosate treatments (trt 3 & 8) and the Distinct + glyphosate treatment (trt 5) provided excellent season long wild buckwheat control.

Kixor/Fallow/Efficacy. Williston 2009. Neil Riveland. WREC.

All treatments were applied on June 14. Air and soil temperatures were 64 degrees F with 61% relative humidity, 99% clear sky and wind at 2-4mph from 89 degrees. Treatments were applied to 3-7 leaf green foxtail (Grft), 2-4 inch Russian thistle (Ruth), 3-4 inch kochia (Kocz) and 8 leaf volunteer safflower(Vsaf). We used a small plot sprayer with wind cones, mounted on a G-Allis Chalmers tractor to apply the treatments, delivering 10 gals/a at 40 psi through 8001vs flat fan nozzles to a 6.67 ft wide area the length of 10 by 25 ft plots. First rain received after application was 0.03 inches on June 18 and 0.17 inches on June 17. Experimental design was a randomized complete block design with four replications. Russian thistle and green foxtail relative densities were medium heavy. Plots were evaluated for weed control on June 16, June 19 and July 1.

								-Cont	rol-
	Product	-Grf	t Con	trol-	-Ruth	1 Cont	rol-	Vsaf	Kocz
Treatment ^a	Rate	6/16	6/19	7/1	6/16	6/19	7/1	6/	19 -
	oz/a		- 8 -			응 -		9	5
Untreated Check	0	0	0	0	0	0	0	0	0
Roundup+NIS+AMS	32+.25+17	16	92	99	9	95	100	93	95
Sharpen+Roundup+MSO+AMS	1+32+1+17	49	97	99	93	99	100	99	98
2,4-D ester+Roundup+NIS+AMS	16+32+.25+1	11	91	100	24	89	100	92	88
Distinct+Roundup+MSO+AMS	2+32+1+17	3	95	100	28	89	100	90	93
Sharpen+Distinct+Roundup+MSO+AMS	1+2+16+1+17	61	96	100	79	98	99	98	95
Sharpen+Distinct+Roundup+MSO+AMS		56	96	100	86	99	99	96	96
Sharpen+Roundup+MSO+AMS	2+32+1+17	61	98	100	95	99	100	99	99
EXP MEAN		32	83	87	52	83	87	83	83
C.V. %		31	3	0	11	5	1	3	5
LSD 5%		15	3	1	9	7	1	5	6

- ^a Roundup PowerMax was used.
 - NIS = nonionic surfactant Induce
 - MSO = Adjuvant MSO concentrate
 - AMS = Ammonium Sulfate (dry) at 17 lbs/100 gals

n + glyphosate. Jenks, Willoughby, and Hoefing. The objective of this study was to evaluate red to Glyphosate, 2,4-D amine, and Aim. Herbicide treatments were applied postemergence on June 7 ⁿ , 0-2/ft ²), wild buckwheat (2-3 ⁿ , 1-3/ft ²), kochia (2-12 ⁿ , 0-10/ft ²), common lambsquarters (5-9 ⁿ , 0-2/ft ²),
ate ice on -9", 0-
o evalu nerger ters (5
was to posten osquar
study oplied in lamb
of this vere at commo
ective nents v 0/ft²), d
The obj treatm 2", 0-1
ifing. 7 trbicide ia (2-1
nd Hoe m. He), koch
hby, ai and Ai 1-3/ft²
Villoug amine, t (2-3",
enks, \ 2,4-D a kwhea
n + glyphosate. Jenks, Willoughby, and Hoefing. The objective of this study was to evaluate red to Glyphosate, 2,4-D amine, and Aim. Herbicide treatments were applied postemergence of 7 ⁿ , 0-2/ft ²), wild buckwheat (2-3 ⁿ , 1-3/ft ²), kochia (2-12 ⁿ , 0-10/ft ²), common lambsquarters (5-9 ⁿ , C
lyphos Glyph 2/ft ²), w
en + gl ared to .7", 0-2
Sharpe compe sed (5-
with { larpen orsew(t ²).
ontrol with Sh uded h ", 0-4/f
veed c ontrol v ent incli le (3-5
allow v weed c s prese an thist
Summer fallow weed control with Sharpen + broadleaf weed control with Sharpen compared 15. Weeds present included horseweed (5-7°, 0 and Russian thistle (3-5°, 0-4/ft ²).
Sun broć 15. and

All treatments generally provided excellent control of all weeds 4 weeks after treatment (WAT). Sharpen alone at 18 g provided excellent control of horseweed and Russian thistle (90-97%), good control of kochia and lambsquarters (82-86%), but provided poor control of wild buckwheat (50%). This study and other indicated that Sharpen at 18 g is too low to be a consistent broad spectrum stand alone product.

											-
		Howe ^b	ve ^b	Wibw ^b	۹»	Kocz ^b	- N	Cold [®]	а ^р	Ruth"	h"
		un	Jul	Jun	Jul	nn	Jul	Jun	Jul	որ	Jul
Treatment ^a	Rate/ha	25	18	25	18	25	18	25	18	25	18
						1 ()	ontrol				
Intreated		0	0	0	0	0	0	0	0	0	0
Chineated Sharnen ^c	18 a	100	97	62	50	86	82	92	86	100	06
Givenosate	840 g	93	100	52	91	100	66	100	98	100	100
Sharpen + Glvphosate	18 g + 840 g	100	100	92	96	66	66	100	100	100	100
Sharnen + Givnhosate	25 a + 840 a	100	100	94	95	100	100	100	66	100	100
Sharpen + Glvphosate + Claritv	18 a + 840 a + 140 g	100	100	86	94	100	100	100	100	100	100
Weedar 64 + Glyphosate		95	98	91	95	98	100	66	66	100	100
Aim + Glvphosate	8.97 a + 840 a	85	66	73	89	100	100	100	100	100	100
Sharnen + Givnhosate	25 a + 840 a	100	100	93	96	100	100	100	100	100	100
	5	8.2	4	18	7.7	10.4	8.2	8.3	4.2	NS	5.8
		S	ო	15	9	7	o	ນ	ო	0	4

Table. Summer fallow weed control with Sharpen + glyphosate (0946).

^aMSO + AMS (1% 2) were applied with all treatments

^bHowe =Horseweed, Wibw =Wild buckwheat, Kocz = Kochia, Colq =Common lambsquarters, Ruth =Russian thistle

^cSharpen at 18 g/ha is equivalent to 0.75 fl oz/A

Post-harvest control of common mallow. Jenks, Willoughby, and Hoefing. The objective of the study was to evaluate Sharpen for post-harvest common mallow control. Herbicide treatments were applied post-harvest on September 25 following lentil harvest. Common mallow was 3-8 inches tall with 0-8 plants/ft². All treatments were applied at 10 gpa unless otherwise noted.

Treatments containing Sharpen provided 82-87% mallow control 2 WAT compared to 42-47% for glyphosate alone or glyphosate + 2,4-D amine. These results are consistent with a similar study in 2008.

		Common mallow
Treatment ^a	Rate/ha	Oct 02 Oct 09
		% control
Untreated		0 0
Sharpen ^b	18g	83 87
Glyphosate	840 g	20 42
Sharpen + Glyphosate	18 g + 840 g	74 83
Sharpen + Glyphosate	25 g + 840 g	76 84
Weedar 64 + Glyphosate	560 g + 840 g	33 47
Sharpen + Glyphosate (5 gpa)	25 g + 840 g	74 82
LSD(0.05)		5.7 3.6
CV .		6
	in the standard of the second start of the second	

Table. Post-harvest control of common mallow (0943).

^a All treatments applied post-harvest, MSO + AMS (1% + 2%) were applied with all treatments

^b Sharpen at 18 g/ha is equivalent to 0.75 fl oz/A

f this study was to evaluate DPX-	an experimental neroloide being Mied at the vedetative stade (.lul 25).	control in July 2009. Weed density	
Yellow toadflax control with DPX-MAT28 in rangeland. Jenks, Willoughby, and Hoefing. The objective of this study was to evaluate DPX-	MAT28 for yellow toadflax control in rangeland compared to Tordon. DPX-MAT28 (aminocyclopyrachlor) is an experimental herbicide being developed by Dupont for weed control in rangeland pasture and non-cronland areas. Treatments were applied at the vegetative stage (Jul 25).	flowering stage (Sep 11), and in late fall (Oct 16) of 2008. The treatments were evaluated for percent visual control in July 2009. Weed density	was recorded prior to application in 2008 and again in July 2009.
Yellow toadflax	MAT28 for yellow	flowering stage (was recorded pri-

Tordon provided 23-60% visual control of yellow toadflax and reduced toadflax density 6-55%. DPX-MAT28 at 1.5 oz provided 90-95% visual control and reduced density 100%. DPX-MAT28 at 2 oz tank mixed with Glean provided 99-100% visual control and reduced density 100%. DPX-MAT28 at 2 oz tank

			Yellow toadflax	Grass	Yellow toadflax	oadflax
Traatmant ^a	Rate	Timina			Aug 04, 2008	Jul 14, 2009
	2001	D	% control	% injury		er sq ft.
Untreated	•		0	0		11.9
DPX-MAT28	1.5 oz	Vegetative	93	5	8.3 0.2	0.2
DPX-MAT28	1.5 oz	Flowering	95	1	03	L
DPX-MAT28	1.5 oz	Fall	90	~		-
DPX-MAT28	3 oz	Vegetative	100	5		0
DPX-MAT28	3 oz	Flowering	100	ຕຸ		0
DPX-MAT28	3 oz	Fall	100	ო		0
Tordon	2 pt	Vegetative	23	4		5.8
Tordon	2 pt	Flowering	32	-		6.8
Tordon	2 pt	Fall	60			2.9
DPX-MAT28 + Glean	2 oz + 0.75 oz	Vegetative	66	4	7.9	<u>.</u> .
DPX-MAT28 + Glean	2 oz + 0.75 oz	Flowering	100	o	7.1	0
DPX-MAT28 + Glean	2 oz + 0.75 oz	Fall	100	ო	8.6	0
Untreated			0	0	6.1	6.4
LSD (0.05)			6.8	NS	NS	2.4
CV			6	111	40	56

Table. Yellow toadflax control with DPX-MAT28 in rangeland (0949).

^a MSO (1%) was applied with all treatments

Flax response to Tembotrione and Topramezone, Fargo. Howatt, Roach, and Harrington. 'York' flax was seeded near Fargo on May 21. Treatments were applied to 2- to 3-inch flax and cotyledon wild mustard (5 to 10/yd²) on May 28 with 65° F, 61% relative humidity, 0% cloud cover, 4 to 5 mph wind at 315°, and damp soil at 52° F. Treatments following the (/) were applied to three- to four-inch flax, cotyledon to bolting wild mustard (5 to 50/yd²), two- to six-leaf wild buckwheat (5 to 15/yd²), and one- to five-inch common lambsquarters (10 to 25/yd²) on June 24 with 75°F, 56% relative humidity, 10% cloud cover, 2 to 4 mph wind at 270°, and damp soil at 63° F. All treatments were applied with a backpack sprayer delivering 8.5 gpa at 35 psi through 11001 TT nozzles to an area 7 feet wide the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates.

		6/27	7/11	7/11	7/11	7/11
Treatment	Rate	Flax	Flax	Wimu	Wibw	Colq
	oz/A	%	%	%	%	%
Sulfentrazone/brox&MCPA5+clet+MSO	4/8+1+16	7	11	96	91	99
Mesotrione/brox&MCPA5+clet+MSO	2/8+1+16	6	9	98	75	96
Mesotrione/brox&MCPA5+clet+MSO	3/8+1+16	7	15	98	81	98
/Tembotrione	0.9	5	6	82	20	15
/Tembotrione	1.3	6	8	93	22	15
/Topramezone	0.18	5	6	91	0	10
/Topramezone	0.25	7	9	95	10	10
/Brox&MCPA5+clet+MSO	8+1+16	12	8	92	45	92
/Clpy&MCPA+clet+MSO	7.3+1+16	10	8	. 93	72	96
/Tembotrione+brox&MCPA5+clet+MSO	0.9+8+1+16	13	14	97	85	97
/Tembotrione+clpy&MCPA+clet+MSO	0.9+7.3+1+16	12	14	95	80	98
/Topramezone+brox&MCPA5+clet+MSO	0.18+8+1+16	11	13	96	75	94
/Topramezone+clpy&MCPA+clet+MSO	0.18+7.3+1+16	9	10	97	87	97
/Tembotrione+clet+MSO	0.9+1+16	6	12	90	7	25
/Topramezone+clet+MSO	0.18+1+16	6	7	94	20	17
Untreated	0	0	2	0	0	0
CV		34	34	2	18	5
LSD 5%		4	5	3	13	5

Soil moisture seemed to predispose flax to herbicide injury and even resulted in crop response on July 11. Tembotrione and topramezone caused lasting injury that tended to increase as the season progressed. Chlorosis, stunting, and leaf deformity was observed for several weeks. Previous observations that flax may be tolerant of these new products were identified with less herbicide. Field use rates appropriate for weed control will carry exceptional risk of crop injury.

Flax response to Tembotrione and Topramezone, Casselton. Howatt, Roach, and Harrington. 'York' flax was seeded near Casselton on May 28. Treatments were applied to 3- to 5-inch flax and 1- to 3-inch redroot pigweed, wild mustard, common lambsquarters, Venice mallow, and yellow foxtail on June 26 with 73° F, 64% relative humidity, 0% cloud cover, 4 to 5 mph wind at 315°, and moist soil at 63°F. Treatments were applied with a backpack sprayer delivering 8.5 gpa at 35 psi through 11001 TT nozzles to an area 7 feet wide the length of 10 by 30 ft plots. The experiment was a randomized compete block design with four replicates for the June 30 evaluation and two replicates for the July 10 evaluations.

		6/30	7/10	7/10	7/10	7/10	7/10	7/10
Treatment	Rate	Flax	Flax	Rrpw	Wimu	Colq	Vema	Yeft
	oz/A	%	%	%	%	%	%	%
Tembotrione	0.9	3	5	20	82	0	0	15
Tembotrione	1.3	3	7	42	85	0	0	15
Topramezone	0.18	4	6	15	85	0	0	10
Topramezone	0.25	5	9	30	82	5	30	35
Brox&MCPA5+clet+MSO	8+1+16	8	10	30	87	97	47	15
Clpy&MCPA+clet+MSO	7.3+1+16	4	7	67	94	96	85	98
Tembotrione+brox&MCPA5+clet+MSO	0.9+8+1+16	8	40	99	99	98	96	96
Tembotrione+clpy&MCPA+clet+MSO	0.9+7.3+1+16	6	20	97	97	99	92	95
Topramezone+brox&MCPA5+clet+MSO	0.18+8+1+16	9	40	93	98	96	91	92
Topramezone+clpy&MCPA+clet+MSO	0.18+7.3+1+16	5	12	94	99	98	80	95
Tembotrione+clet+MSO	0.9+1+16	3	11	48	84	77	30	94
Topramezone+clet+MSO	0.18+1+16	2	12	10	57	7	0	63
Untreated	0	0	0	0	0	0	0	0
CV		25	34	60	27	17	41	43
LSD 5 %		2	8	53	39	16	31	43

Flax injury was very pronounced when tembotrione or topramezone were applied with bromoxynil. These combinations caused substantial bleaching and necrosis resulting in 40% injury. This was much greater injury than in Fargo but flax was under more stress in Casselton than Fargo, as indicated by very slow growth rate prior to herbicide application. But as in Fargo, injury became more severe as the season progressed. There appears to be too much injury potential for either product to be a viable weed control option for flax.

18 at 95 lb/A into 7.5-inch rows into wheat stubble. Desiccation treatments were applied pre-harvest on August 25. Weeds present were common Pre-harvest weed desiccation in lentil with Sharpen, Valor, and Paraquat. Jenks, Willoughby, and Hoefing. 'Pennell' lentil was seeded May lambsquarters (Colq), kochia (Kocz), and redroot pigweed (Rrpw). Individual plots were 10 x 30 ft and replicated four times.

contributed to the lower weed desiccation in the lentil study. There were no significant differences in lentil yield or test weight between treatments. application were about five degrees warmer than the early August dry pea application. Approximately 0.72 inches of precipitation fell within three Sharpen alone ranged from 38-71%. Valor provided 20-61% desiccation and Gramoxone Inteon provided 26-70% desiccation. These numbers Sharpen + Glyphosate provided more weed desiccation (74-90%) than other treatments two weeks after treatment (WAT). Desiccation with are significantly lower compared to a similar study in dry pea applied August 4. Mean temperatures seven days before and after the lentil days after the dry pea application, but there was no rain after the lentil application. The warmer, drier conditions in late August may have Note: As of December 2009, Sharpen and Valor are not labeled for use as desiccants in lentil.

		Cold ^b	ld ^b	Ϋ́Υ	Kocz ^b	Rrp	Rrpw ^b	Lentil	itil
			2	-	2	-	2		
Treatment ^a	Rate	WAT	WAT	WAT	WAT	WAT	WAT	Yield	MT
				% desi	% desiccation			Ib/A	nq/q
Untreated		0	0	0	0	0	0	1066	58.1
Sharpen + MSO + AMS	2 fl oz + 1% + 2%	25	38	29	58	40	71	1138	59.0
Sharpen + Glyphosate + MSO + AMS 1	+ AMS 1 fl oz + 1 dt + 1% + 2%	18	78	13	74	35	60	1019	59.4
Valor + MSO	2 oz + 1%	15	20	20	38	13	61	983	58.7
Gramoxone Inteon + NIS	1.5 pt + 0.25%	19	26	30	55	47	70	995	58.6
LSD (0.05)		7.7	7.4	13.1	13.5	25.1	27.1	NS	NS
C N		£	S	ი	6	16	17	22	~
and and and anothe second and have	3 All transformations are branch and branch and branch after transforment (NVA T	r treatmen	T ANA T						

Table. Pre-harvest weed desiccation in lentil with Sharpen, Valor, and Paraquat (0908)

All treatments were applied pre-harvest and evaluated 1 and 2 weeks atter treatment (WA I)

^bColq=Common lambsquarters; Kocz=Kochia; Rrpw=Redroot pigweed

Lentil tolerance to experimental herbicides. Jenks, Willoughby, and Hoefing. 'Pennell' lentil was seeded May 18 at 95 lb/A into 7.5-inch rows into wheat stubble. Glyphosate was applied preplant over the entire study area on May 14. Herbicides treatments were applied preemergence (PRE) on May 21. Individual plots were 10 x 30 ft and replicated three times.

Valor and KIH-485 generally provided poor to fair weed control. Spartan provided good control of wild buckwheat and lambsquarters, but only fair redroot pigweed (Rrpw), and common lambsquarters (Colq). Prowl tank mixed with either Express or Sharpen provided poor control of all weeds. control of pigweed. Treatments with better weed control tended to have higher yield. Valor caused the most crop injury and also had the lowest treatment (WAT). Lentil in most treatments recovered to less than 10% injury by 8 WAT. Valor at 2 and 3 oz caused 17 to 37% injury at 8 WAT. Treatments containing Sharpen or Valor tended to have lower test weight. Pursuit + Prowl provided excellent control of wild buckwheat (Wibw) The objective of the study was to evaluate lentil response to experimental herbicides applied PRE. As of December 2009, Express, Prowl, Sharpen, KIH-485, Spartan, and Valor are not labeled for PRE use in lentil. All treatments caused at least 10% visual injury 6 weeks after lentil yield

		Le	Lentil	Wit	Wibw ^b	Rrpw ^b	۹ _M	Colq ^b	۹ ^р	Lentil	ıtil
		Jul	Jul	Jul	Jul	Jul	Jul	Jul	Jul		
Treatment ^a	Rate	6	25	01	25	01	25	01	25	Yield	₹
		% ir	-% injury	,		% control	itrol			Ib/A	nq/qI
Untreated		0	0	0	0	0	0	0	0	849	55.2
Express + Prowl H20	0.25 oz + 2 pt	12	~	.75	43	69	43	81	48	969	55.1
Sharpen + Prowl H20	1 fl oz + 2 pt	10	З	71	48	61	37	72	52	924	49.8
	2 fl oz + 2 pt	16	ω	97	92	66	97	100	97	1337	59.8
KIH-485	0.15 lb ai	16	7	57	38	85	79	65	50	1147	57.6
KIH-485	0.3 lb ai	25	7	53	38	89	83	74	83	966	58.7
Valor	2 oz	21	17	74	61	77	60	76	58	806	54.3
Valor	3 oz	39	37	86	66	86	63	84	61	447	55.3
Spartan	3 fl oz	16	5	91	83	81	63	91	91	1218	58.8
Handweeded ^c		12	ო		96		92		94	1270	59.5
LSD (0.05)		8. 8.	8.3	20.7	27.8	10.3	14.4	17.7	22	338	3.8
S		5	5	12	16	9	ω	10	13	20	4

Table. Lentil tolerance to experimental herbicides (0916)

^a All treatments applied PRE

^b Wibw =Wild buckwheat; Rrpw =Redroot pigweed; Colq =Common lambsquarters

^c Prowl H2O (2 pt) was applied PRE to aid handweeding
Weed control in lentil, Williston 2009. Neil Riveland

'Richlea' lentil was planted on May 5 into 2008 safflower stubble using a JD 750 notill drill with 7 inch row spacing at 70 lbs/a. All PE treatments were applied on May 11 to a dry soil surface with 65 F, 29% RH, 75% clear sky and wind at 3-5 mph from 159 degrees with topsoil at 60 F. The post emergence treatments were applied on June 5 to 3-4 inch lentils and 2-4 inch Russian thistle (Ruth), 1-1.5 inch prostrate pigweed (prpw) and green foxtail (grft) 3-6 leaf stage with 42 degree F, 64% RH, 95% clear sky, wind at 2-4 mph from 36 degrees, dry plant and soil surfaces, with soil temperature at 57 F. We used a small plot sprayer with wind cones, mounted on a G-Allis Chalmers tractor to apply all treatments. PE treatments were applied through 8002 flat fan nozzles delivering 20 gals/a at 40 psi. Post treatments were applied though 8001 flat fan nozzles delivering 10 gal/a at 40 psi. Plot size was 6.67 ft wide area the length of 10 by 30 ft plots. Glyphosate was applied to the whole plot area on April 20 to control emerged weeds. First rain received after PE applications were 0.24 inch on May 11. First rain event after post treatment was 0.34 inches on June 6. The experiment was a randomized complete block design with three replications. Plots were evaluated for crop injury and weed control June 14 and August 2. Russian thistle density was heavy at 4-5 plants/sq ft, green foxtail at 6-8 plts/sq ft and prostrate pigweed at 1/2-2 plts/sq ft. Lentils were machine harvested on August 12.

······································		ት C	rop	Test	Grain	Ruth	Ruth	Prpw	Grft
Treatment	Product		ury	Weight			8/2		
	Rate-Unit/a Type			lbs/bu			%Coi	ntrol·	
Untreated		0	0	61.0	1349	0	0	0	0
Express & Prowl	0.25 oz/a&2 pt/a Pre	2	2	61.2	1713	75	30	82	42
	1 fl oz/a&2 pt/a Pre	3	0	61.4	2397	45	60	85	37
	2 fl oz/a&2 pt/a Pre	5	2	61.5	2028	66	58	92	65
KIH-485	0.15 lb/a Pre	2	0	61.0	1776	0	10	57	27
KIH-485	0.30 lb/a Pre	· 3	0	61.1	1240	0	20	42	38
Valor	2 oz/a Pre	9	3	61.2	1511	92	83	96	37
Valor	3 oz/a Pre	18	18	60.8	1614	97	98	99	60
Spartan	3 fl oz/a Pre	7	0	61.1	1540	78	77	93	0
Prowl H2O	2 pt/a Pre	1	0	61.0	1582	40	28	68	33
Metribuzen	8 oz/a Pre	3	0	61.1	1337	0	20	72	0
Metribuzen	6 oz/a Post	8	0	60.9	1433	20	0	43	0
Raptor	4 oz/a Post	7	17	60.3	359	43	17	67	87
HIGH MEAN		18	18	61.5	2397	97	98	99	87
LOW MEAN		0	0	60.3	359	0	0	0	0
EXP MEAN		5	3	61.0	1529	43	39	69	33
C.V. %		52	74	. 6	15	32	56	26	61
LSD 5%		5	4	NS	381	23	36	30	34
LSD 1%		6	5	NS	517	31	49	40	45
# OF REPS		3	3	2	3	3	з	3	3
F-TRT		9	22	1.3	13	22	7	8	6

Valor and Raptor caused significant crop injury. Sharpen and Pursuit in combination with Prowl H2O did not control Russian thisle as well as Valor but those treatments resulted in the highest lentil yields.

Residual Weed Control from Lentil Treated with Valor Herbicide

Eric Eriksmoen, Hettinger, ND

'CDC Richlea' lentil was seeded on May 14, 2008. Treatments were applied on August 3 to lentils that were at physiologic maturity with 83° F, 34% RH, clear sky and NW wind at 6 mph. Treatments were applied with a tractor mounted CO₂ propelled plot sprayer delivering 20 gpa at 30 psi through PK-01E80 nozzles to the length of 5 by 28 foot plots. 'Reeder' HRSW was seeded on May 14, 2009. No herbicide was applied during the 2009 growing season. The trial was not harvested.

	Product	- Ma	ay 20 -	- Ju	ne 12 -
Treatment	Rate	inj.	kocz	: inj.	kocz
	oz/A		% (control	
Untreated		0	0	0	0
Valor + Superb + AMS	2.0 + 32 + 2.5 lbs	0	83	0	60
Gramoxone + NIS	20.8 + 0.25%	0	80	0	23
Valor + glyphosate + Superb + AMS	2.0 + 22 + 32 + 2.5 lbs	0	90	0	60
Glyphosate + Superb + AMS	22 + 32 + 2.5 lbs	0	67	0	23
C.V. %		0	11	0	51
LSD .05	· .	NS	13	NS	32

NS = no statistical difference between treatments

Summary

Crop injury was not observed. All herbicide treatments showed significant early season suppression of kochia. The Valor + glyphosate treatment expressed excellent early season control. This control diminished as the season progressed, however, both Valor alone and Valor + glyphosate treatments had significantly higher season long kochia control than the other treatments. This trial demonstrates the crop safety and short term benefits of Valor Herbicide applied in a pre or post harvest scenario. **Pyroxasulfone tolerance of Pea and Lentil.** Hunt, Ryan L. and Richard K. Zollinger. Experiments were setup in both 2008 and 2009 near Minot, Williston, and Carrington, ND. Peas were planted in 2008 on May 8, May 6, and April 30 at Minot, Williston, and Carrington respectively. PRE applications were applied on May 14, May 6, and May 6 at Minot, Williston, and Carrington. Peas were planted in 2009 on May 12, April 24, and May 15 at Minot, Williston, and Carrington. PRE applications were applied May 14, May 6, and May 15 at Minot, Williston, and Carrington. PRE applications were applied May 14, May 6, and May 18. Lentils were planted in 2008 on May 14, May 6, and April 30 at Minot, Williston, and Carrington. PRE applications were applied on May 15, May 6, and May 6 at Minot, Williston, and Carrington. Lentils were planted in 2009 at Minot, Williston, and Carrington on May 18, May 4, and May 15. PRE applications were made on May 22, May 6, and May 18 at Minot, Williston, and Carrington. No weeds were present at the time of all PRE applications. Standard herbicide treatments were used in postemergence situations as well as handweeding to keep plots free of weeds.

Minimal rainfall at the start of the growing season in both years resulted in insufficient weed control, which is evidence of a lack of herbicide activation.

Due to extreme drought conditions the Williston site was abandoned in 2008.

Pea. No visual injury or significant differences were observed at all locations in 2008 and 2009.

Lentil. No visual injury or significant differences were observed at all locations in 2008 and Williston and Carrington in 2009. Injury was observed at high rates in 2009 at Minot; however plants had grown out of it by the 56 DAE rating and injury was not significantly affected.

(Dept. of Plant Sciences, North Dakota State University, Fargo).

2008 Pea Tolerance	e to Pyroxas	sulfone	()	(Hunt and Zollinger)				
		Minot	Williston	Carrington				
Treatment	Rate	yield	yield	yield				
	(g/ha)	(kg/ha)	(kg/ha)	(kg/ha)				
Pyroxasulfone	84	2289a	-	1796a				
	125	2096a	-	1790a				
	166	1850a	-	1720a				
	332	1767a	-	1625a				
Sulfentrazone	105	2586a	-	1646a				
LSD		952	-	155				

2009 Pea Tolerand	e to Pyroxa	sulfone		(Hunt and Zollinger)				
		Minot	Williston	Carrington				
Treatment	Rate	yield	yield	yield				
	(g/ha)	g/ha) (kg/ha) 84 4240a 125 4091a 166 4528a 332 4029a	(kg/ha)	(kg/ha)				
Pyroxasulfone		4240a	1956a	1456a				
	125	4091a	1965a	1362a				
	166	4528a	2030a	1454a				
	332	4029a	2121a	1566a				
Sulfentrazone	105	4622a	2004a	1324a				
LSD		915	246	317				

2008 Lentil Toleran	ce to Pyrox	asulfone	(Hunt and Zollinger)					
		Minot	Williston	Carrington				
Treatment	Rate	yield	yield	yield				
	(g/ha)	(kg/ha)	(kg/ha)	(kg/ha)				
Pyroxasulfone	84	2088a	-	1179a				
	125	2390a	-	1370a				
	166	2243a	-	968a				
	332	2458a	-	1104a				
Pendimethalin	560	2338a	-	1049a				
LSD		385		405				

2009 Lentil Tolerar	nce to Pvrox	asulfone			(Hunt and Zoll	inger)	
2005 Lentin Toleran			Minot			Williston	Carrington
		14 DAE	28 DAE	56 DAE			
Treatment	Rate				yield	yield	yield
i, cutinont	(g/ha)		% injury		(kg/ha)	(kg/ha)	(kg/ha)
Pyroxasulfone	84	2d	4d	0b	1621a	868a	1739a
r yroxabanono	125	4c	8c	0b	1295a	926a	1455a
	166	8b	14b	3b	1430a	955a	1167a
	332	15a	21a	8a	1459a	1200a	1380a
Pendimethalin	560	Od	0e	0b	1446a	1156a	1688a
LSD	500	2	3	4	493	340	870

<u>Micro-rate Application Timings for Weed Control in Onion - Great Bend</u>. James R. Loken and Harlene Hatterman-Valenti.

An experiment that was conducted to evaluate the most effective number of sequential microrate applications for early-season, broadleaf weed control in onion (Allium cepa L.). The soil was a clay loam that was four years removed from a feed lot operation. Onion variety 'Teton' pelleted seed was planted at 285,000 seeds/A using a Milton planter on May 20. Plots were 6 ft wide by 20 ft long and arranged in a randomized complete block design with four replicates. At the time of weed cotyledon stage (June 4) herbicides were applied as micro-rates at 1/8 of their lowest labeled rate every 7 days, with three, four, and five total applications. Micro-rate herbicide applications were made with a CO₂ pressurized backpack sprayer. A standard application of bromoxynil (0.38 lb ae/A) and oxyfluorfen (0.25 lb ai/A) was applied on July 8 (3leaf stage) to control broadleaf weeds, and a single reduced rate application (1/4 the lowest labeled rate) of bromoxynil and oxyfluorfen was made on August 3 (7-leaf stage) as a final lateseason broadleaf weed control measure. Best management practices were used for fertility, disease, insect, and grass weed control. Treatments were visual evaluated for overall control of redroot pigweed and common lambsquarters after all micro-rate treatments were completed on July 8. On September 30, 5 ft of the middle two rows of each plot were harvested for grade and yield analysis. Split and diseased bulbs were graded as culls regardless of diameter.

Application Date:	6-4	6-9	6-17	6-24	6-30	7-8	8-3
Onion Stage:	Loop	Flag-	1-2 lf	2 lf	2-3 lf	3 lf	7 lf
		loop					
Air Temp. (F):	61	57	65	73	63	75	70
Wind speed	7	3.5	4	1	7	0	5
(MPH):							
Operating	40 psi						
pressure:							
Nozzle type:	Flat fan						
Nozzle size:	8002	8002	8002	8002	8002	8002	8002
Volume (GPA):	20	20	20	20	20	20	20

Table 1. Herbicide application dates, crop stage, and environmental conditions at Great Bend, ND, 2009.

Visual ratings indicated common lambsquarters control with herbicides was greatest with bromoxynil applied four or five times and oxyfluorfen applied five times (Table 2). None of the herbicide treatments provided control of common lambsquarters as great as the hand weeded check. Redroot pigweed control was sufficient across all herbicides and all application timings due to the late emergence, cool temperatures, and poor weed growth during the entire season. Oxyfluorfen applied five times provided control as great as the hand weeded check. There were no yield differences (regardless of grade) within herbicides across application timings, indicating the importance of season long weed control. Cool summer temperatures were unfavorable for crop growth, but favored continuous flushes of common lambsquarters, further reducing yields.

l yield in onion at Great	
weed control and yie	
icide applications on	
ee, four, or five micro-rate herbicide applications on weed control and yield in onion at Great	
ect of thi).
Table 2. Effe	Bend, NI

Bend, ND.							
Treatment			Visual E	/isual Evaluations	Yield		
Herbicide	App ¹	Rate (herb +	Colq ²	Rupw ³	Medium ⁴	Large ⁵	Total
		MSO)					
		product/A	% c	% control		cwt/A	
Bromoxynil	ŝ	$\frac{1}{2}$ oz + 0.5% v/v	13.8	86.3	39.6	6.3	68.4
Bromoxynil	4	2 oz + 0.5% v/v	66.3	86.3	132.5	102.6	290.8
Bromoxynil	5	2 oz + 0.5% v/v	73.8	91.3	192.7	88.2	341.2
Oxyflourfen ⁶	ŝ	1 oz + 0.5% v/v	33.8	91.3	113.4	85.5	245.8
Oxyflourfen	4	1 oz + 0.5% v/v	40.0	90.0	161.2	61.2	271.9
Oxyflourfen	5	1 oz + 0.5% v/v	57.5	96.3	179.2	90.0	312.4
Hand weeded	ł	1	100.0	100.0	172.0	90.0	314.2
check							
Weedy check	1		0	0	0	0	0
LSD	1		21	5.6	126.7	NS	183.8
¹ application, ² common lambsquarters	common la	redr	oot pigweed, ⁴ m	nedium grade	$\frac{1}{100}$ m grade is 2.25-3 inches, ²	s, ⁵ large grade i	⁵ large grade is ≥ 3 inches, ⁶ oxyfluorfen
water-based formulation	ormulation						

Simulated glyphosate drift to red potatoes. Harlene M. Hatterman-Valenti and Collin P. Auwarter.

This study was conducted at the Northern Plains Potato Growers Association Non-irrigated research site near Grand Forks, ND to evaluate the effect of glyphosate drift to current season growth and yield for three commonly grown red cultivars (Red Norland, Red LaSoda, and Sangre). Plots were 4 rows by 25 ft arranged in a randomized complete block design with four replicates. Seed pieces (2 oz) were planted on 36-inch rows and 12-inch spacing on June 10, 2009. Plots were 4 rows by 25 ft arranged in a split-block design with cultivar as the main factor and the combination of application timing and herbicide rate as sub-plots with 3 replicates. Glyphosate was applied with a CO₂ pressurized sprayer equipped with 8001XR flat fan nozzles with a spray volume of 5 GPA and a pressure of 35 psi. The first application timing (TI) occurred on July 23, 2009. Extension recommendations were used for cultural practices throughout the year. Plots were desiccated on September 19, harvested October 11 and graded into the various categories after harvest.

Date:	7/23/09	8/6/09	9/9/09
Treatment:	TI	EB	LB
Air temperature (F):	59	74	75
Rel. hum. (%):	92	47	45
Wind (mph):	3	3	12
Soil moisture:	above normal	above normal	above normal
Cloud cover (%):	50	90	0

Red Norland appeared to be the most sensitive cultivar to glyphosate. Plants treated with glyphosate at the TI stage or with at least 0.125 lb ai/A glyphosate at the EB stage produced significantly more cull tubers (< 4 oz) compared to the untreated control. In contrast, potatoes treated with glyphosate at the TI stage or with at least 0.125 lb ai/A glyphosate at the EB stage produced significantly less 4-6 oz. tubers compared to the untreated and other treatments. This resulted in 37 to 50% decrease in marketable tubers size-wise. Unfortunately, excessive tuber cracking and russet skinning occurred with most of the tubers in these application timings, further reducing marketable yields. A slight shift to smaller tubers occurred when plants were treated with 0.063 lb ai/A glyphosate at the EB stage. No yield differences and few visible tuber defects were observed when plants were treated with glyphosate at the LB stage.

Red LaSoda was the next most sensitive cultivar to glyphosate. Plants treated with 0.25 lb ai/A glyphosate at the TI stage or with at least 0.125 lb ai/A glyphosate at the EB stage produced significantly more cull tubers (< 4 oz) compared to the untreated control. Other grade categories were similar regardless of the glyphosate treatments. Marketbale yields were reduced 34 to 57% when plants were treated with 0.25 lb ai/A glyphosate at the EB stage or with at least 0.125 lb ai/A glyphosate at the EB stage. Excessive tuber cracking and russet skinning was most severe in the EB stage with 70 to 100% rejection of marketable tubers due to visible tuber defects.

Sangre was the least sensitive tested cultivar to glyphosate. Plants treated with 0.25 lb ai/A glyphosate at the TI or EB stage produced significantly more cull tubers (< 4 oz) compared to the untreated control. Other grade categories were similar regardless of the glyphosate treatments. Marketbale yields were reduced 31 to 58% when plants were treated with 0.25 lb ai/A glyphosate at the TI or EB stage. Excessive tuber cracking and russet skinning was most severe in the EB stage with 30 to 100% rejection of marketable tubers due to visible tuber defects.

: ...

44

Potato cultivar yield and grade in response to glyphosat	Potato cul	tivar yiel	d and	grade	in res	ponse t	o gl	yphos	sate
--	------------	------------	-------	-------	--------	---------	------	-------	------

Potato cultivar yield	and gra	ide in ro	esponse	to glyp	hosate								
Treatment	0-4 (6 oz		-10 oz		10 oz	Т	OTAL	, >	•4 oz	
								T/A -		144 145 147 148 044 144 144 144 14			
Red Norland Chk	73	c-h	140	a-d	52	abc	50	def	316	a-e	243	a-f	
Red Norland TI	65	c-h	64	a-f	30	abc	26	ef	184	cde	120	d-g	
Glyphosate 0.25	75	a h	51	c-f	25	abc	16	ef	167	de	02	ofo	
Red Norland TI	15	c-h	51	0-1	25	abe	10	eı	107	ue	92	efg	
Glyphosate 0.13 Red Norland TI	153	а	60	b-f	12	bc	4	f	229	a-e	76	fg	
Glyphosate 0.06	155	а	00	0-1	12	00	-1	I	22)	<i>a</i> -c	70	ıg	
Red Norland EB	105	a-f	39	f	11	с	1	f	157	е	52	g	
Glyphosate 0.25	105	u-1	57	I	11	U	1		157	U	22	5	
Red Norland EB	131	ab	45	def	9	с	8	f	193	b-e	62	g	
Glyphosate 0.13	151	uo			-	÷	Ū	•	.,,,	00		8	
Red Norland EB	104	a-f	139	a-d	32	abc	16	ef	291	a-e	187	a-g	
Glyphosate 0.06													
Red Norland LB	76	c-h	152	ab	66	а	35	ef	329	a-e	253	a-e	
Glyphosate 0.25													
Red Norland LB	75	c-h	132	a-f	54	abc	33	ef	295	a-e	220	a-g	
Glyphosate 0.13												0	
Red Norland LB	58	d-h	147	ab	63	а	47	def	315	a-e	257	a-e	
Glyphosate 0.06													
Red LaSoda Chk	40	h	124	a-f	62	а	161	ab	387	а	347	а	
Red LaSoda TI	107	a-e	77	a-f	26	abc	66	c-f	276	a-e	169	a-g	
Glyphosate 0.25													
Red LaSoda TI	46	fgh	122	a-f	69	а	136	abc	373	abc	327	ab	
Glyphosate 0.13													
Red LaSoda Tl	50	e-h	113	a-f	55	abc	123	a-d	342	a-e	292	a-d	
Glyphosate 0.06													
Red LaSoda EB	112	a-d	115	a-f	31	abc	4	f	261	a-e	149	b-g	
Glyphosate 0.25				_				-					
Red LaSoda EB	102	b-g	83	a-f	31	abc	21	ef	237	a-e	135	c-g	
Glyphosate 0.13					6.0								
Red LaSoda EB	60	c-h	146	abc	69	а	60	c-f	336	a-e	275	a-d	
Glyphosate 0.06			110	0			1.50		0.54				
Red LaSoda LB	45	gh	110	a-f	66	а	152	ab	374	abc	329	ab	
Glyphosate 0.25	4 ~7	£	101	- 6	65	_	140	- 1-	270	a ta	220	- 1-	
Red LaSoda LB	47	fgh	121	a-f	65	а	146	ab	379	ab	332	ab	
Glyphosate 0.13	12	ah	113	a-f	64		150	ab	369	abc	327	ab	
Red LaSoda LB Glyphosate 0.06	43	gh	115	a-1	04	а	100	ab	309	abc	521	a0	
Sangre Chk	36	h	104	a-f	57	ab	151	ab	348	a-d	312	abc	
Sangre TI	117	abc	43	ef	10	c c	8	f	178	de	61	g	
Glyphosate 0.25	11/	abe	45	U1	10	C	0	1	170	ue	01	5	
Sangre TI	33	h	111	a-f	67	а	170	а	381	ab	348	а	
Glyphosate 0.13	55	••											
Sangre TI	71	c-h	157	а	69	а	85	b-f	383	ab	312	abc	
Glyphosate 0.06													
Sangre EB	86	b-h	75	a-f	26	abc	27	ef	214	a-e	128	c-g	
Glyphosate 0.25													
Sangre EB	71	c-h	138	a-e	66	а	63	c-f	338	a-e	267	a-e	
Glyphosate 0.13													
Sangre EB	47	fgh	123	a-f	67	а	97	a-e	334	a-e	287	a-d	
Glyphosate 0.06													
Sangre LB	52	e-h	128	a-f	67	а	84	b-f	331	a-e	279	a-d	
Glyphosate 0.25													
Sangre LB	42	gh	109	a-f	61	а	135	abc	347	a-e	305	a-d	
Glyphosate 0.13		_					_ · · -	-					
Sangre LB	49	e-h	114	a-f	58	а	118	a-d	339	a-e	290	a-d	
Glyphosate 0.06				~		26)	101		-	0.2	
LSD (P=.05)	32	2	52	2		26	48	5	102	2	10	03	

Potato cultivar tuber set in response to glyphosate

Potato cultivar tuber						10.07	 >1	l0 oz		OTAL	~~~~~	•4 oz	
Treatment	0-4 c)Z	4-(5 oz	0-	-10 oz	 Tube		1			-7 UL	
Red Norland Chk	93	d-h	67	abc	19	abc	 11	d-g	191	bc	97	abc	
Red Norland TI	132	c-g	29	a-e	11	abc	6	fg	178	bc	46	b-e	
Glyphosate 0.25	مند کر 1	- 5	م سد		- *		-	0			-		
Red Norland TI	118	c-h	24	b-e	9	abc	4	fg	156	bc	38	cde	
Glyphosate 0.13								U					
Red Norland TI	273	а	31	a-e	4	bc	1	g	309	а	37	cde	
Glyphosate 0.06								0					
Red Norland EB	177	bc	20	е	4	bc	0	g	201	bc	24	e	
Glyphosate 0.25								-					
Red Norland EB	182	bc	24	cde	4	с	2	g	211	bc	29	de	
Glyphosate 0.13													
Red Norland EB	138	c-f	71	а	12	abc	3	fg	225	bc	87	a-d	
Glyphosate 0.06													
Red Norland LB	95	d-h	70	а	25	а	8	fg	198	bc	103	abc	
Glyphosate 0.25													
Red Norland LB	90	d-h	63	a-e	20	abc	8	fg	181	bc	91	abc	
Glyphosate 0.13													
Red Norland LB	74	e-h	68	ab	22	а	10	efg	175	bc	101	abc	
Glyphosate 0.06													
Red LaSoda Chk	52	fgh	55	a-e	21	a	33	а	161	bc	109	ab	
Red LaSoda TI	162	bcd	37	a-e	9	abc	14	c-g	222	bc	60	a-e	
Glyphosate 0.25									1.60		104		
Red LaSoda TI	58	fgh	54	a-e	23	а	27	a-d	162	bc	104	abc	
Glyphosate 0.13							0.5		1.00	1 .	07	_1	
Red LaSoda TI	67	e-h	50	a-e	20	abc	25	a-e	163	bc	96	abc	
Glyphosate 0.06			50		1 1	. 1	1		217	h a	77.1		
Red LaSoda EB	145	cde	59	a-e	11	abc	1	g	217	bc	71	a-e	
Glyphosate 0.25	100		40		10	a la a	5	fa	186	bc	57		
Red LaSoda EB	129	c-g	40	a-e	12	abc	5	fg	100	bc	57	a-e	
Glyphosate 0.13	70	a h	66	. d	24		13	0.0	173	bc	103	abc	
Red LaSoda EB	70	e-h	66	a-d	24	а	15	c-g	175	00	105	auc	
Glyphosate 0.06 Red LaSoda LB	52	fah	47	a-e	23	а	32	а	154	с	102	abc	
	52	fgh	47	a-0	20	а	52	и	154	U	102		
Glyphosate 0.25 Red LaSoda LB	56	fgh	53	a-e	23	a	29	abc	161	bc	105	abc	
Glyphosate 0.13	50	Ign	55	a-0	20	и	2)	abo	101	00	105		
Red LaSoda LB	56	fgh	48	a-e	22	а	30	ab	157	bc	101	abc	
Glyphosate 0.06	50	Ign		uo	مند سن	u	20	40					
Sangre Chk	41	h	46	a-e	20	abc	31	a	139	с	97	abc	
Sangre TI	220	b	22	de	4	c	2	g	247	b	28	de	
Glyphosate 0.25	2.2.0	0			•	•		0					
Sangre TI	40	h	47	a-e	23	а	32	а	142	с	102	abc	
Glyphosate 0.13													
Sangre TI	78	e-h	74	а	24	а	18	a-g	194	bc	116	а	
Glyphosate 0.06								C					
Sangre EB	118	c-h	37	a-e	10	abc	6	fg	171	bc	53	a-e	
Glyphosate 0.25													
Sangre EB	88	d-h	64	a-e	23	а	15	b-g	190	bc	102	abc	
Glyphosate 0.13								-					
Sangre EB	55	fgh	55	a-e	23	а	20	a-f	154	с	98	abc	
Glyphosate 0.06		-											
Sangre LB	58	fgh	58	a-e	23	а	18	a-g	157	bc	99	abc	
Glyphosate 0.25		-											
Sangre LB	48	gh	48	a-e	21	a	26	a-e	143	с	95	abc	
Glyphosate 0.13		-											
Sangre LB	53	fgh	50	a-e	21	ab	26	a-e	150	С	97	abc	
Glyphosate 0.06							 						
LSD (P=.05)	4'	7	2	4		9	10)	49		3	7	

Effect of glyphosate droplet concentration on drift injury to irrigated potato. Harlene Hatterman-Valenti and Collin Auwarter.

A study was conducted at the Northern Plains Potato Grower's Association Irrigation Research site near Inkster, ND to determine if increasing the glyphosate droplet concentration by reducing the water volume would increase injury to potato and whether this increase in injury would be similar at all growth stages. This was accomplished by comparing plant and tuber injury from glyphosate applied at 20, 5, or 1 GPA to 'Russet Burbank' plants at the tuber initiation (TI), early bulking (EB), and late bulking stages (LB). The potato variety 'Russet Burbank' was planted on May 24 using a Harrison double-row planter with 12-inch spacing between seed pieces and 36 inches between rows. Glyphosate was applied at one-sixth, and one-twelfth the standard use rate (0.125 and 0.0625 lb ai/A) with a CO₂-pressurized ATV sprayer equipped with HB/HC #2 and #5 nozzles with a spray volume of 20 GPA (70 psi and 1.8 mph), 5 GPA (25 psi and 3.6 mph), or 1 GPA (25 psi and 7.2 mph). AMS was included to the spray solution and reduced accordingly. The field design was a randomized complete block, factorial arrangement, with four replicates. Maintenance programs were conducted throughout the growing season to apply fungicides and insecticides. Plants were harvested September 25 with a single-row Hasia harvester and then graded at Fargo. Application, environmental, crop, and yield data are listed below:

Date:	7/23/09	8/6/09	9/9/09
Treatment:	TI	EB	LB
Air temperature (F):	68	70	73
Rel. hum. (%):	62	61	57
Wind (mph):	7	6	8
Wind direction:	SE	SE	SW

Visual injury symptoms from glyphosate applications were subtle (chlorosis at growing points) regardless of glyphosate rate or application timing. Plants treated with glyphosate recovered quicker and showed less injury symptoms than previous years due to better environmental conditions in 2009. Plants treated with 0.13 lb/A glyphosate at the TI stage when applied at 20 GPA or at the EB stage when applied at 5 GPA had significant marketable and total yield loss from the reduction in tuber size. Plants treated with glyphosate produced similar number of tubers in comparison to the untreated except when plants were treated with 0.06 lb/A glyphosate applied at 20 GPA at the TI stage, which had significantly more tubers. Additional tuber loss would have occurred if tubers were to be sold for fresh market due to growth cracks and elephant hide skin in many of the tubers when plants were treated with glyphosate at the TI or EB stage.

Potato tuber set						>12 oz	Total	>4 oz
Treatment	< 4 oz	4-6 oz	6-8 0Z	8-10 oz	10-12 oz	≥12 0Z	10181	~4 0Z
				tub	er no			
Untreated	97	45	28	20	7	8	205	108
RU 0.125 TI								
20 GPA	159	20	7	4	2	1	192	33
RU 0.0625								
TI 20 GPA	217	51	22	9	6	3	307	91
RU 0.125 TI						0	001	110
1 GPA	103	47.8	34	20	9	8	221	118
RU 0.0625					-	-	000	00
TI 1 GPA	140	42	27	11	6	5	230	90
RU 0.125 EB				10	C.	А	0.57	107
20 GPA	130	56	43	18	6	4	257	127
RU 0.0625		50	40	0.4	10	0	240	145
EB 20 GPA	105	59	43	24	10	9	249	145
RU 0.125 EB			10	4	2	2	224	73
5 GPA	151	45	19	4	3	2	224	15
RU 0.0625	100	C 0	22	1 /	5	5	243	115
EB 5 GPA	129	58	33	14	3	5	243	115
RU 0.125 EB	1 4 1	C A	2.4	10	5	5	250	109
1 GPA	141	54	34	12	3	5	250	109
RU 0.0625	100	51	27	16	5	7	239	119
EB 1 GPA	120	54	37	10	5	1	239	117
RU 0.125 LB	100	51	33	17	6	7	222	114
20 GPA	108	51	22	17	0	/	La La La	117
RU 0.0625	11/	56	33	19	8	10	239	125
LB 20 GPA	114	50	55	19	0	10	200	125
RU 0.125 LB	113	57	33	20	8	7	237	124
5 GPA	115	57	55	20	0	1	201	- - - - - - - - - - -
RU 0.0625	126	60	35	20	10	10	260	134
LB 5 GPA RU 0.125 LB	120	00	50	20	10		_00	
1 GPA	129	61	32	14	8	4	247	118
RU 0.0625	127	01		T.I	0	•		~~~
LB 1 GPA	124	60	31	19	7	2	243	119
$\frac{\text{LB I GPA}}{\text{LSD (P=0.05)}}$	47	20	13	9	4	NS	76	40
гор (г-0.03)	-+ /	20	1.7	1	E.	1.00		

Ì.

Potato tuber set in response to glyphosate droplet concentration.

Potato yield and Treatment	< 4 oz	4-6 oz	6-8 oz	8-10 oz	10-12 oz	>12 oz	Total	>4 oz
1 Ioatinont	<u> </u>	1002		Cwt				
	<u> </u>		······					
Untreated	93	102	82	71	33	46	426	334
RU 0.125 TI								
20 GPA	119	49	21	16	9	6	220	101
RU 0.0625 TI								
20 GPA	156	91	54	29	24	18	371	215
RU 0.125 TI								
1 GPA	83	87	86	65	34	42	397	315
RU 0.0625 TI								
1 GPA	123	97	90	48	34	36	428	305
RU 0.125 EB								
20 GPA	104	102	107	58	23	19	413	309
RU 0.0625								
EB 20 GPA	82	106	107	77	38	51	460	379
RU 0.125 EB						_		
5 GPA	120	81	48	13	10	9	280	160
RU 0.0625						~ (0.7.5
EB 5 GPA	102	105	84	44	19	24	377	275
RU 0.125 EB						~ (2.00	0.00
1 GPA	120	97	83	39	20	24	382	262
RU 0.0625					• •			005
EB 1 GPA	98	98	91	51	20	35	393	295
RU 0.125 LB					~~~	0.5	2.0.1	000
20 GPA	92	93	84	55	23	35	381	289
RU 0.0625				60	0.1	50	410	207
LB 20 GPA	85	99	82	63	31	52	412	327
RU 0.125 LB				<i>c</i> 1	20	25	400	210
5 GPA	93	104	82	64	32	35	409	316
RU 0.0625		100	0.0	64	2.0	50	451	251
LB 5 GPA	100	109	88	64	38	53	451	351
RU 0.125 LB	100		0.1	AC	20	10	206	286
1 GPA	100	111	81	46	30	18	386	200
RU 0.0625	100	100	— <i>C</i>	<i>C</i> 1	20	11	206	284
LB 1 GPA	102	108	76	61	28	11	386	
LSD (P=0.05)	32	33	29	28	15	26	101	85

Potato yield and grade in response to glyphosate droplet concentration.

Use of fomesafen (Reflex) in Irrigated Potato. Harlene Hatterman-Valenti and Collin Auwarter.

Field research was conducted at the Northern Plains Potato Growers Association Irrigation Research site near Inkster, ND to evaluate potato tolerance and weed control of fomesafen +/- s-metolachlor or +/- prepackaged mix of s-metolachor and metribuzin to standards using four popular varieties grown under irrigation in North Dakota (Blazer, Russet Norkotah, Shepody, and Dakota Pearl). Seed pieces (2 oz) were planted on 36 inch rows and 12 inch spacing on May 24, 2009. Plots were 4 rows by 20 ft arranged in a randomized complete block design with 4 replicates. Herbicide treatments were applied 24 DAP with a CO₂ pressurized sprayer equipped with 8002 flat fan nozzles with a spray volume of 20 gpa and a pressure of 40 psi. Extension recommendations were used for cultural practices throughout the year. At time of application Blazer was 80% emerged, Russet Norkotah was 75%, Shepody was 60%, and Dakota Pearl was 95%. Plants emerged at application ranged from barely poking through soil up to 1 inch in height. Injury was expected since the application timing was pre-emergence to crop and weeds.

Application Date:	6/17/09
Air Temperature (F):	67
Rel. Humidity (%):	62
Wind (mph):	4
Soil Moisture:	Below Normal
Cloud Cover (%):	100

Dakota Pearl, with the most emerged plants, showed the greatest tolerance with 5 to 16% injury 5 DAA from applications with fomesafen. Other varieties had 6 to 28% visual injury with chlorosis as the main symptom. Potatoes treated with fomesafen and the premix of s-metolachlor plus metribuzin (Reflex @ 2 pt/a + Boundary @ 4 pt/a) had the greatest injury 5 DAA; Blazer-26%, Russet Norkotah and Shepody-28%, and Dakota Pearl-16%. This treatment also provided 100% control of common lambsquarters throughout the trial. By 14 DAA, all treatments where fomesafen was applied still showed signs of injury ranging between 1 to 9%, and by 26 DAA, only slight chlorosis was observed (0 to 2%). Treatments with fomesafen alone had less control of common lambsquarters than treatments tank mixed with either a prepackaged mix of s-metolachor and metribuzin, metribuzin, s-metolachlor, of rimsulfuron throughout the trial. Russet Norkotah had the greatest yields, while Blazer was the lowest yielding variety. The marketable yields (>4 oz) were similar to total yields. Dakota Pearl had the greatest tuber counts with the untreated having the most tubers in 20 ft of row (259 tubers). However, this variety also had the most unmarketable tubers, having between 53 and 69% of the tubers considered culls. Shepody had the lowest tuber number with all treatments having less than 141 tubers in 20 ft of row. Herbicide treatments had only slight effect on potato yield and grade due to low weed density/ competitive pressure. The trial location reportedly had high weed pressure, but due to the delay in being able to work the field and plant, most weeds were controlled with the hilling procedure just prior to herbicide applications.

z			~	~	~	5	-	~						~		0	•	_		•					5			
>40Z			228	313	245	266		887		1	305	256		318	0	222		270		309		325			286			64
Total			298	364	308	312		155			363	314		364	1	274		323		360	1	376			332			65
>12oz			19	57	23	28	l	54		:	09	31		50		39		27	;	62		45			42			27
8-10oz 10-12oz >12oz	T/A		16	42	36	28	0	28			36	30		53		27		32	1	45	!	48			43			22
8-10oz	CWT/A-		49	60	55	51	i	1/			51	51		LL	1	45		68		64	;	60			73			28
6-8oz			60	82	59	LL	ç	69			84	LL		75	1	55		70		70	1	95			67			27
4-6oz			84	72	75	83	t.	56			74	68		63	1	55		72		68		78			62			20
<4oz			69	51	59	46	9	42			58	57		46	-	52		53		50		51			46			21
60/	%	Inj.	0	0	0	0		0			0	0		0	,	0		0		0		0			0			NS
Colq 8/13/09	%	Con.	0	76	86	91		96			100	100		100	1	100		100		100		100			100			7
60	%	Inj.	0	0	0	0	,				0	0		0				0		0		0			0			NS
Colq 7/13/09	%	Con.	0	86	90	88		96			66	100		100	-	100		100		66		100			100			ŝ
60/	%	Inj.	0	7	5	,		9			1	4		4		6		0				9			7			7
Colq 7/1/(%	Con.	0	86	16	95	1	98			100	100		100		100		100		100		100			100			ε
60/	%	Inj.	0	6	16	5		21			4	18		21		26		ŝ		4		25			20			4
Colq 6/22/09-	%	Con.	0	81	89	90		100			66	100		100		100		100		100		100			100			ŝ
Rate	Unit			pt/a	pt/a	pt/a		pt/a	pt/a		pt/a	pt/a	pt/a	pt/a	pt/a	pt/a	pt/a	lb/a	pt/a	oz/a	pt/a	lb/a	pt/a	pt/a	oz/a	pt/a	pt/a	
	Rate				0	1.33			1.33		2	0.5	7	1	7	2	4	0.25	7	1.5	2	0.25	, 1	7	1.5	1	0	
	Name		Untreated	Reflex	Reflex	Dual	Magnum	Reflex	Dual	Magnum	Boundary	Reflex	Boundary	Reflex	Boundary	Reflex	Boundary	Sencor	Boundary	Matrix	Boundary	Sencor	Reflex	Boundary	Matrix	Reflex	Boundary	
	No.		-	7	ŝ	4		ŝ			9	٢		8		<i>6</i> 5	1	10		11		12			13			TSD

>4oz			428	427	491	430	414		274	407		435		410		467	151	4C4		665			449			64
Total			487	489	542	502	469		703	070		487		460	(524	103	47C	A C A	404			SIC		1	65
>12oz			88	100	157	91	107		, c t	171	171	128		104		144	70	84	00	98			132			27
8-10oz 10-12oz	Г/А		61	54	80	61	57		10	17 67	70	74		59	3	62	5	78	5	0 /			8¢			26
8-10oz	CWT/A-		94	88	111	91	89			90 10	00	83		85		06	100	109	r o	84		-	92			24
6-8oz			109	66	80	92	87		2	07	101	88		96	4	89	Ň	<u>94</u>	0	č Ś		1	95			26
4-6oz			76	87	64	95	74		ŗ	01 01	04	62		67		83	۲O	84	Ľ,	/ 0			73			24
<4oz			59	62	51	71	54			40	4 0	52		49	1	57	Ċ	/0	ر ار	54			63			NS
60/	%	Inj.	0	0	0	0	0	1	c	>	>	0		0		0	c	0	c	0			0			NS
Colq 8/13/09	%	Con.	0	85	66	93	66	k k	00	86	100	100		100	:	100	001	100		100			100			9
60	%	Inj.	0			1	0	1	c		>	0		+4		0	Ċ	0	c	0			0			NS
Colq 7/13/09	%	Con.	0	91	97	06	96	2		100	100	100		100		100	001	100		100			100			7
60	%	Inj.	0	S	9	ŝ	6	N	(ς Γ	ø	Ŷ		6		4	¢	0	`	9			9			ε
Colq 7/1/09	%	Con.	0	91	95	93	66	N N		100	100	100		100		100	00,	100	0	100			100			5
60/	%	Inj.	0	10	14	5	24	1	t	<u> </u>	17	23		28		4	Ċ	7	Ċ	21			23			9
Colq 6/22/09	%	Con.	0	84	90	16	66	1		100	100	100		100		100	0	100		100			100			4
Rate	Unit)		pt/a	pt/a	pt/a	nt/a	pt/a		pt/a	pt/a	pua nt/a	pt/a	pt/a	pt/a	lb/a	pt/a	oz/a	pt/a	lb/a	pt/a	pt/a	oz/a	pt/a	pt/a	
	Rate				2	1.33		1.33	ſ	21	0.0 C	1	7	7	4	0.25	. 7	1.5	7	0.25	••	0	1.5		7	
	Name		Untreated	Reflex	Reflex	Dual	Magnum Refley	Dual	Magnum	Boundary	Retlex Derredomi	Boundary Reflex	Boundary	Reflex	Boundary	Sencor	Boundary	Matrix	Boundary	Sencor	Reflex	Boundary	Matrix	Reflex	Boundary	(P=0.05)
	No.		-	. 0	n ا	4	v	r		9 1	-	~	, ,	2		10		11		12			13			TSD

	Field research was conducted at the Northern Plains Potato Growers Association Irrigation Research site near Inkster, ND to compare the efficacy and selectivity of metribuzin when applied pre and post to Russet Burbank potatoes. Seed pieces (2oz) were planted on 36 inch rows and 12 inch spacing on May 23, 2009. Plots were 4 rows by 25 ft arranged in a randomized complete block design with 4 replicates. Extension recommendations were used for cultural practices throughout the year. The herbicide treatments were applied to the middle 2 of 4 rows using a CO ₂ pressurized backpack sprayer equipped with 8002 flat fan nozzles with an output of 20 gpa and a pressure of 40 psi on June 16 ('A') and on June 25 ('B'). Weed control evaluations were done on June 22 (6 DAA 'A'), July 1 (15 DAA 'A', 6 DAA 'B'), July 16 (30 DAA 'A', 21 DAA 'B'), and August 13 (58 DAA 'A', 49 DAA 'B'). We harvested both treated rows on September 26.						Yield	CWT/A	285	418	389	401	418	407	412	Ratings on June 22 showed excellent control on redroot pigweed and green foxtail. Common lambsquarters, which was the most populated weed in the field, was completely controlled (100%) with metribuzin @ 21.3 oz/a (treatment 3), while metribuzin @ 10.7 oz/a (treatment 2) and Sencor @ 10.7 oz/a (treatment 2) and Sencor @ 10.7 oz/a (treatment 4) had 94 and 95% control, respectively. July 1 ratings showed 100% control for the 3 weeds with both metribuzin pre-emergence treatments (2 and 3), while the post-emergence treatments showed between 90 and 93% control for redroot pigweed and common lambsquarters. By trials end, all pre-emergence treatments (2-4) and metribuzin @ 10.7 oz/a post-emergence treatment (6) had 100% control of all 3 weeds, while the lower rate of metribuzin post-emergence (treatment 5) showed 95% control of redroot pigweed and 93% control of redroot pigweed and someon lambsquarters. The post-emergence treatment (7) had 98% control of both redroot pigweed and common lambsquarters. The untreated control yielded 284 cwt/A, while all other treatments (2-7) yielded between 391 and 421 cwt/A.	
	Northern Plains Potato Growers Association Irrigation Research site near Inkster, ND to of metribuzin when applied pre and post to Russet Burbank potatoes. Seed pieces ($20z$), inch spacing on May 23, 2009. Plots were 4 rows by 25 ft arranged in a randomized tes. Extension recommendations were used for cultural practices throughout the year. ed to the middle 2 of 4 rows using a CO ₂ pressurized backpack sprayer equipped with 80 gpa and a pressure of 40 psi on June 16 ('A') and on June 25 ('B'). Weed control DAA 'A'), July 1 (15 DAA 'A', 6 DAA 'B'), July 16 (30 DAA 'A', 21 DAA 'B'), and 3'). We harvested both treated rows on September 26.					Grft		:	0	100	100	100	100	100	100	vhich w), while ely. Jul the post 3y trials f all 3 v 33% con nd com and 42	
L.	e near l ss. See id in a r nrough yer equ Weed		e			Colq	8/13/09	% Control	0	100	100	100	93	100	98	urters, w ment 3 spective while urters. 1 urtrol o: td and 9 weed a weed a en 391	
in irrigated potato. Harlene Hatterman-Valenti and Collin Auwarter.	arch sit potatoe arrange ctices th ck spra 5 ('B').	6/22/09	Adequate	0		Rrpw	88	%	0	100	100	100	95	100	86	mbsqua (a (treat trol, res and 3), mbsqua mbsqua 00% co pigwee oot pig oot pig	
ollin A	n Resea urbank y 25 ft ural prac backpa June 2 6 (30 D 5.					Grft			0	100	66	100	98	86	100	mon lau 21.3 oz/ 5% con ents (2 mon lau mon lau icedroot thredr yth redr	
i and C	rrigatio lasset B rows b or cultu urrized and on and on uber 2(6/16/09	Below Normal	100		Colq	7/16/09-	% Control	0	100	66	98	89	91	92	. Com zin (a) 2 + and 9; treatm nd com nent (6 trol of 1 ol of bc ol of bc	
.Valent	(ation Ir st to Ru were 4 used fo used fo ('A') A 'B'), A 'B')	/9	Belov			Rrpw		%	0	100	66	100	98	100	100	foxtail netribur had 94 rigence weed ar weed ar weed ar weed ar weed ar weed ar weed ar weed ar atment	
terman-	Associated portion of the polytical and polytical plots and polytical plots of the polytical and polytical plots of the polytical plots o		ture:	ır (%)		Grft		·l(0	100	100	100	93	98	100	d green) with n ment 4) pre-emt oot pigy wed 95 vwed 95 nad 98%	
ne Hatt	rrowers ied pre (, 2009. andation ws usin psi on AA 'A AA 'A reated 1		: Soil Moisture:	Cloud Cover (%)		Colq	-7/1/09-	% Control	0	100	100	66	90	90	60	/eed an (100%) a (treati buzin J or redro post-en t 5) sho t 7) 1 ile all c	
. Harle	otato G en appl May 23 comme of 4 ro e of 40 l (15 D l both t		: So	Clou		Rrpw		%	0	100	100	96	90	06	93	ot pigw trolled 0.7 oz/ ontrol f 7 oz/a j eatmen treatme	
potato	lains P izin wh ing on ision re iddle 2 pressu), July irvested	6/22/09	76	36 5	r	Grft		l	0	100	66	100	0	0	0	n redro ely con or (a) 1 vith bot 93% c 93% c 10. 10. 10. 284 cwi	
rigated	thern P metribu ch spac: . Exten o the m a and a AA 'A' We hɛ	(/9			P	Colq	6/22/09	% Control	0	94	100	95	0	0	0	ontrol o ompleto da Senc veeds v 90 and tribuzir emerge emerge ielded 2	
	the Nor rity of 1 d 12 inc licates pplied t 2 (6 D/ A 'B').	60/9	7	76 8	and vie	Rrpw		%	0	100	100	100	0	0	0	llent cc , was c nt 2) ar the 3 v stween and me in post- in post- ntrol y	
Use of Metribuzin for weed control	Field research was conducted at the Northern Plains Potato Growers Association Irrigation Research site near Inkster, ND to compare the efficacy and selectivity of metribuzin when applied pre and post to Russet Burbank potatoes. Seed pieces (2oz) were planted on 36 inch rows and 12 inch spacing on May 23, 2009. Plots were 4 rows by 25 ft arranged in a randomized complete block design with 4 replicates. Extension recommendations were used for cultural practices throughout the year. The herbicide treatments were applied to the middle 2 of 4 rows using a CO ₂ pressurized backpack sprayer equipped with 80 flat fan nozzles with an output of 20 gpa and a pressure of 40 psi on June 16 ('A') and on June 25 ('B'). Weed control evaluations were done on June 22 (6 DAA 'A'), July 1 (15 DAA 'A', 6 DAA 'B'), July 16 (30 DAA 'A', 21 DAA 'B'), and August 13 (58 DAA 'A', 49 DAA 'B'). We harvested both treated rows on September 26.	6/16/09	67	<u> </u>	W IIIU (IIII)II). Dffoot of headinide on used control and vield			Code		A	A	A	В	В	B	Ratings on June 22 showed excellent control on redroot pigweed and green foxtail. Common lambsquarters, which was the most populated weed in the field, was completely controlled (100%) with metribuzin ($@$ 21.3 oz/a (treatment 3), while metribuzin ($@$ 10.7 oz/a (treatment 4) had 94 and 95% control, respectively. July 1 ratings showed 100% control for the 3 weeds with both metribuzin pre-emergence treatments (2 and 3), while the post-emergence treatments showed between 90 and 93% control for redroot pigweed and common lambsquarters. By trials end, a pre-emergence treatments (2-4) and metribuzin ($@$ 10.7 oz/a post-emergence treatments (2) and 3), while the post-emergence treatments (2-4) and metribuzin ($@$ 10.7 oz/a post-emergence treatment (6) had 100% control of all 3 weeds, while the lower rate of metribuzin post-emergence (treatment 5) showed 95% control of redroot pigweed and 93% control of rednon lambsquarters. The post-emergence Sencor treatment (7) had 98% control of both redroot pigweed and common lambsquarters. The untreated control yielded 284 cwt/A, while all other treatments (2-7) yielded between 391 and 421 cwt/A	
for we	condu cy and 5 inch r sign wi thents than o lone on A 'A',		F):		peen uc		Rate	Unit		oz/a	oz/a	oz/a	oz/a	oz/a	oz/a	2 show eed in t 7 oz/a (0% con ents sho ents sho atment ite of m arters.	
<u>ribuzin</u>	ch was e effica e on 36 lock de de trea zles wi zvere c (58 DA	Date:	Air Temperature (F):	Rel. Humidity (%):	l). hirida (Rate		10.7	21.3	10.7	5.33	10.7	5.33	June 2 lated w @ 10.' wed 10 treatm treatm proce tre ower ra ower ra ters. Tl	
of Met	l resear pare tho plete bl herbici fan noz uations ust 13 (Application Date:	Temper	Rel. Humidit	u (uupu of of her			0	eated	Metribuzin	Metribuzin	or	Metribuzin	Metribuzin	or	ngs on it popul ribuzin ngs sho rigence emerge emerge le the la imon la bsquart	
Use	Field com were com The flat f eval	App	Air	Rel.	W III Effor			Name	Untreated	Metri	Metri	Sencor	Metri	Metri	Sencor	Rati met ratir eme eme vhij lam	
								No.	1	6	ε	4	Ś	9	2		

<u>Use of saflufenacil with multiple adjuvants as a desiccant on dryland potatoes - Glyndon</u>. Harlene Hatterman-Valenti and Collin Auwarter.

This study was conducted north of Glyndon, MN to compare desiccation with saflufenacil (BAS 800) when applied with different adjuvants. Red Norland seed pieces (2 oz) were planted on 36 inch rows and 12 inch spacing on June 10, 2009. Plots were 4 rows by 30 feet arranged in a randomized complete block design with 3 replicates. The treatments were applied to the middle 2 of 4 rows using a CO2 backpack sprayer equipped with 8002 flat fan nozzles with an output of 20 gpa and a pressure of 40 psi on September 2.

0 14 6 10 0

Application Date:	9/2/09		
Air Temperature (F):	79	Wind (mph):	7
Rel. Humidity (%):	49	Soil Moisture:	Adequate
Cloud Cover (%):	50		

Potato desiccation with saflufenacil alone and tank mixed with adjuvants.

)9	9/11/	09			
			Rate	3 DA	A	9 DA	A	14 D	AA	
No.	Name	Rate	Unit	Leaves	Stems	Leaves	Stems	Leaves	Stems	
1	BAS 800	2	floz/a	5cd	0b	33b	10de	99a	88b	
2	BAS 800	2	floz/a	18bc	8b	77a	23bcd	100a	98a	
	Class Act NG	2.5	%v/v	. ·						
	InterLock	2	floz/a							
3	BAS 800	2	floz/a	23b	7b	82a	18cd	98a	98a	
	NPAK AMS Liquid	2.5	%v/v							
	AG 06011	6	floz/a							
4	BAS 800	2	floz/a	28b	15b	87a	33bc	100a	100a	
	Class Act NG	2.5	%v/v							
	InterLock	2	floz/a							
	Destiny HC	1	pt/a							
5	BAS 800	2	pt/a	17bc	6b	75a	18cd	100a	97a	
	Class Act NG	2.5	%v/v							
	InterLock	2	floz/a							
	Superb HC	1	pt/a							
6	BAS 800	2	floz/a	28b	13b	87a	27bcd	100a	98a	
	NPAK AMS Liquid	2.5	%v/v							
	Destiny (MSO)	1	%v/v							
7	BAS 800	2	floz/a	25b	13b	80a	33bc	100a	98a	
	AG 07043	1	%v/v							
8	BAS 800	2	floz/a	33b	15b	87a	42b	100a	100a	
	NPAK AMS Liquid	2.5	%v/v							
	Prime Oil	1	%v/v							
9	BAS 800	2	floz/a	30Ь	12b	82a	28bcd	100a	100a	
	Class Act NG	2.5	%v/v							
	AG 07010	1	pt/a							
10	BAS 800	2	floz/a	35b	15b	87a	35bc	100a	100a	
	Class Act NG	2.5	%v/v							
	InterLock	2	floz/a							
	AG 08047	1	pt/a							
11	BAS 800	2	floz/a	32b	17b	87a	43b	100a	98a	
	Class Act NG	2.5	%v/v							
	AG 08050	0.5	%v/v							
12	Reglone	2	pt/a	60a	37a	95a	65a	100a	100a	
	AdWet	1	pt/100gal							
13	Unterated			0d	0b	0c	0e	0b	0c	

Treatments were applied when plants were beginning to senescence. At 3 DAA the treatment with saflufenacil alone (1) was significantly slower desiccating than the other treatments showing only 5% leaf necrosis while the treatment with Reglone (12) showed 60%. Saflufenacil + Class Act NG + InterLock (treatment 2) and the addition of Superb HC (treatment 5) had slower desiccation than replacing Superb HC with AG 08047 (treatment 10) at 3 DAA. At 9 DAA, the Reglone treatment had 95% leaf necrosis, but this was not significant against any of the other treatments except for treatment 1 where saflufenacil was applied alone. By the end of the trial, all treatments had at least 98% leaf necrosis and at least 97% stem necrosis, except for the saflufenacil alone treatment with only 88%.

`

<u>Use of Eptam for weed control in irrigated potato</u>. Harlene Hatterman-Valenti and Collin Auwarter. A study was conducted west of Inkster, ND at the Northern Plains Potato Growers Association Irrigation Research site to evaluate several Eptam based programs with Dual II Magnum + Sencor for weed control in irrigated 'Russet Burbank' potatoes. Plots were 4 rows by 25 ft arranged in a randomized complete block design with 4 replicates. Seed pieces (2 oz) were planted on 36 inch rows and 12 inch spacing on May 23, 2009. Treatments were applied prior to planting ('A') and after hilling ('B'), but prior to emergence. Extension recommendations were used for cultural practices throughout the year. The herbicide treatments were applied to the middle two rows using a CO₂ backpack sprayer equipped with 8002 flat-fan nozzles with an output of 20 gpa and a pressure of 40 psi. Weed control was evaluated on June 22, July 14, and August 13. Treated rows were harvested on September 26 and graded at Fargo.

Application Date:	5/23/09	6/16/09
Air Temperature (F):	65	67
Rel. Humidity (%):	60	76
Wind (mph):	2	8
Soil Moisture:	Adequate	Below normal
Cloud Cover (%):	0	100

Table 1. Effect of herbicide treatments on weed control.

				Colq	Rrpw	Grft	Colq	Rrpw	Grft	Colq	Rrpw	Grft
		Rate			·6/22/09			-7/14/09-			-8/13/09-	
Name	Rate	Unit	Code	%	Contro	1		-Control-		%	6 Control	
Untreated				0	0	0	0	0	0	0	0	0
Eptam	5.5	pt/a	А	96	100	99	94	100	100	98	98	100
Eptam +	4.5	pt/a	А	100	100	100	100	100	100	100	100	100
Sencor	0.33	lb/a	В									
Eptam +	4.5	pt/a	А	100	100	100	100	100	100	100	100	100
Matrix	1.5	oz/a	В									
Dual II	2	pt/a	В	100	100	100	100	100	100	100	100	100
Magnum+												
Sencor	0.33	lb/a	В									

Table 2. Effect of herbicide treatments on potato yield and grade.

1401C 2. LIIC		5101010	o noun		porato	roid alla					
		Rate		<4oz	4-6oz	6-8oz	8-10oz	10-12oz	>12oz	Total	>4oz
Name	Rate	Unit	Code				CWT	`/A			
Untreated				144	133	81	42	13	11	424	279
Eptam	5.5	pt/a	А	149	119	70	25	19	17	400	251
Eptam +	4.5	_ pt/a	А	126	118	77	45	16	17	399	273
Sencor	0.33	lb/a	В								
Eptam +	4.5	pt/a	А	135	103	82	47	19	26	413	278
Matrix	1.5	oz/a	В								
Dual II	2	pt/a	В	141	132	78	51	16	20	438	297
Magnum +											
Sencor	0.33	lb/a	В								

Weed control evaluations showed all treatments performed well. The new location did not have the weed pressure previously reported. Total yields showed no differences and that the untreated performed as well as any other treatment. This was attributed to the limited weed pressure. There was no significant difference in grade. All treatments had between 63 and 68% of their tubers greater than the 4 oz size. Results indicate that Eptam and Eptam combinations provide similar weed control as the combination of Dual II Magnum + Sencor and that plants treated with these herbicides had similar yields and grades.

<u>Weed control using CHA-023 on irrigated potato.</u> Harlene Hatterman-Valenti and Collin Auwarter.

A study was conducted at the Northern Plains Potato Growers Association Irrigation Research site near Inkster, ND to determine the efficacy and selectivity of CHA-023 applied pre and early post to Russet Burbank potatoes. Seed pieces (2 oz) were planted on 36 inch rows and 12 inch spacing on May 28, 2009. Plots were 4 rows by 25 ft arranged in a randomized complete block design with 4 replicates. Extension recommendations were used for cultural practices throughout the year. The herbicide treatments were applied to the middle 2 of 4 rows using a CO₂ backpack sprayer equipped with 8002 flat fan nozzles with an output of 20 gpa and a pressure of 40 psi on June 16 ('A') and June 25 ('B'). Weed control evaluations were done on June 22 (6 DAA 'A'), July 1 (15 DAA 'A', 6 DAA 'B'), July 16 (30 DAA 'A', 21 DAA 'B'), and August 13 (58 DAA 'A', 49 DAA 'B'). Potatoes were harvested on September 26. Plants in this trial emerged rather quickly as this land was first tilled the day before planting and deep ripping was not available, hence the seed pieces were not planted as deeply as planned (4 inches versus 6 inches below the soil surface) and were in slightly warmer soil. At hilling, plants were beginning to emerge (5%) and the disk cultivator was unable to get enough soil to throw on top of the hill to properly cover emerged potato plants and weeds. When application 'A' was applied, common lambsquarters were at 2-3 leaves and about half inch tall.

Application Date:	6/16/09	6/25/09
Air Temperature (F):	67	76
Rel. Humidity (%):	76	36
Wind (mph):	8	5
Soil Moisture:	Below Normal	Adequate
Cloud Cover (%):	100	0

Weed control evaluations.

	Yield	cwt/a	239	340	310	295	358	356		341		369		354	
Grft			0	88	100	88	75	100		100		100		100	
Colq RRpw Grft		% Control	0	80	69	76	75	100		100		100		100	
	8) %	0	73	69	65	65	100		100		100		100	
Grft]	0	78	88	78	68	100		74		100		100	
Colq Rrpw	7/16/09	% Control	0	73	73	83	69	94		66		66		94	
		···%	0	64	65	81	68	91		95		98		94	
Colq Rupw Grft]	0	71	73	63	76	91		91		90		93	
Rrpw	7/1/09	% Control	0	63	65	61	. 68	90		90		91		90	
Colq	L	°%	0	61	65	61	68	90		90		91		90	
Colq	6/22/09	% Control	0	50	68	63	75	0		0		0		0	
		Code		A	A	A	A	В	В	В	В	В	В	В	В
	Rate	Unit		oz/a	oz/a	oz/a	oz/a	oz/a	√\V0%	oz/a	V/V₀%	oz/a	√/V0%	oz/a	V/V%
		Rate		0.75	1.5	Ś	1.5	0.75	0.25	1.5	0.25	Ś	0.25	1.5	0.25
		No. Name	Untreated	CHA-023	CHA-023	CHA-023	Matrix	CHA-023	Preference	CHA-023	Preference	CHA-023	Preference	Matrix	Preference
		No.		2	Ś	4	Ś	9		٢		8		6	

the best season-long weed control. All had 100% control of common lambsquarters, redroot pigweed, and yellow foxtail. The highest lambsquarters and 80% of redroot pigweed. The post-emergence treatments, with the surfactant (Preference @ 0.25% v/v), provided Common lambsquarters was the only weed rated on June 22, and Matrix @ 1.5 oz/a (treatment 5) showed the best results with 75% 0.75 oz/a pre-emergence (treatment 2) had the best results of the pre treatments by the end of the year with 73% control of common yielding treatment was CHA-023 @ 3 oz/a + Preference @ 0.25% v/v (treatment 8) with 369 cwt/a, followed by Matrix @ 1.5 oz/a The pre-emergence treatments (2-5) struggled throughout the year, but did show better results as the season went on. CHA-023 @ control. If there would have been a surfactant tank mixed with application timing "A" treatments, the results may have improved. (treatment 5) with 358 cwt/a. The untreated control yielded 239 cwt/a. <u>Use of saflufenacil with multiple adjuvants as a desiccant on dryland potatoes.</u> Harlene Hatterman-Valenti and Collin Auwarter.

This study was conducted at the Northern Plains Potato Growers Association non-irrigated research site near Grand Forks, ND to compare desiccation with saflufenacil (BAS 800) when applied with different adjuvants. Red Norland seed pieces (2 oz) were planted on 36 inch rows and 12 inch spacing on June 11, 2009. Plots were 4 rows by 25 ft arranged in a randomized complete block design with 4 replicates. Extension recommendations were used for cultural practices throughout the year. The desiccant treatments were applied to the middle 2 of 4 rows using a CO_2 backpack sprayer equipped with 8002 flat fan nozzles with an output of 20 gpa and a pressure of 40 psi on August 31. Potatoes were harvested on October 13.

Application Date:	9/3/09
Air Temperature (F):	74
Rel. Humidity (%):	68
Wind (mph):	2
Soil Moisture:	Adequate
Cloud Cover (%):	5

														Yield
			Rate		8 DAA	4A	10 L	10 DAA	14 DAA	AA	17 DAA	AA	Row A	Row B
No	Name	Rate	Unit	Code	Lvs	Stem	Lvs	Stem	Lvs	Stem	Lvs	Stem	cwt/A	cwt/A
.	BAS 800	2	floz/a	A	50c	18b	88b	38b	98a	88b	100a	99a	360a	362a
2	BAS 800	7	floz/a	A	63b	23a	94a	39b	100a	93ab	100a	100a	417a	389a
	Class Act NG	2.5	∿/v%	A										
	InterLock	7	floz/a	А										
ŝ	BAS 800	7	floz/a	A	73ab	28a	96a	51ab	100a	97a	100a	100a	357a	348a
	Class Act NG	2.5	V/V%	А										
	InterLock	7	floz/a	A										
	Destiny HC		pt/a	A										
4	BAS 800	7	floz/a	A	70ab	25a	95a	49ab	100a	94ab	100a	100a	383a	381a
	Class Act NG	2.5	V/V0%	A										
	InterLock	7	floz/a	A										
	Superb HC		pt/a	A										
5	BAS 800	7	floz/a	A	80a	36a	96a	65a	100a	97a	100a	100a	394a	387a
	NPAK AMS	2.5	V/V_0	A										
	Liquid													
	Destiny (MSO)		V/V%	Α										
9	BAS 800	7	floz/a	Α	71ab	28a	96a	55ab	100a	95ab	100a	100a	409a	371a
	Class Act NG	2.5	∿/۷%	Α										
	AG 07010	1	pt/a	A										

(MSO) (treatment 5) had the highest percentage of desiccation during each rating. By trials end (17 DAA) leaves on all treatments had 100% desiccation and all stems had 100% desiccation except saflufenacil alone, which had 99%. Total yield was not significantly

different.

62

<u>Pyraflufen (Vida) and Aceto-diquat as a desiccant on dryland potatoes</u>. Harlene Hatterman-Valenti and Collin Auwarter.

This study was conducted at the Northern Plains Potato Growers Association Non-irrigated research site near Grand Forks, ND to compare desiccation with Vida at different rates and timings compared with diquat. Red Norland seed pieces (2 oz) were planted on 36 inch rows and 12 inch spacing on June 11, 2009. Plots were 4 rows by 25 ft arranged in a randomized complete block design with 4 replicates. Extension recommendations were used for cultural practices throughout the year. The desiccant treatments were applied to the middle 2 of 4 rows using a CO₂ backpack sprayer equipped with 8002 flat fan nozzles with an output of 20 gpa and a pressure of 40 psi on September 3 ('A') and September 10 ('B'). The pH of water before adding Vida to the bottles was 5.85. We added Tri-Fol @ 1 pt/100 gal to lower the pH. Potatoes were harvested on October 13.

Application Date:	9/3/09	9/10/09
Air Temperature (F):	74	77
Rel. Humidity (%):	68	73
Wind (mph):	2	7
Soil Moisture:	Adequate	Above Normal
Cloud Cover (%):	5	10

Anything with diquat faired better than the Vida treatments throughout the trial on both the leaves and stems. By 4 DAA 'A' the Vida treatments had between 21 and 29% leaf necrosis, while the treatments with diquat (including ones tank mixed with Vida) had between 36 and 41% leaf necrosis, with the highest being Vida @ 4.125 floz/a + Reglone @ 1 pt/a + Preference @ 0.25% v/v (treatment 4). All stems at this point showed between 10 and 20% necrosis. By 14 DAA 'A' and 7 DAA 'B' the best treatment was Vida @ 4.125 floz/a + Reglone @ 1 pt/a + Preference @ 0.25% v/v (treatment 4) with 96% leaf necrosis and 86% stem necrosis. The next best treatment was Vida @ 2.75 floz/a + Reglone @ 1 pt/a + Preference @ 0.25% v/v (treatment 4) with 96% leaf necrosis and 86% stem necrosis. The next best treatment was Vida @ 2.75 floz/a + Reglone @ 1 pt/a + Preference @ 0.25% v/v (treatment 6) applied 2X with 95% desiccated leaves and 84% desiccated stems. During the last ratings (18 DAA 'A' and 11 DAA 'B') all treatments had 100% desiccation of leaves, except the treatments where Vida was not tank mixed with any other herbicide (treatments 2 and 3). All stems at this point were at least 96% desiccated. All treatments were Vida @ 5.5 floz/a + Persist Ultra @ 1% v/v (treatment 2) with 441 cwt/A, and Reglone @ 1 pt/a + Preference fb Vida @ 2.75 floz/a + Persist Ultra @ 1% v/v (treatment 10) with 425 cwt/A. The lowest yielding was a Aceto-diquat @ 2 pt/a + Preference @ 0.25% v/v (treatment 13) with 335 cwt/a.

rola	rutato desiccation with pyrammen and unduat	ı pyranure		uar.			10110	00		00			
			-+- U		0/1/6			60	KU// I /K			1 <u>9</u>	
			Kate		4 DAA'A'	4'A'	7 DAA'A'	A'A'	14 D/ 7 DA	14 DAA'A', 7 DAA'B'	18 DAA'A', 11 DAA'B'	A`A`, A'B'	Y leld
No.	Name	Rate	Unit	Code	Leaves	Stems	Leaves	Stems	Leaves	Stems	Leaves	Stems	cwt/a
	Untreated				0c	p0	0e	0e	P0	P0	0c	0c	397a
0	*Vida	5.5	floz/a	A	23b	10c	53cd	23d	86bc	73c	99b	96b	441a
	Persist Ultra	,	∿/v%	A									
ŝ	*Vida	5.5	floz/a	A	29b	13bc	55cd	25cd	85c	75bc	99b	97ab	354a
	Syl-Tac	4	floz/a	A									
4	*Vida	4.125	floz/a	A	41a	19a	69a	35a	96a	86a	100a	100a	392a
	Reglone		pt/a	A									
	Preference	0.25	V/V%	A									
ŝ	*Vida	2.75	floz/a	Α	38a	18a	66ab	33ab	91abc	79abc	100a	100a	356a
	Reglone	-	pt/a	A									
	Preference	0.25	∿/۷%	A									
9	*Vida	2.75	floz/a	AB	39a	20a	70a	35a	95a	84ab	100a	100a	403a
	Reglone	1	pt/a	AB									
	Preference	0.25	V/V%	AB									
1	*Vida	2.75	floz/a	AB	23b	13bc	55cd	25cd	86bc	74bc	100a	97ab	373a
	Persist Ultra		v/v%	AB									
8	*Vida	2.75	floz/a	A	25b	13bc	53cd	26bcd	86bc	73c	100a	98ab	357a
	Persist Ultra	, ł	∿/v%	A									
	*Vida	5.5	floz/a	В									
	Persist Ultra	H	∿/۷%	В									
6	*Vida	2.75	floz/a	A	21b	10c	48d	21d	90abc	80abc	100a	99a	395a
	Persist Ultra		V/V%	Α									
	Reglone	, ł	pt/a	В									
	Preference	0.25	۸/۸%	Щ.									
10	Reglone		pt/a	A	36a	19a	66ab	3 labc	93abc	80abc	100a	99a	425a
	Preference	0.25	۰/۸%	٩									
	*Vida	2.75	floz/a	n									
	Persist Ultra		∿//v%	щ									
11	Reglone		pt/a	A	35a	16ab	68ab	35a	94ab	83abc	100a	100a	356a
	Preference	0.25	∿/v%	A									
	Reglone	1	pt/a	В									
	Preference	0.25	∿/v%	В									
12	Aceto-diquat	4	pt/a	A	38a	19a	65ab	33ab	89abc	79abc	100a	98ab	342a
	Preference	0.25	∧/∧%	A									
13	Aceto-diquat	7	pt/a	А	39a	19a	70a	38a	93abc	83abc	100a	100a	335a
	Preference	0.25	∿//v%	A									
14	Aceto-diquat	 1	pt/a	A	36a	19a	59bc	30abc	91abc	83abc	100a	99a	386a
	Preference	0.25	∿/v%	A									
	Aceto-diquat	1	pt/a	В									
	Preference	0.25	V/V0%	В									
Hd*	*pH was brought down to 5.85 by adding Tri-Fol @ 1 pt/100 gal before adding Vida.	n to 5.85 b	y adding	Tri-Fol (0 1 pt/100	gal before	iv adding Vi	da.					
					and the second se								

Potato desiccation with pyraflufen and diquat.

Postemergence weed control in safflower. Williston, 2009. Neil Riveland

'MonDak'safflower was planted on May 6 into land planted to lentils in 2008 with a drill having 7 inch row spacing, seeding at 30 lbs/a. All treatments were applied postemergence on June 5 to 4-5 leaf safflower,1-2 Russian thistle (Ruth) and common lambquarters (Colq) and 2-4 leaf green foxtail (grft). Air temperature was 52 deg F, soil temperature of 66 degrees, 10% clear sky, wind from 27 degrees at 1-4 mph and 38% RH. We used a small plot sprayer with wind cones, mounted on a G-Allis Chalmers tractor to apply the treatments, delivering 10 gals/a at 40 psi through 8001 flat fan nozzles to a 6.67 ft wide area the length of 10 by 30 ft plots. First rain received after application was 0.34 inches on June 6. The experiment was a randomized complete block design with three replications. Plots were evaluated for crop injury on June 14 and July 11 for crop injury and July 11 for weed control. Population densities of Ruth were 1/2-2 plts/ft2 and grft were 5-7plts/ft2. Safflower was machine harvested on September 24.

	Product	ዩ C:	rop	<u> </u>	ntrol	Test		Seed
Treatment a	Rate	In	jury	Ruth	Grft	Weight	Yield	Oil
	oz/a	6/1	4 7/11	6/	14	lbs/b	lbs/a	ዩ OD
AssureII+HrmGT+COC	8+0.2+1%	6	2	55	97	39.7	1594	32.3
Poast+HrmGT+COC	16+0.2+1%	5	3	33	98	36.7	1203	31.1
SelectMax+HrmGT+NIS	9+0.25+0.25%	8	2	50	98	38.1	1528	31.9
SelectMax+HrmGT+NIS	9+0.3+0.25%	7	1	60	98	37.9	1414	31.2
Harmony GT+NIS	0.2+0.25%	2	2	33	0	39.8	1371	32.4
Harmony GT+NIS	0.25+0.25%	3	0	43	0	40.9	1419	33.1
Harmony GT+NIS	0.3+0.25%	2	0	58	0	39.5	1541	32.4
Harmony GT+NIS	0.4+0.25%	1	1	47	0	39.2	1316	31.9
HrmGT+Everest+NIS	0.2+0.5+0.25%	13	7	65	93	38.5	1392	32.1
Glean+NIS	0.25+0.25%	0	1	48	48	38.6	1467	31.8
HarmonyGT+Glean+NIS	0.2+0.2+0.25%	3	8	70	75	40.0	1524	32.5
Ally+NIS	0.1+0.25%	7	8	68	70	39.6	1649	32.5
HarmonyGT+Ally+NIS	0.2+0.075+0.25%	6	8	57	42	37.9	1313	31.2
Untreated Check	0	0	0	0	0	39.8	1265	32.8
EXP MEAN		4	3	49	51	39.0	1428	32.1
C.V. %		79	143	36	24	4.0	12	2.3
LSD 5%		6	NS	30	21	NS	NS	NS

a - NIS = Activator 90 AND MSO from Loveland.
COC - Herbimax from Loveland

Early season injury accentuated by cool temperatures. No treatment gave satisfactory Russian thistle control.

Spartan in Sunflower. Zollinger, Richard K., Jerry L. Ries, and Angela. J. Kazmierczak. A study was conducted near Valley City, ND, to evaluate Spartan formulations applied PRE in sunflower. Pioneer '63N82' was planted on May 18, 2009 followed by the application of PRE treatments at 10:30 am with 71 F air, 50 F soil at a four inch depth, 36% relative humidity, 5% cloud cover, 4 to 8 mph N wind, dry soil surface and moist subsoil. Soil characteristics were: 41.2% sand, 41.6% silt, 17.2% clay, loam texture, 6.0% OM, and 7.9 pH. Treatments were applied to the center 6.7 feet of the 10 by 40 foots plot with a backpack-type plot sprayer delivering 17 gpa at 40 psi through 11002 Turbo TeeJet nozzles. The experiment had a randomized complete block design with three replicates per treatment.

No crop injury was observed (data not shown). (Dept of Plant Sciences, North Dakota State University, Fargo).

				21 [DAA	
Treatment	Rate		Fxtl	Rrpw	Colq	Mael
	(product/A)	- · ·	~ ~ ~ ~ ~	% co	ntrol	
Spartan Advance	42fi oz		40	99	99	57
Spartan Charge	7.5 fl oz		60	99	99	70
Prowl H ₂ O	3pt		87	99	98	33
Spartan Guard	3.21pt		67	99	99	53
Spartan Guard	3.68pt	•	87	99	99	60
Untreated			0	0	0	0
LSD (0.05)		****	12	NS	2	16

Table. Spartan in Sunflower (Zollinger, Ries, and Kazmierczak).

Conventional sunflower tolerance to PRE herbicides. Jenks, Willoughby, and Hoefing. Non-herbicide tolerant sunflower was planted May 27 at 20,000 seeds/A into 30-inch rows in a conventionally tilled field. Herbicides treatments were applied preemergence (PRE) on May 28. The sunflower did not emerge well, so the plot area was over-sprayed with glyphosate and 'Croplan 378 DMR' was replanted on June 12. Table 1 contains the data for the application on May 28, while Table 2 contains data for the application on June 13. Thus, two separate studies were conducted side-by-side. Individual plots were 10 x 30 ft and replicated three times.

results with very little crop injury from Express or Spartan tank mixes. However, more crop injury was observed where Affinity was applied PRE. This is consistent with previous studies (data not shown here). Table 1 shows a slight trend for lower yield with Affinity, while there was no yield The objective of the study was to evaluate conventional sunflower tolerance to Express and Affinity applied PRE. The studies showed similar difference in Table 2.

			Sunflower	ver	And and a second s
Treatment ^a	Rate	16-Jul	27-Aug	Yield	Test wt.
		% injury	ijury	lb/A	nq/qI
Spartan + Express	4.5 fl oz + 0.5 oz	2	0	1951	30.0
Spartan + Affinity TM	4.5 fl oz + 0.6 oz	27	9	1723	28.2
Spartan + Prowl	4.5 fl oz + 2 pt	0	0	2188	29.3
Untreated		0	0	1898	29.8
LSD (0.05)		12.8	NS	NS	1.0
CV .		89	0	11	1.7
^a Sunflower planted on Ma	^a Sunflower planted on May 27 and treatments applied on May 28: Sunflower was replanted on June 12.	n May 28; Sunf	lower was repla	anted on Ju	ne 12.

Table 1. Conventional sunflower tolerance to PRE herbicides (0924-1)

als oulliower plaineu un may zi

Table 2. Conventional sunflower tolerance to PRE herbicides (0924-2)

			Sunflower	/er	
Treatment ^a	Rate	16-Jul	27-Aug	Yield	Test wt.
		% injury	jury	lb/A	nq/qI
Spartan + Express	4.5 fl oz + 0.5 oz	n	0	1928	28.8
Spartan + Affinity TM	4.5 fl oz + 0.6 oz	13	7	1950	28.0
Spartan + Prowl	4.5 fl oz + 2 pt	4	0	1894	28.1
Untreated		0	0	1990	28.1
LSD (0.05)		NS	~	NS	NS
cV		108	35	12	3.7

^a Sunflower planted June 12 and treatments applied on June 13.

						Sunflower		
Treatment ^a	Rate	Timing	Boom height	Jul 16	Jul 24	Deformed heads	Yield	Test wt.
			inches ^b	% injury	jury	%	lb/A	nq/ql
Select Max + NIS	9 fl oz + 0.25%	4-6 leaf	38	0	0	0	2434	28.0
Assert + NIS	0.8 pt + 0.25%	4-6 leaf	18	2	0	-	2515	28.3
Assert + NIS	0.8 pt + 0.25%	10-leaf	18	. 0	4	0	2520	28.1
Assert + NIS	0.8 pt + 0.25%	4-6 leaf	12	2	0	0	2447	27.6
Assert + NIS	0.8 pt + 0.25%	10-leaf	12	0	ŋ	0	2295	28.4
Assert + NIS	0.8 pt + 0.25%	4-6 leaf	9	7	0	~	2584	27.6
Assert + NIS	0.8 pt + 0.25%	10-leaf	Q	0	ø	1	2356	27.6
Assert + Select Max + MSO	0.8 pt + 9 fl oz + 1%	4-6 leaf	18	£	2	14	2155	27.4
Assert + Select Max + MSO	0.8 pt + 9 fl oz + 1%	10-leaf	18	0	13	4	2242	27.6
Assert + Select Max + MSO	0.8 pt + 9 fl oz + 1%	4-6 leaf	12	9	e	10	2458	26.8
Assert + Select Max + MSO	0.8 pt + 9 fl oz + 1%	10-leaf	12	0	15	2	2050	28.1
Assert + Select Max + MSO	0.8 pt + 9 fl oz + 1%	4-6 leaf	o	5	2	2	2598	27.7
Assert + Select Max + MSO	0.8 pt + 9 fl oz + 1%	10-leaf	Q	0	17	7	1869	28.2
Select Max + NIS	9 fl oz + 0.25%	4-6 leaf	18	0	0	0	2476	29.0
LSD (0.05)				0.7	1.1	3.7	377	1.3
CV				27	14	74	10	2.8

 $^{\mathrm{b}}$ The number of inches the boom was held above the canopy at application

^a No sunflower injury was observed in any treatment on August 24th.

most deformed heads were applied at the 4-6 leaf stage. Boom height did not affect sunflower yield.

Sunflower tolerance to Assert tank mixes applied at two timings. Jenks, Willoughby, and Hoefing. 'Croplan 378 DMR' sunflower was seeded

at the 10-leaf stage on July 14. Individual plots were 10 x 30 ft and replicated three times. Spartan + Prowl were applied preemergence to control June 12 at 20,000 seeds/A into 30-inch rows in a conventionally tilled field. Herbicides treatments were applied at the 4-6 leaf stage on July 2 or

weeds.

determine the effect of spray boom height above the canopy (18, 12, and 6 inches). There was less visual crop injury where Assert was applied with NIS at the 4-6 leaf stage. Sunflower yield with Assert + NIS averaged 224 lb/A more than Assert + Select Max + MSO. Sunflower yield with Assert applied at the 4-6 leaf stage averaged 238 lb/A more than when applied at the 10-leaf stage, despite the fact that two treatments with the

herbicide (Select Max) and oil adjuvant (MSO); 2) determine the influence of an early application (4-6 leaf) vs. a late application (10-leaf); and 3) The objectives of this study were to 1) evaluate sunflower tolerance to Assert applied with NIS compared to Assert tank mixed with a grass

Canada thistle control in sunflower. Howatt, Roach, and Harrington. 'Pioneer 63N82' sunflower was seeded near Fargo on May 29. Treatments 1 through 5 and the first half of treatments 11 and 12 were applied to cotyledon to two-leaf sunflower, one- to five-leaf common mallow (10 to $30/yd^2$), cotyledon to six-leaf wild mustard (50 to $150/yd^2$), one- to four-leaf wild buckwheat (5 to $20/yd^2$), and 1- to 4-inch Canada thistle (1 to $20/yd^2$) on June 15 with 77° F, 55% relative humidity, 95% cloud cover, 6.5 mph wind velocity at 135°, and dry soil at 64° F. Treatments 6 through 10 and the second half of treatments 11 and 12 were applied to four-leaf sunflower, 4- to 12-inch Canada thistle (1 to $20/yd^2$), 2 to 8 leaf wild buckwheat (5 to $40/yd^2$), and cotyledon to bolting wild mustard (2 to $50/yd^2$) on June 24 with 79° F, 51% relative humidity, 30% cloud cover, 4 mph wind at 180°, and damp soil at 70°F. Treatments were applied with a backpack sprayer delivering 8.5 gpa at 35 psi through 1001 TT nozzles to an area 7 feet wide the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates.

		6/26	6/26	6/26	6/26	6/26	7/6	7/6	7/6	7/11	7/11	7/11	7/20	7/20	Q/0/	8/04
		0/20	0/20	0/20	0/20	0/20	110	110	110	// 11	1/11	1111	1120	112.0	0/04	0/04
Treatment	Rate	Sunflower	Canada thistle	Wild buckwheat	Wild mustard	Common Mallow	Canada thistle	Wild buckwheat	Wild mustard	Canada thistle	Wild buckwheat	Wild mustard	Canada thistle	Wild buckwheat	Canada thistle	Wild buckwheat
	oz/A	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Immx+NIS+AMS	0.5+0.25%+40	3	84	80	94	86	82	80	99	76	72	99	60	67	55	77
Immx+NIS+AMS	0.75+0.25%+40	3	84	81	94	89	86	87	99	82	77	99	69	67	60	77
Immx+MSO+AMS	0.5+1%+40	3	86	84	94	90	86	86	99	85	86	99	79	85	62	76
Immx+MSO+AMS	0.75+1%+40	3	86	85	95	91	87	88	99	89	89	99	82	87	74	88
Trib-sg+MSO	0.25+1%	3	92	94	94	87	86	86	99	86	91	98	86	92	70	92
Immx+NIS+AMS	0.5+0.25%+40	3					60	75	87	60	76	96	84	80	80	70
Immx+NIS+AMS	0.75+0.25%+40	3					82	77	91	79	79	95	84	85	79	66
Immx+MSO+AMS	0.5+1%+40	3					81	80	92	80	82	95	85	89	81	72
Immx+MSO+AMS	0.75+1%+40	3					85	81	91	86	85	97	90	91	80	74
Trib-sg+MSO	0.25+1%	3					87	89	94	87	87	97	91	89	86	90
Immx+MSO+AMS/ immx+MSO+AMS	0.5+1%+40/ 0.5+1%+40	3	65	84	94	90	92	93	99	93	93	99	92	94	91	95
Trib-sg+MSO/trib- sg+MSO	0.25+1%/0.25+ 1%	3	66	94	94	89	92	97	99	92	96	99	88	96	92	98
Untreated	0	· 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CV		0	28	4	3	4	15	6	2	15	4	1	6	6	9	12
LSD 5%		0	29	4	4	5	17	7	3	17	4	2	7	7	10	13

Treatment application earlier in the season to 4 inch thistle did not provide the best control but removing thistle competition allowed for better crop development and established greater potential for yield. Higher rate of imazamox or inclusion of a more aggressive adjuvant system tended to enhance weed control but did not always improve weed control. The split-application program gave the greatest weed control, but total herbicide use was twice that of single application treatments.

Common cocklebur control in ExpressSun sunflower. Zollinger, Richard K., Jerry L. Ries, and Angela. J. Kazmierczak. An experiment was conducted near Prosper, ND, to evaluate Express SG treatments in sunflower to control common cocklebur. Pioneer '63N82' ExpressSun sunflower was planted on May 28, 2009 followed by the PRE application of Prowl H₂O at 3.8pt/A across the entire study area. Soil characteristics were: 28.7% sand, 49.7% silt, 21.6% clay, loam texture, 4.2% OM, and 7.2 pH. EPOST applications were made on June 26 at 9:25 am with 74 F air, 74 F soil surface, 57% relative humidity, 10% clouds, 7 to 9 mph S wind, dry soil surface, wet subsoil, good crop vigor and no dew present to V4 to V6 (6 to 8 inch) sunflower. Weed species present at the time of EPOST applications were: 0.5 to 4 inch (5 to 30/yd²) common ragweed; 2 inch (1/yd²) common cocklebur; and 0.5 to 3 inch (5 to 25/yd²) redroot pigweed. MPOST applications were made on July 8 at 11:30 am with 74 F air, 86 F soil surface, 53% relative humidity, 0% clouds, 4 to 7 mph S wind, dry soil surface, wet subsoil, excellent crop vigor and no dew present to V6 to V8 (18 to 24 inch) sunflower. Weed species in MPOST plots were: 1 to 6 inch (5 to 8/yd²) common ragweed; 1 to 3 inch (1/yd²) common cocklebur; and 0.5 to 2 inch (1 to 3/yd²) redroot pigweed. Treatments were applied to the center 6.7 feet of the 10 by 40 foot plot with a backpack-type plot sprayer delivering 8.5 gpa at 40 psi through 11001 Turbo TeeJet nozzles for all treatments. The experiment had a randomized complete block design with three replicates per treatment.

No sunflower injury was observed (data not shown). Sunflower control requires Express applied in two successive applications each applied at the highest rate (0.5 oz/A) with MSO adjuvant. (Dept of Plant Sciences, North Dakota State University, Fargo).

			July 10			July 17		July	24 and Au	gust 7
Treatment	Rate	Rrpw	Corw	Cocb	Rrpw	Corw	Cocb	Rrpw	Corw	Cocb
	(product/A)									
EPOST										
Express SG+Scoil	0.25oz+1% v/v	95	52	52	75	67	52	75	67	52
Express SG+Scoil	0.5oz+1% v/v	95	60	70	98	78	76	98	78	73
EPOST/MPOST										
Express SG+Scoil/	0.25oz+1% v/v/									
Express SG+Scoil	0.25oz+1% v/v	95	55	70	96	73	75	96	73	75
Express SG+Scoil/	0.5oz+1% v/v/									
Express SG+Scoil	0.5oz+1% v/v	95	67	73	98	82	88	98	82	88
LSD (0.05)		. 1	8	5	6	8	7	6	8	7

Table. Common cocklebur control in ExpressSun sunflower (Zollinger, Ries, and Kazmierczak).

Performance of Sharpen as a preharvest desiccant in sunflower, Carrington, 2009. (Greg Endres and Paul Hendrickson). The field experiment was conducted in cooperation with BASF at the NDSU Carrington Research Extension Center to test Sharpen (saflufenacil) for effectiveness as a preharvest desiccant in sunflower. The experimental design was a randomized complete block with three replicates. Mycogen '8N386CL' sunflower was planted at 26,000 seeds/A in 30-inch rows on May 19. Best management practices were used for sunflower production. Preharvest treatments were applied on September 29 with a tractor-mounted CO₂ sprayer with 015F110 flat fan nozzles delivering 13 gal/A at 30 psi with 44 F, 81% relative humidity, and 10 mph wind to R9 stage (physiologically mature) sunflower at 35% seed moisture. Two hours of 30-31 degree F occurred on September 29 prior to application of desiccants and a minimum air temperature of 22 degrees F occurred on October 8. Visual evaluation of sunflower plant desiccation was conducted on October 7 and 15. The trial was harvested on November 13 with a plot combine.

Sharpen and Gramoxone Inteon generally increased whole plant and leaf tissue desiccation 8 days after application (DAA) compared to the untreated check (Table). The tank mixture of glyohosate with Sharpen did not increase tissue desiccation compared to Sharpen. Plant tissue throughout trial was uniformed desiccated on October 15 (16 DAA) due to low temperatures beginning October 8. Seed yield, moisture and quality were similar among treatments.

Table.						*****	******			
		Sunflo	wer desi (7-Oct)	ccation	Sunflower seed					
		Whole					Test			
Herbicide		plant	Leaves	Heads	Yield	Moisture	weight	Oil		
Treatment ¹	fl oz product/A	%	orown tis	sue	lb/A	%	lb/bu	%		
					*****	ă n te contra c				
untreated check	x	38	40	27	1082	10.3	28.2	36.6		
glyphosate+NIS+AMS	24+0.25%v/v+64	42	45	28	992	11.0	27.2	36.7		
Sharpen+glyphosate+MSO+AMS	1+16+1%v/v+64	50	58	32	1338	10.6	28.4	37.3		
Sharpen+MSO+AMS	1+1%v/v+64	48	57	32	1264	10.8	28.2	37.9		
Sharpen+MSO+AMS	2+1%v/v+64	42	47	35	1136	10.7	28.0	36.7		
Gramoxone Inteon+NIS	24+0.25%v/v	53	63	33	1213	10.3	27.6	36.2		
	•									
mean		46	52	31	1171	10.6	27.9	36.7		
C.V. (%)		12	15.1	11.2	17.8	3.8	1.7	3.4		
LSD (0.05)		10	14	NS	NS	NS	NS	NS		
¹ Glyphosate=GlyStarPlus, 3 lb ae/g (Winfield Solutions); MSO=Destiny			ce (Winfi	eld Solut	tions); /	AMS=N-P	ak AMS	liquid		