Yellow Section: Camelina, Canola, Carrot, Chickpea, Cover Crops, Dry Bean, Dry Pea, Faba Bean, Flax, Hemp, Potato, Sunflower, Pumpkin, and Turf.

Page

SU Camelina Response to Herbicides	3
Adjuvant influence on herbicide injury in SU Canola	4
Grass herbicides for the SU Canola system	5
Single Active Weed Control in SU Canola	6
SU Canola Response to Pyridate	7
Grass herbicides in SU Canola	8
Broadleaf Control in SU Canola	9
Mulches for Weed Management in Carrot	10- 11
Broadleaf weed control using Pyridate (Tough) herbicide in chickpea	12- 13
Comparison of spray volume and adjuvant use for broadleaf weed control using	
Pyridate (Tough) herbicide in chickpea	14
Fall-planted cover crop tolerance to soybean herbicides, Carrington 2018	15
Soybean herbicide injury to fall cover crops	16
Fall and spring applications of sulfentrazone and Metolachlor for Weed Control	
In Dry Field Peas	17- 18
Dry pea, Lentil, and sunflower tolerance to fall-applied 2,4-D and dicamba	19
Preemergence weed control in Dry Bean	20
Pinto bean response to low dose rates of dicamba and glyphosate, Carrington 2017	21- 22
Pinot bean response to low dose rates of dicamba and glyphosate, Carrington 2018	23- 24
Pinot bean response following winter rye cover crop, Carrington 2018	25- 27
Faba bean tolerance to PRE and POST herbicides (Minot)	28
Weed Control in faba bean (Prosper, ND)	29
Weed Control in faba bean (Fargo, ND)	30
Flax Tolerance to Preemergence and Postemergence Herbicides	31- 32
Flax Tolerance to Preemergence Herbicides at Hettinger, ND	33
Flax PRE evaluation for pigweed management. Ostlie	34
Industrial Hemp response to herbicides	35
2018 Bicyclopyrone Weed Control in Direct-Seeded Onion	36-40
Effect of Pyroxasulfone tank mixtures on Russet Burbank and Umatilla Russet	41- 46

Yellow Section: Camelina, Canola, Carrot, Chickpea, Cover Crops, Dry Bean, Dry Pea, Faba Bean, Flax, Hemp, Potato, Sunflower, Pumpkin, and Turf.Continued:

Page

Effect of Pyroxasulfone on potato cultivars	47- 50
Carryover of herbicides in potato production systems	51- 54
Adjuvant Comparison with Potato Desiccants, Grand Forks 1 Adjuvant Comparison with Potato Desiccants, Grand Forks 2	55 56
Adjuvant Comparison with Halosulfuron in Pumpkin, Fargo	57
Sunflower response and weed control from herbicides applied pre-plant and	
Post-plant preemergence near Hettinger, ND	58
Dandelion control with herbicides	59
Creeping Charlie Control with herbicides	60

relative humidity, 30% cloud cover, 9 mph wind at 135°, and moist soil at 70°F. Treatments were applied with a backpack SU Camelina Response to Herbicides. Howatt and Mettler. Camelina was planted near Fargo on May 15. Treatments were applied to two- to four-leaf Camelina and 1 to 4 inch redroot pigweed and Venice mallow on June 7 with 77°F, 52% sprayer delivering 8.5 gpa at 40 psi through 11001 TT nozzles to a 7 foot wide are the length of 10 by 30 foot plots. The experiment was a randomized complete block design with four replicates. Harvest for yield was on August 3.

						Camelina	elina								
			6/21	6/21	6/21	7/23	8/03	1st	50%	Full	6/21	6/21	7/23	7/23	
Treatment	Rate	Seed	Injury	Stand	Vigor	Height	Yield	Flower	-lower	Flower	Rrpw	Vema	Rrpw	Vema	
	oz ai/A		%	%	1 to 5	сш	Pu/A	days a	ifter pla	anting	%	%	%	%	
Untreated	0	17CS1115	0	81	ო	54	ი	37	45	56	85	92	85	85	
Thif-sq+NIS	0.057+0.1%	17CS1115	0	84	4	53	10	37	46	56	86	77	66	74	
Thif-sa+NIS	0.086+0.1%	17CS1115	1	74	ო	54	ω	40	48	56	89	82	66	79	
Thif-sg+NIS	0.17+0.1%	17CS1115	26	72	2	50	12	43	53	61	95	91	66	75	
Untreated		~	0	79	ო	53	10	38	46	56	79	70	88	63	
Thif-sg+NIS	0.057+0.1%	MIDAS	100	0							89	81			
Thif-sg+NIS		MIDAS	100	0							06	84			
Thif-sg+NIS	0.17+0.1%	MIDAS	100	0							94	86			
			1	:	9	(•	(Ċ			1	
S			ç	28	18	ო	44	4	n	4	٥		4	11	
LSD (0.05)			ю	15	-	2	SN	с	7	ო	∞	4	9	20	

may have affected seed set. Treating canola too close to flowering can affect the fertility of developing florets. The entire vigor ratings indicated sluggish growth of SU-camelina at the high rate of thifensulfuron, but 0.086 oz ai/A (6 g ai/ha) also this location had yields as much as half what is typical. In addition, control of grass weeds occurred before flowering but yield were not affected. We believe yield was affected by exceptionally hot weather in June. Wheat and canola trials at Stand establishment was uneven. Some of this could be attributed to Canada thistle pressure which was not expected, slightly shorter with the high rate of thifensulfuron and flowering was delayed by almost a week but seed maturity and but there were intermittent gaps in the row as well. 'Midas' camelina was very susceptible to thifensulfuron. Relative season from seeding to harvest was only about 80 days. Direct harvest occurred before seedpods began to shatter. caused visible chlorosis and delay of leaf development (injury) compared with untreated camelina. Final height was

control, but thifensulfuron at 0.086 oz/A provided about 80% control. Relatively short and thin camelina canopy did not temperatures. The untreated was weeded by hand twice during the season. The low rate of thifensulfuron gave 86% control of redroot pigweed in June but had killed all pigweed by the middle of July. Venice mallow is more difficult to Weed spectrum did not include wild mustard this year. This also was attributed to warmer than typical spring outcompete remaining mallow plants. Adjuvant influence on herbicide injury in SU Canola. Dr. Howatt, Mettler, and Harrington. 'NDSU 5507' canola was seeded near Fargo on May 14. Study area was treated with Mustang Max for control of flea beetles at 1 to 2 leaf canola. Treatments were applied to 4 leaf canola on June 7 with 72°F, 58% relative humidity, 30% cloud cover, 5 mph wind velocity, and wet soil at 68°F. Treatments were applied with a backpack sprayer delivering 8.5 gpa at 40 psi through 11001 TT nozzles to a 7 foot wide area the length of 10 by 30 foot plots. The experiment was a randomized complete block design with four replicates.

		6/15	6/21	7/6	8/21
Treatment	Rate	Canola	Canola	Canola	Yield
	oz ai/A	%	%	%	bu/A
Untreated Check	0	0	0	1	12
Thif&Trib-D+R-11	0.23+0.5%	10	22	6	8
Thif&Trib-D+Rainer	0.23+0.5%	10	19	10	8
Thif&Trib-D+Insist 90	0.23+0.5%	11	21	10	9
Thif&Trib-D+Prefer 90	0.23+0.5%	11	25	10	9
Thif&Trib-D+White Water	0.23+0.5%	10	14	6	10
Thif&Trib-D+Clethodim+Renegade	0.23+1.5+1%	13	26	14	8
Thif&Trib-D+Clethodim+Renegade	0.23+3+2%	15	37	21	6
Thif&Trib-D+Cerium Elite	0.23+0.25%	9	16	6	9
Thif&Trib-D+Renegade	0.23+1%	9	15	6	10
Thif&Trib-D+MSO	0.23+1%	11	20	9	9
Thif&Trib-D+PO	0.23+1%	8	13	7	9
Thif&Trib-D+Clet+PO	0.23+1.5+1%	12	22	9	9
Thif&Trib-D+Clet+PO	0.46+3+2%	17	34	21	7
CV		21	24	36	24
LSD P=0.5		3	7	5	3

Canola was recovering from flea beetle feeding when treatments were applied. Treatments without clethodim resulted in 8 to 11% injury one week after application regardless of adjuvant. Addition of clethodim increased chlorosis response by 4%. A month after application, canola response of stunting and chlorosis was 6 to 10% when treatment did not include clethodim. Treated areas appeared to have less dense inflorescence than untreated areas and almost all treated areas produced less yield than the untreated, but yield of all treatments was substantially reduced by an environmental factor.

Grass herbicides for the SU Canola system. Dr. Howatt, Mettler, and Harrington. 'ND Vitpro' wheat was seeded near Fargo on May 4. Treatments were applied when neighboring canola trials were in the 3 leaf stage to 3 leaf wheat and 2 to 3 leaf wild oat on May 31 with 69°F, 77% relative humidity, 90% cloud cover, and 5.5 mph wind velocity at 360° and moist soil at 62°F. Treatments were applied with a backpack sprayer delivering 8.5 gpa at 40 psi through 11001 TT nozzles to a 7 foot wide area the length of 10 by 30 foot plots. The experiment was a randomized complete block design with four replicates.

		6/8	6/8	6/14	6/14	6/28	6/28
Treatment	Rate	Wheat	Wioa	Wheat	Wioa	Wheat	Wioa
	oz ai/A	%	%	%	%	%	%
Untreated Check	0	0	0	0	0	0	0
Thif&Trib-D+NIS	0.23+0.25%	0	0	0	0	0	0
Thif&Trib-D+NIS	0.23+0.5%	0	0	0	0	0	0
Thif&Trib-D+Clet+PO	0.23+1.5+1%	40	40	82	75	93	96
Thif&Trib-D+Clet+NIS	0.23+1.5+0.25%	37	37	80	71	85	89
Thif&Trib-D+Clet-V+Renegade	0.23+1+1%	45	45	84	80	92	97
Thif&Trib-D+Clet SM+NIS	0.23+1+0.25%	42	42	87	84	98	99
Thif&Trib-D+Clet SM+NIS	0.23+1.5+0.25%	45	45	90	85	99	99
Thif&Trib-D+Seth+MSO	0.23+7.5+1%	47	47	90	86	99	99
Thif&Trib-D+Quiz+PO	0.23+0.87+1%	40	40	84	76	98	95
Thif&Trib-D+Quiz+NIS	0.23+0.87+0.25%	32	32	80	72	97	93
Thif&Trib-D+Quiz+NIS	0.23+1.32+0.25%	32	32	82	75	98	95
Thif&Trib-D+Nico-P+NIS	0.23+0.5+0.25%	40	40	79	70	96	94
Thif-V+Nico-P+NIS	0.21+0.5+0.25%	35	35	77	71	98	94
CV		17	17	3	4	3	2
LSD P=0.5		7	7	3	3	3	2

Thifensulfuron and tribenuron did not visibly affect wheat or wild oat. This is not surprising because the herbicides are registered for broadleaf weed control in wheat. But the herbicides have given strong suppression of yellow foxtail, so wild oat might have been effected.

Control of wheat and wild oat was similar for each herbicide on June 8, 1 week after application. Control was less than 50% at this time. Clet SM (Select Max) and sethoxydim provided the greatest control values for wheat and wild oat on June 14, and provided 99% control by June 28. Clethodim gave better control with petroleum oil as an adjuvant compared with non-ionic surfactant, but quizalofop activity was not influenced by rate or adjuvant type. Nicosulfuron gave similar wheat control to group 1 herbicides but slightly less control of wild oat.

13 with 76°F, 46% relative humidity, 10% cloud cover, 6 to 7 mph wind at 225°, and damp soil at 71°F. All treatments were applied with a backpack sprayer delivering 8.5 gpa at 40 psi through 11001 TT nozzles to a 7 foot wide area the length of 10 by 30 foot plots. The experiment was a randomized complete 74°F, 45% relative humidity, 80% cloud cover, 11 mph wind at 125°, and moist soil at 69°F. Treatments (7 DAT) were applied to 5 to 6 leaf canola on June Single Active Weed Control in SU Canola. Dr. Howatt and Mettler. Canola supplied by Rotam was seeded near Fargo. Treatments (3L) were applied to 3 to 4 leaf canola, 3 leaf yellow foxtail, 1 to 8 inch redroot pigweed and common lambsquarters, and 1 to 14 inch Canada thistle on June 7 with block decian with four

block design with four replicates.	olicates.												
		Appl	6/15	6/15	6/15	6/15	6/22	6/22	6/22	6/22		7/23	8/8
Treatment	Rate	Code	Canola	Yeft	Rrpw	Colq	Canola	Yeft	Rrpw	Colq	a	Canola	Canola
	oz ai/A		%	%	%	%	%	%	%	%	%	%	%
Untreated Check	0		0	0	0	0	0	0	0	0	80	30	30
Thif&Trib-D	0.23	3Г	0	65	81	74	S	76	95	95	0	0	0
Thif&Trib-D+NIS	0.23+0.25%	ЗL	0	99	84	76	2	85	95	95	0	0	0
Thif&Trib-D+Clet+NIS	0.23+1.5+0.25%	зг	0	64	85	77	ß	93	95	95	0	0	0
Thif&Trib-D	0.45	3Г	0	62	81	71	7	64	95	95	0	0	0
Thif&Trib-D+NIS	0.45+0.25%	3L	0	61	81	74	ഹ	83	95	95	0	0	0
Thif-V	0.23	3L	0	42	71	61	~	69	95	95	0	0	0
Thif-V+NIS	0.23+0.25%	3L	0	61	84	72	4	75	95	95	0	0	0
Thif-V+PO	0.23+1%	3L	0	35	72	50	0	75	95	95	~	~	~- -
Thif-V+Clet+NIS	0.23+1.5+0.25%	3L	0	81	85	77	4	91	95	95	0	0	0
Thif-V+Clet+PO	0.23+1.5+1%	3L	0	84	84	72	ო	<u> </u>	95	95	0	0	0
Thif-V+Clet+Renegade	0.23+1.5+16	ЗL	0	75	84	74	~	<u> 9</u> 6	95	95	0	0	0
Thif-V	0.45	3L	0	50	81	71	2	65	95	95	4	~	4
Thif-V+NIS	0.45+0.25%	3Г	0	65	79	<u>66</u>	4	74	95	95	0	0	0
Trib-C	0.08	3Г	0	52	77	61	4	72	95	95	~	~	~
Trib-C+NIS	0.08+0.25%	3L	0	55	81	69	ω	74	95	95	0	0	0
Trib-C+Clet+NIS	0.08+1.5+0.25%	3Г	0	75	84	72	4	89	95	95	0	0	0
Trib-C	0.15	3L	0	52	81	71	ъ	76	95	95	0	0	0
Trib-C+NIS	0.15+0.25%	3Г	0	50	75	60	4	77	95	95	~	~	~
Thif-V+NIS/	0.23+0.25%/	3L/ 7DAT	C	61	81 1	99	¢,	71	95	95	Ţ	~~	~
Trib-C+NIS	0.08+0.25%		5	5	5	8)	}			
Trib-C+NIS/	0.08+0.25%/	3L/ 7DAT	C	63	68	02	9 9 9 9	65	95	95	~	~	~
Thif-V+NIS	0.23+0.25%		þ	40	40	2	5	8	})			
C.V.			0	ω	4	5	93	ი	0	0	234	234	24
LSD P=0.5			•	9	4	2	5	10	•	•	9	ပ	9

herbicide symptomology and some were newly emerged plants. In either case, plants under the canola canopy were not thriving and not believed to be of yellow foxtail but inclusion of clethodim brought control up to about 80% after 1 week. Foxtail control exceeded 90% with clethodim by June 22. Although broadleaf weed control varied depending on specific treatment, control was generally good that resulted from herbicide activity. This in combination with vigorous canola growth resulted in consistent broadleaf weed control by June 22 of 95%. Some small plants remained in each plot. Some remained with Canola response to herbicide treatments was less than 10% at any evaluation, and generally less than 5%. Thifensulfuron and/or tribenuron suppressed consequence to the crop.

SU Canola Response to Pyridate. Dr. Howatt and Mettler. Canola seed provided by Rotam was seeded near Fargo. Treatments were appli 4 leaf canola, 3 leaf yellow foxtail, and 1 to 8 inch redroot pigweed and common lambsquarters on June 7 with 73°F, 47% relative humidity, 20% cloud cover, 8 mph wind at 125°, and moist soil at 68°F. Treatments were applied with a backpack sprayer delivering 8.5 gpa at 40 psi through 11001 TT no to a 7 foot wide area the length of 10 by 30 foot plots. The experiment was a randomized complete block design with four replicates.	yridate. Dr. Howatt and and 1 to 8 inch redroot pi oist soil at 68°F. Treatme 10 by 30 foot plots. The	I Mettler igweed ents wer experim	. Can and co e appli ient wa	ola see mmon ed with is a rar	d provi lambso 1 a bac 1domiz	ided by quarters kpack s ed com	Rotam on Ju prayer plete b	d Mettler. Canola seed provided by Rotam was seeded near Fargo. Treatments bigweed and common lambsquarters on June 7 with 73°F, 47% relative humidity, ents were applied with a backpack sprayer delivering 8.5 gpa at 40 psi through 1 experiment was a randomized complete block design with four replicates.	eded nee n 73°F, ∠ ng 8.5 gr ign with	ar Farg µ7% rel oa at 4(four rel	o. Trea ative hu) psi thn plicates	Treatments were applied to /e humidity, 20% cloud si through 11001 TT nozzle: ates.	were a 20% c 1001 T	applied to cloud TT nozzles	les to
		6/15	6/15	6/15 (6/15 (6/22 6	6/22 6	6/22 6/2:	2 7/6	7/23	7/23	7/23	8/2	8/2	8/2
Treatment	Rate	Canola	Yeft	Rrpw	Colq C	Canola Y	Yeft R	Rrpw Colq	q Canola	a Yeft	Rrpw	Colq	Yeft	Rrpw (Colq
	oz ai/A	%	%	%	%	%	%	-	%	%	%	%	%	%	%
Untreated Check	0	0	0	0	0	.0	0	0	4	0	0	0	0	0	0
Thif&Trib-D+NIS	0.23+0.25%	0	47	81	75	ო			~	91	95	95	91	95	95
Thif&Trib-D+NIS	0.45+0.25%	0	62	85	75		94	95 95	~	94	95	95	94	95	95
Nico-P+NIS	0.5+0.25%	0	67	82	66				0	95	95	95	95	95	95
Nico-P+NIS	1+0.25%	0	74	89	67					94	95	95	94	95	95
Pvridate+NIS	7.5+0.25%	35	10	55	37				36	2	95	95	ъ	95	95
Pvridate+NIS	15+0.25%	52	5	74	56					17	95	95	17	95	95
Pvridate+NIS	22.5+0.25%	79	0	89	65					20	95	95	20	95	95
Thif&Trib-D+Nico-P+NIS	0.23+0.45+0.25%	0	76	06	76	~~			-	97	95	95	97	95	95
Thif&Trib-D+Pvridate+NIS	0.23+7.5+0.25%	45	20	76	69					S	95	95	ъ	95	95
Thif&Trib-D+Pvridate+NIS	0.23+15+0.25%	72	32	79	71					27	95	95	27	95	95
Thif&Trib-D+Pvridate+NIS	0.23+22.5+0.25%	75	52	87	74					30	95	95	30	95	95
Thif&Trib-D+Nico-P+Pvridate+NIS		42	67	74	67	14	603	95 95		93 93	95	95	63 03	95	95
Thif&Trib-D+Pvridate+PO		40	20	77	64	42	32		22	32	95	95	32	95	95
Thif&Trib-D+Clet+Pyridate+PO	0.23+1.5+7.5+1%	37	60	71	61	22	35	95 95	14	35	95	95	35	95	95
NC/		1	21	ъ	ø	35	4	0	40	14	0	0	14	0	0
LSD P=0.5	-	2	12	5	7	15	10	•	15	9			9		
Thifensulfuron, tribenuron, and nicosulfuron did not elicit more than 4% response in canola. on application rate. Response to pyridate was not greatly influenced by addition of other hel necrosis at higher rates. Plants remained inhibited for an extended period and plants that re	cosulfuron did not elicit m pyridate was not greatly i emained inhibited for an e	nore than 4% response in canola. Pyridate influenced by addition of other herbicides. extended period and plants that remained	a 4% re ed by a d perio	sponse iddition d and p	e in car of oth		∕ridate cides. ained ∖	nore than 4% response in canola. Pyridate resulted in initial response of 35 to 80% injury based influenced by addition of other herbicides. Response was rapid chlorosis leading to substantial extended period and plants that remained were relatively very small during flowering.	l in initia se was l ttively ve	l respo rapid cł ery sma	nse of 3 Ilorosis all durin	35 to 80 leading g flowei	% injul j to sul ring.	njury baseo substantia	P -
Rapid activity of pyridate on yellow foxtail antagonized the lambsquarters was not altered by inclusion of pyridate.		effect of group 2 herbicides on this weed.	group	2 herb	icides	on this	veed.	Eventual control of redroot pigweed and common	l contro	l of red	root pig	weed a	nd con	nomi	

Mustang Max when canola was 2 leaf to control flea beetles. Treatments were applied to 3 to 4 leaf canola, 3 leaf yellow foxtail, and 1 to 8 inch redroot pigweed and common lambsquarters on June 7 with 72°F, 62 relative humidity, 20% cloud cover, 6.5 mph wind velocity and moist soil at 67°F. Treatments were applied Grass herbicides in SU Canola. Howatt, Mettler, and Harrington. 'Quad' Canola was seeded near Fargo on May 14. Study area was treatment with with a backpack sprayer delivering 8.5 gpa at 40 psi through 11001 TT nozzles to a 7 foot wide area the length of 10 by 30 foot plots. The experiment was a randomized complete block design with four replicates. Harvest for yield was August 10.

		120	110	0146	C H E	e11E	RIDD	6177	6177	6122	6122	7/6	8/10
		CL/0	<u>c /o</u>	CI /0	CI /0	200	7710	3310	101				Ner S
Treatment	Rate	Canola	Yeft	Rrpw	Cold	Vema	Canola	Yeft	Rrpw	Cold	Vema	Canola	YIEIO
	oz ai/A	%	%	%	%	%	%	%	%	%	%	%	PuA
		2 0	2 0		c	C	ດ	0	0	0	0	7	S
			2 C Q	, х 7	5 ° ° °	83	ις,	<u> </u>	6 3	<u> </u>	95	0	15
	U 0 02±0 0E0/		5 5	0 2 2	50	71		67	95	95	95	0	14
			15		59	04) \	57	95	95	95	0	14
	0.2370.370	> -	20	8 C	80	71	ব	95	95	95	95	-	19
	0.2371.371.0	- c	2.5	2 £	74	74	· vc	91	95	95	95	0	18
		4 C	47	1 Q	76		o c	95	95	95	95	~	19
I hit& I rib-D+Clet-V+Kenegade	_		2	38	- r) (9 Q0	02	05	05	~	18
Thif&Trib-D+Clet SM+NIS	0.23+1+0.25%	þ	<u>م</u>)	22	0		4	210	5) I) L) C) (
Thif&Trih_D+Clet SM+NIS	0 23+1 5+0 25%	4	75	84	74	74	9	95	95	6 6	GR	-	0
	0 23+7 5+1%	œ	80	85	74	79	ი	98 86	95	95	95	0	20
		α	22	82	74	74	10	06	95	95	95	0	19
	0.2370.0171%	י כ	4 (- 1	- 1	2 (U C	20	05	۲	٥٢
Thif&Trib-D+Quiz+NIS	0.23+0.87+0.25%	9	72	84	て	4	۵	o o	200	С I С I) I D (t¢	
Thif&Trib-D+Ouiz+NIS	0.23+1.32+0.25%	0	71	80	71	71	4	91	<u> 6</u>	6 5	с л С Л		<u>o</u> 0
Thif&Trib_D+Nico-P+NIS	0 23+0 5+0 25%	0	79	84	71	71	9	80	95	95	95	-	77
		C	29	86	74	74	-	95	95	95	95	0	20
	0.220-0.0-12.0)	2)									
8 6		007	0	٢	o	σ	59	ıc,	~	~	0	142	20
25		50	5 (- (5	,	} •		• •	• र		ر ر	ſ
LSD P=0.5		ო	∞	∞	ກ	ກ	4	٥	-	-		4	>

Canola response was 10% or less to each herbicide treatment at any evaluation. Discoloration of the growing point and new tissue was present with some treatments on June 15. Slight stunting was included with the injury rating June 22 and was the primary observation on July 6. Yield was affected by an environmental factor. Herbicide treatment did not result in less yield than the hand-weeded check.

foxtail control. By this date, broadleaf weed control was consistently 95% across species. The herbicide effect was aided at this time by a full and vigorous canola Thifensulfuron and tribenuron gave about 40% control of yellow foxtail on June 15. This activity was supplemented in several treatments with herbicides to control grasses, which resulted in 70 to 80% control 1 week after treatment. By June 22, treatments that included grass herbicides generally provided more than 90% canopy. The hand-weeded check at this time was rated at 93 to 95% control of weeds present.

soil at 66°F. Treatments were applied with a backpack sprayer delivering 8.5 gpa at 40 psi through 11001 TT nozzles to a 7 foot wide area the length of 10 Broadleaf Control in SU Canola. Dr. Howatt, Mettler, and Harrington. 'Quad' canola was seeded near Fargo on May 14. Study area was treated pigweed, and 1 to 8 inch common lambsquarters on June 7 with 71°F, 61% relative humidity, 20% cloud cover, 5 to 7 mph wind velocity at 100°, and moist with Mustang max at 1 to 2 leaf canola to control flea beetles. Treatments were applied to 3 to 4 leaf canola, 3 leaf yellow foxtail, 1 to 6 inch redroot by 30 foot plots. The experiment was a randomized complete block design with four replicates.

		6/15	6/15	6/15	6/15	6/22	6/22	6/22	6/22	7/6	8/10
Treatment	Rate	Canola	Yeft	Rrpw	Cold	Canola	Yeft	Rrpw	Colq	Canola	Yield
	oz ai/A	%	%	%	%	%	%	%	%	%	bu/A
Intrastad Chack		0	0	0	0	0	0	0	0	Ն	4
Unitedied Oncon Handweeded Check			52	57	62	ı	ı	ı	ı	ı	7
	0 23+0 25%	ى د	22	81	74	0	72	95	95	0	20
Thiff& Trib-D+Onin+PO	0.23+1.45+0.5%	- - -	75	84	75	ъ	65	95	95	~	17
Thif&Trib_D+Ouin+Clov+PO	0.23+1.45+3+0.5%	4	74	8	71	ო	71	95	95	0	13
Thif&Trib-D+Clov+NIS	0.23+3+0.25%	с С	50	84	75	ო	61	95	95	0	13
Thif&Trib-D+Clef+Clpv+NIS	0 23+1 5+3+0.25%	4	02	86	77	4	69	95	95	0	15
Thif&Trih_D+Ouiz+C pv+N S	0 23+1 32+3+0 25%	, r	71	84	75	2	69	95	95	0	
	0.23+1.32+1.45+0.25%	4	74	86	74	9	83	95	95	5 2	7
Thif&Trib_D+Seth+Clov+MSO	0.23+7.5+3+1%	. Q	86	86	77	2	97	95	95	0	17
Thif&Trib_D+Seth+Ouin+MSO	0.23+7.5+1.45+1	~	86	87	79	4	97	95	95	7	18
	0 11+0 25%	. 	45	84	75	9	71	95	95	0	16
	0.21+0.25%	c	50	86	71	9	60	95	95	0	თ
Thif-V+Clpv+NIS	0.21+3+0.25%	о ю	50	81	75	2	47	95	95	0	13
		ço	c	ц	ų	103	σ	C	С	102	47
2.2		8	ŋ	S	רכ	2	5	>	>		: c
LSD P=0.5		2	ω	9	2	2	6	•		7	א

observed in other studies this year and previously. Yield was influenced by environmental factors but did not appear to be inhibited by herbicide treatments. Canola injury on June 15 was general chlorosis at the growing point while July evaluation identified slight height reduction and less floral mass for a few treatments. Canola was generally quite tolerant of the treatments. Addition of herbicide to control grass did not increase canola response as has been

9

of the herbicide even though these herbicides are not known for strong grass efficacy. Sethoxydim provided the best complement for foxtail control resulting evaluation on June 15 was a very open crop canopy. Herbicide symptoms of chlorosis and slowed emergence of new leaf tissue indicated inhibitory effects Thifensulfuron and tribenuron gave about 50% control of yellow foxtail. Later evaluation included substantial competition effect of the canola, but the in 97% control on June 22. Control of redroot pigweed and common lambsquarters was similar across herbicide treatments. Symptoms of thifensulfuron and tribenuron are considered slow to develop, but strong effect was observed 1 week after application. By June 22, 2 weeks after application, control of pigweed and lambsquarters was 95% for all herbicide treatments. At this point, canola development provided shading of the ground which would greatly inhibit establishment or growth of new weed seedlings.

Mulches for Weed Management in Carrot. Gramig and Boll.

Objective:

Evaluate non-chemical weed management options for vegetable crop production under organic management systems for weed suppression.

1) Major activities completed: Experiments were established at Fargo ND and Absaraka ND in 2018. Three surface mulch (SM) [hydromulch (HM), compost blanket (CB) and no surface mulch (NO)] and five living mulch (LM) treatments [perennial ryegrass (PR), red clover (RC), white clover (WC), weed-free check (WF) and weedy check (WK)] with four replications result in 15 unique treatments per block and 60 experimental units per site. Carrot (Daucus carota L.) was used as a 'model' direct seeded vegetable crop. Carrot was chosen because it is a relatively difficult vegetable to grow, so would provide the most challenging test of the various treatments. HM consisted of shredded newspaper and water. CB consisted of hemp hurd and composted cow manure in a 1:1 mixture.

Elements of this research project were also planted on two local small-scale vegetable farms to explore feasibility and provide demonstrations. One farmer is a formal collaborator on the grant that is funding the project.

2) Data collected:

Weed counts were assessed in LM and SM treatments at the beginning, middle and end of the 2018 growing season. Counts were species-specific and were combined across four quadrat samples taken systematically. In the living mulch. Quadrats measured 0.0625m2 and were sampled along a diagonal transect. In the carrot rows, 0.0175m2 quadrats were sampled on alternating sides of carrot in-row area. The first two samples were non-destructive to determine weed density and species composition and the final sample was destructive to determine final dry biomass. Decagon dataloggers were paired with soil water sensors to measure soil water status associated with surface mulches. A series of soil cores was removed from each plot prior to establishment of living mulches to determine baseline soil status for each plot.

3) Summary statistics and discussion of results: ANOVA was used to test the effect of LM, SM, and LM*SM interaction on carrot emergence, carrot yield, and weed suppression. At Absaraka, only the SM treatments impacted carrot emergence. Mean carrot emergence for hydromulch was 20.4 carrots m-1, for compost blanket was 14.7 carrots m-1, and for no mulch (control) was 34.6 carrots m-1. Both compost blanket and hydromulch reduced carrot emergence compared to the no mulch control. At Fargo we saw a different result. Simple effects of both LM (p = 0.0022) and SM (p < 0.0001) were significant. For the living mulch effect, the presence of white clover and red clover enhanced carrot emergence. Carrot emergence was greater in plots containing white clover compared to weed-free checks (14.1 vs. 4.1 carrots m-1). Carrot emergence in white clover plots was also greater than carrot emergence in weedy checks (14.1 vs. 6.6 carrots per m-1). That's a much more complicated picture than what was seen at Absaraka, where the LM treatments did not impact carrot emergence. Regarding surface mulch effects, results at Fargo were also different compared to the Absaraka site. Carrot emergence also differed among SM treatments at Fargo, but

in a different way. At Fargo carrot emergence was greater in the compost blanket treatment compared to both the hydromulch and no mulch treatments (16.4 vs. 5.5 and 6.8 carrots m-1, respectively). In 2019, we hope to fine tune carrot planting and mulching techniques to reduce surface mulch impacts on carrot emergence. Surface mulches were associated with lower weed density and biomass compared to the no surface mulch control. Compost blanket was associated with the lowest weed density, but hydromulch was associated with the lowest total weed biomass. Absence of surface mulch was associated with reduced carrot yield (fresh weight) compared to compost blanket and hydromulch. Results suggest that in-row surface mulches effectively suppressed weeds in strip tillage living mulch systems. Living mulch species did not affect weed count or biomass within the in-row area where carrots were planted. Soil water data have not been analyzed yet. The durability and weed suppression of the relatively simple and low-cost surface mulch formulations suggests adoption may be immediately feasible for growers looking to utilize biodegradable mulching in direct seeded vegetable crops.

Broadleaf weed control using pyridate (Tough) herbicide in chickpea Caleb Dalley, HREC, Hettinger, ND 2018

Chickpea 'Leader,' a medium-sized Kabuli-type, was planted at a rate of 150 lb/A at a depth of 3 inches on May 9, 2018 using a John Deere 1590 no-till drill. Chickpea inoculant was applied infurrow during planting. Prior to planting, the entire field was treated with glyphosate (32 oz/A, 1.0 lb ai/A) to control winter annual weeds. Chickpea emerged on May 23. Herbicide treatments were applied on June 5 using a tractor-mounted research plot sprayer at a spray volume of 20 gallons per acre. This trial was designed to evaluate pyridate application rate without adjuvant and to compare methylated seed oil (MSO) verses crop oil concentrate (COC) adjuvants for broadleaf weed control. Additionally, treatments were included to determine if clethodim (Select) could be safely tank-mixed with pyridate. Also, we evaluated a single versus sequential applications of pyridate. Weeds present at time of application included kochia (2 to 5 inches), common lambsquarters (2 to 4 inches), Russian thistle (1 to 3 inches), and green foxtail (1 to 2 inches). Chickpea were evaluated for injury 8 days after treatment and no injury was observed for any of the herbicide treatments applied. The sequential treatments were applied on June 14, 9 days after the initial application. Chickpea were again evaluated for injury 7 days after the sequential application and no injury was observed for any herbicide treatment. At this same time, kochia, common lambsquarters, and green foxtail were visually evaluated for control (0-100 with 0 being no control, similar to the untreated and 100 being complete control or death of plants). At two weeks after the initial treatment application, kochia control increased from 44 to 59 to 68% when Tough herbicide was applied at 0.75, 1, and 1.5 pt/A, respectively. When Tough was applied at 1.5 pt/A with MSO or COC adjuvants, kochia control increased to 75 and 81%, respectively. Tankmixing Tough with Select did not antagonize kochia control. When Tough was applied sequentially using 1.5 pt/A twice, kochia control increased to 89%, this was similar to sequential applications of 1.5 pt/A followed by 0.75 pt/A that resulted in 90% control of kochia. Sequential applications of 0.75 pt/A resulted in only 73% kochia control and was similar to a single application at 1.5 pt/A. Control of common lambsquarters followed similar trends to that of kochia with the best control occurring with sequential applications of either 1.5 pt/A twice or 1.5 pt/A followed by 0.75 pt/A that resulted in 95% control of common lambsquarters. When Select was tank-mixed with Tough, green foxtail was controlled 94 to 98% 16 days after treatment, indicating that there was no antagonism for this tank-mix. Tough alone did not control green foxtail. At 30 days after the first application, similar trends occurred for weed control with one exceptions. There was no apparent advantage to use of either MSO or COC adjuvants as control of both kochia and common lambsquarters was similar with and without these adjuvants. This was also true for Russian thistle that was evaluated at this timing. Results from this trial indicate that pyridate (Tough herbicide) has potential use for broadleaf weed control in chickpea. Pyridate is a contact herbicide with no residual effect on weed control that will only control weeds present at time of application and with smaller weeds being controlled better than larger ones. It will best be utilized with other management options, such as following PRE herbicide application or possibly being tank-mixed with other PRE herbicides labelled for use in chickpea. Pyridate does offer potential POST control of broadleaf weeds in chickpea with is not currently an option with current registered herbicides. Further evaluations of PRE/POST combinations with pyridate as well as tank-mixes need to be considered.

Table. Chickpea response and weed control following application of pyridate (1 ougn) nerolicide treatments at retunger, NU common lambsquarters Russia	kpea resp	onse ai	ad weed	control IC chicknea	ollowing	applicatio	n or pyria: kochia	ate (1 ougn) nerdicide commo	oncroe treatments at secommon lambsquarters	s at return	ger, IND. Russian thistle	thistle
			8 DAT	16 DAT	30 DAT	16 DAT	30 DAT	49 DAT	16 DAT	30 DAT	49 DAT	30 DAT	49 DAT
Treatment	Rate	Timing		-% injury-						ntrol			
1 Untreated)	0	0	0	0	0	0	0	0	0	0	0
2Tough	0.75pt/a	A	0	0	0	44g	42f	54d	34e	41d	50e	49f	53e
3Tough	1pt/a	A	0	0	0	59f	58e	66c	58d	76bc	78cd	66e	76d
4Tough	1.5pt/a	Α	0	0	0	68e	71cd	75b	77c	90a	89ab	80cd	81cd
5Tough	1.5pt/a	Α	0	0	0	81c	79bc	79b	85b	88ab	81bcd	78cde	80cd
COC	2pt/a	A											
6Tough	1.5pt/a	A	0	0	0	75cd	79bc	81b	88ab	89a	91a	85bc	90b
MSO	2pt/a	A									1		
7Tough	1.5pt/a	Α	0	0	0	81bc	75c	80b	86b	87ab	85abc	82bcd	85bc
Select	60z/a												
coc	2pt/a	A											
8Tough	1.5pt/a	A	0	0	0	77cd	77bc	76b	84b	87ab	89ab	81cd	84c
Select	6oz/a	A											
MSO	2pt/a	A											
9Tough	1.5pt/a	A	0	0	0	89ab	88a	91a	95a	95a	92a	98a	100a
Select	60Z/a	A											
COC	2pt/a	A											
Tough	1.5pt/a	В											
COC.	2pt/a	В											
10Tough	0.75pt/a	A	0	0	0	73de	66d	79b	72c	70c	72d	71de	81cd
Select	60z/a	A											
COC	2pt/a	A											
Tough	0.75pt/a	В											
COC	2pt/a	m							1			2	
11Tough	1.5pt/a		0	0	0	90a	85ab	92a	95a	89a	<u>94a</u>	95a	100a
Select	60Z/a												
COC	2pt/a												
Tough	0.75pt/a												
coc	2pt/a	B									•		1
LSD P=.05			•	•	•	7.27				12.72	9.46	3.90	5.52
Treatment F			0.000	0.000	0.000	31.249				13.033	10.394	1418.604	cc0.0c
Treatment Prob(F)	b(F)		1.0000	1.0000	1.0000	0.0001	0.001	0.001	0.001	0.001	0.0001	0.0001	0.001
Means followed by same letter or symbol do not significantly differ (P=.05, LSD)	wed by s	ame le	tter or sy	mbol do	not signif	ficantly di	ffer (P=.0;	5, LSD)					
Treatment timing 'A' was applied on June	imino 'A'	, was a	nnlied o	n June 5.	2018: tin	iing 'B' w	5. 2018; timing 'B' was applied on June 14, 2018	l on June 1	4,2018				
· · · · · · · · · · · · · · · · · · ·	D		- AA			0			6				

Comparison of spray volume and adjuvant use for broadleaf weed control using pyridate (Tough) herbicide in chickpea

Caleb Dalley, HREC, Hettinger, ND 2018

Chickpea 'Leader,' a medium-sized Kabuli-type, were planted at a rate of 150 lb/A at a depth of 3 inches on May 9, 2018 using a John Deere 1590 no-till drill. Chickpea inoculant was applied infurrow during planting. Prior to planting, the entire field was treated with glyphosate (32 oz/A, 1.0 lb ai/A) to control winter annual weeds. Chickpea emerged on May 23. Herbicide treatments were applied on June 5 using a tractor-mounted research plot sprayer. Spray volumes of 10, 20, and 30 gallons per acre were compared with and without crop oil concentrate (COC) adjuvant. Weeds present at time of application included kochia (2 to 5 inches) and Russian thistle (1 to 3 inches). Chickpea was evaluated for injury 8, 16, and 31 days after treatment (DAT) and there was no injury observed with any treatment. At 16 DAT, kochia control was less (69%) when Tough plus COC was applied at a spray volume of 10 gallons per acre compared with spray volumes of 20 and 30 gallons per acre, 81 and 88% control, respectively. However, when evaluated at 31 and 49 DAT, no differences in kochia control was observed when comparing spray volumes, although there appeared to be a small advantage when using COC adjuvant verses no adjuvant. Russian thistle was controlled equally well regardless of spray volume or COC adjuvant. While initially it appear that a higher spray volume may increase weed control, the impact did not carry through at later evaluations.

				hickpea			kochia			ssian this	
						16 DAT	31 DAT	49 DAT	8 DAT	31 DAT	49 DAT
Treatment	Rate	Volume		% injury				<u> </u>	ntrol —		
1Untreated			0	0	0	0	0	0	0	0	0
2Tough	1.5pt/a	10	0	0	0	69bc	73bc	77	84	85	88
3Tough	1.5pt/a	10	0	0	0	69bc	75abc	79	95	83	92
COC	1.25pt/a		0	0	0						
4Tough	1.5pt/a	20	0	0	0	65c	64bc	74	79	81	85
5Tough	1.5pt/a					81ab	77ab	78	90	81	92
COC	1.25pt/a		0	0	0						
6Tough	1.5pt/a	30				64c	63c	73	90	86	93
7Tough	1.5pt/a	30	0	0	0	74abc	71bc	76	86	87	70
coč	1.25pt/a										
8Tough	1.5pt/a	30				88a	87a	85	100	89	90
COČ	2.5pt/a		0	0	0						
LSD P=.05					•	14.05	13.27				
Treatment F			0.000	0.000	0.000	3.364	3.344	1.588			
Treatment Pro	b(F)		1.0000	1.0000	1.0000	0.0211	0.0216	0.2076	0.1984	0.8048	0.4998

Table. Chickpea response and weed control following application of pyridate (Tough) herbicide treatments at spray volumes of 10, 20, and 30 gallons per acre.

Means followed by same letter or symbol do not significantly differ (P=.05, LSD)

Fall-planted cover crop tolerance to soybean herbicides, Carrington, 2018. Greg Endres and Mike Ostlie. The trial was conducted at the NDSU Carrington Research Extension Center with support from the North Dakota Soybean Council to evaluate the tolerance of six fall-planted, cool-season cover crops on ground previously treated with seven soybean herbicides that have soil residual. Experimental design was a randomized complete block with split-plot arrangement (whole plot = cover crop and subplot = herbicide) and three replicates. The field trial was established on a conventionallytilled Heimdal-Emrick loam soil with 3.3% organic matter and 5.6 pH (0-6-inch depth). Asgrow 'AG05X8' dicamba-tolerant soybean was planted on May 16 in 22-inch rows. A hand-held boom sprayer was used delivering 17 gpa at 35 psi through TeeJet flat fan 8001 nozzles to the center 6.7 ft of 10- by 100-ft strips. Five PRE herbicides were applied on May 28 with 72 F, 61% RH, and 4 MPH wind on dry soil to emerging (VE) stage soybean. Following PRE herbicide application, 1.5 inches of rain occurred on June 1. Two POST herbicides were applied on June 7 with 76 F, 36% RH, and 9 mph wind on dry soil to first trifoliate (V1) stage soybean. Following POST herbicide application, 0.9 inch of rain occurred during June 10-12. Soybean at the seed formation (R5) stage were terminated by mowing on August 8. Rainfall from May 28 to November 2 totaled 10.5 inches, but rainfall during July 5 through September 19 totaled 0.8 inches. Due to the extended dry period, cover crop planting was delayed until September 24, when sufficient soil moisture was present for seed germination and seedling emergence. Cover crop species included barley, winter rye, field pea, flax, radish, and turnip. Cool and wet soil conditions after planting delayed cover crop development. Barley and winter rye at one-leaf stage, and field pea at 1-inch height were visually evaluated on November 2 for biomass and stand reduction. Cold weather and snow accumulation did not allow additional evaluation.

Plant injury was not observed with winter rye and field pea (Table). Barley injury ranged from 2-3 percent with the PRE herbicides Valor, Zidua, and Pursuit.

Table.			C	over crop injur	·y ¹
	Herbicide			2-Nov	
Treatment	Rate	Application timing ²	Barley	Winter rye	Field pea
	fl oz product/A			%	
Sencor 75 DF	0.33 lb		0	0	0
Spartan 4F	10		0	0	0
Valor SX	3 oz		3	0	0
Zidua SC	4		3	0	0
Pursuit	3	PRE	2	0	0
Engenia + CA Ridion	12.8 + 2% v/v		0	0	0
Flexstar + MSO	12 + 24	POST	0	0	0
C.V. (%)				399.5	
LSD (0.10)				NS	
¹ Biomass and/or stand re	eduction.				
² PRE=May 28; POST=Ju					

Soybean herbicide injury to fall cover crops. Dr. Howatt and Mettler. Xtend soybean was seeded near Fargo on May 24. Preemergence treatments were applied to soil May 25 with 77°F, 58% relative humidity, 0% cloud cover, 3 mph wind velocity at 225°, and dry soil at 70°F. Post treatments were applied to 6 trifoliolate soybean, 8 inch field pennycress, 10 to 12 inch redroot pigweed, and 5 to 8 inch common lambsquarters on June 28 with 86°F, 60% relative humidity, moderately cloudy sky, 4.2 mph wind at 225°, and soil temperature of 80°F. All treatments were applied with a backpack sprayer delivering 17 gpa at 40 psi through 11002 TT nozzles to a 7 foot wide area the length of 10 by 40 foot plots. Xtend soybean was flailed August 7. Cover crops (barley (mixed varieties), winter rye, field pea (Green Arrow), flax (ND Gold), radish (Buster Forage), lentil (Richlea), and turnip) were direct seeded into soybean stubble and residue near Fargo on August 22 with a Great Plains drill with width of 6 ft. The experiment was a randomized complete block design with four replicates.

		Appl	9/12	9/12	9/12	9/12	9/12	9/12	9/12
Treatment	Rate	Code	Barley	Rye	Pea	Flax	Radish	Lentil	Turnip
Untreated Check	0		0	0	0	0	0	0	0
Metribuzin	4	PRE	0	0	0	0	4	0	5
Sulfentrazone	6	PRE	5	9	0	3	52	24	44
Flumioxazin-EZ	1.5	PRE	0	0	0	0	0	0	0
Pyroxasulfone-SC	2.6	PRE	0	1	0	0	6	0	10
Imazamox	0.75	PRE	6	8	0	21	54	3	50
Dicamba-E+CARid	8+2%	June28	0	0	0	0	0	0	0
Fomesafen+MSO	0.176+24	June28	0	0	0	0	0	0	0
Immx+MSO+UAN	0.625+24+2.5%	June28	0	0	0	1	1	0	0
CV			303	138	0.0	156	103	101	133
LSD P=.05			6	4	0.0	7	19	4	23
					<u> </u>	•			
	•	Appl	9/26	9/26	9/26	9/26	9/26	9/26	9/26
Treatment	Rate	Code	Barley	Rye	Pea	Flax	Radish	Lentil	Turnip
Untreated Check	0		0	0	0	0	0	0	0
Metribuzin	4	PRE	0	0	0	0	0	0	0
Sulfentrazone	6	PRE	7	4	0	0	57	40	44
Flumioxazin-EZ	1.5	PRE	0	0	0	0	0	0	0
Pyroxasulfone-SC	2.6	PRE	0	0	0	0	1	0	2
Imazamox	0.75	PRE	9	6	0	60	74	15	79
Dicamba-E+CARid	8+2%	June28	0	0	0	0	0	0	0
Fomesafen+MSO	0.176+24	June28	0	0	0	0	0	0	0
Immx+MSO+UAN	0.625+24+2.5%	June28	0	0	0	0	0	0	0
CV			93	147	0	41	38	52	61
LSD P=.05			2	2	•	4	8	5	12

Sulfentrazone and imazamox PRE to soybean caused substantial stand loss to radish and turnip seeded 3 months later. However, imazamox applied POST to soybean did not have detrimental effect on species. Injury, when present, to species other than radish and turnip generally was abnormal growth or discoloration.

Fall and Spring Applications of Sulfentrazone and Metolachlor for Weed Control in Dry Field Peas Caleb Dalley, HREC, Hettinger, ND 2018

A trial was conducted to evaluate fall and spring applications of sulfentrazone and metolachlor for weed control in dry field peas. Fall treatments were applied on October 17, 2017 to a no-till field site previously planted to spring wheat. Treatments were applied using a tractor-mounted research plot spray at a spray volume of 10 gallons per acre. Downy brome had emerged prior to this application timing and was mostly in the 1-leaf stage. Winter weather prevented evaluation of plots until spring. In the spring, prior to planting, fall applications were 100% effective in controlling downy brome shepherd's purse and prickly lettuce. Field peas 'Nettes' were planted on May 3, 2018 using a John Deere 1590 no-till drill. On May 5, spring preemergence treatments were applied using the same equipment as fall treatments. All preemergence treatments included glyphosate plus AMS to control emerged weeds. Spring treatments were also nearly 100% effective at controlling downy brome and shepherd's purse. Residual control of green foxtail was generally better with spring application than fall, but control of kochia and common lambsquarters was very similar for both application timings. Evaluations taken on June 26th, 250 days after fall application of sulfentrazone resulted in 88 to 95% control of common lambsquarters and 87 to 91% control of kochia. Unfortunately, a severe hailstorm on the night of June 26 resulted in total defoliation of the peas and weeds making further evaluation of weed control impossible and prevented collection of yield data as well. It was impressive how well spring weeds were controlled with fall preemergence applications. Further research looking at fall herbicide applications for weed control prior to planting peas should be pursued.

	Pea	Pea	Downy brome	brome	Shepherd's purse	s purse		Kochia		Green foxtail	oxtail	Downy brome Shepherd's purse Kochia Green foxtail Common la	Common lambsquarters
I	Rate	18 DAE	-11 DAE 7 DAE		-11 DAE		7 DAE		43 DAE	18 DAE	43 DAE	18 DAE	43 DAE
Treatment	oz/A Timing	% injury						 – % control 					
1 Untreated	Fall		0b	0c	0c	0d	0c	0.0d	0f	0g	0c	0c	0e
2Glyphosate	32 Fall	0	100a	100a	100a	99a	100a	91.3a	91ab	70e	63a	94a	92a
Broadaxe XC	25												
3Glyphosate	32 Fall	0	100a	100a	100a	100a	95a	80.0c	90ab	58f	36b	86b	93a
DI Vauato AC		4	001		1	-001	00	05 01-	0.01-	1.02	10.5	00.4	050
4Glyphosate Broadaye XC	32 Fall 19	0	100a	100a	100a	100a	98a	\$5.Ubc	880	/8cd	/3a	yuab	всү
Dual II	10												
5Glyphosate	32 Fall	0	100a	100a	100a	100a	96a	85.0bc	91ab	80bcd	74a	93a	88a
Broadaxe XC	19												
Dual II	10												
6Glyphosate Dual II	32 Fall 32	0	100a	100a	100a	100a	44b	0.0d	13e	75de	66a	00	0e
7Glvnhosate	32 Fall	0	100a	96b	97ab	90bc	00 0	0.04	Of	0g	0c	00	0e
8Glvnhosate	Fall		100a	100a	95h	99a	95a	0.04	Of) 0 0	0c	0c	0e
9Glvphosate			0p	100a	00	98a	100a	91.0a	93ab	85a	78a	94a	87ab
Broadaxe XC		,			1	1							
10Glyphosate	32 Spring	0	q0	100a	0c	96ab	100a	89.1ab	96a	83abc	74a	90ab	90a
Broadaxe XC													
11Glyphosate	32 Spring	0	0	100a	ပိ	99a	98a	86.3ab	80c	77d	75a	86b	75c
Broadaxe XC	10										7		
Dual II	16												
12Glyphosate	32 Spring	0	0b	100a	00 1	94abc	96a	90.0ab	93ab	83ab	78a	86b	78bc
Broadaxe XC	10										•		
Dual II												•	•
13Glyphosate Dual II	32 Spring 32	0	90	99a	00	98a	95a	0.0d	25d	79bcd	76a	00	0e
14Glyphosate	32 Spring	0	0b	100a	00	89c	98a	0.0d	0f	0g	0c	0c	0e
LSD P=.05		•	•	2.13	3.25	69.9	8.32	5.8	6.7	5.0	17.4		9.4
Treatment F		0.000	0.000	1283.6	2036.3	125.2	157.6	475.7	340.1	425.1	31.0	1053.4	
Treatment Prob(F)		1.0000	-	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Means followed by same letter or symbol	by same letter	or symbol		ignific	do not significantly differ (P=.05, LSD	fer (P=.	05, LSI	(O					
Fall treatments were applied on October 19.	vere applied or	October 1		ing trea	Spring treatments were applied on May 5.	vere apt	olied or	1 May 5.	Peas v	Peas were planted on May 3	nted on	May 3	
All treatments included AMS at 8 5 lbs/11	oluded AMS a	+ 8 5 lhs/1() o [•		ı		I			
ALL UCAULUUUU	העווע האווע מ	VT 1001 C.0 1	JU Ballo.	9									

Dry pea, lentil, and sunflower tolerance to fall-applied 2,4-D and dicamba. (Minot). The objective of this study was to determine if fall-applied 2,4-D or dicamba will carry over to injure spring planted dry pea, lentil, or sunflower. 2,4-D was applied at 1 and 2 pt, and dicamba was applied at 4 and 8 fl oz. The herbicides were applied September 28, October 13, and October 25, 2017. Dry pea, lentil, and sunflower were planted May 7, 14, and 30, respectively.

Dry pea and sunflower exhibited no visible injury symptoms. Lentil was injured by 2,4-D at 2 pt and both dicamba rates. Lentil injury also tended to increase with later applications. No injury symptoms were observed with lentil following 2,4-D at 1 pt.

Title. Dry pe	a, lenti	l, and su	nflower to	plerance to	fall-app	lied 2,4-D	and dicam	oa. (1807	')		
				Density			Height				
			Dry pea	Sunflower	Lentil	Dry pea	Sunflower	Lentil		entil Inju	
Treatment	Rate	Timing		Jun-22			Jul-24		Jun-12	Jun-27	Aug-9
				-m of row			cm			%	
Untreated			10.8	4.3	21.1	64.9	68.7	31.6	0	0	0
2,4-D-ester	1 pt	Sep-28	9.3	5.0	17.1	65.5	78.4	35.3	0	0	0
2,4-D-ester	1 pt	Oct-13	10.7	4.4	13.9	62.5	81.8	34.1	0	0	0
2,4-D-ester	1 pt	Oct-25	9.2	4.2	14.5	67.4	77.0	32.7	0	0	0
2,4-D-ester	2 pt	Sep-28	11.6	5.0	14.2	59.0	80.8	31.1	0	0	15
2,4-D-ester	2 pt	Oct-13	10.7	5.5	9.6	60.6	92.8	30.2	0	0	13
2,4-D-ester	2 pt	Oct-25	10.0	4.0	14.4	66.3	86.6	31.7	0	0	12
Dicamba	4 oz	Sep-28	11.7	4.1	13.6	61.4	73.3	32.1	0	0	15
Dicamba	4 oz	Oct-13	9.3	4.3	8.8	63.2	76.1	31.8	0	0	28
Dicamba	4 oz	Oct-25	10.1	4.8	9.3	64.4	89.6	30.7	0	0	40
Dicamba	8 oz	Sep-28	10.9	6.0	7.8	66.4	81.9	31.1	0	0	42
Dicamba	8 oz	Oct-13	10.3	4.4	5.3	67.3	85.4	25.6	0	0	53
Dicamba	8 oz	Oct-25	9.7	4.8	3.8	56.0	86.5	24.9	0	0	75
LSD (0.05)			NS	NS	6.4	NS	NS	4.4	NS	NS	18.3

Preemergence weed control in Dry Bean. Dr. Howatt, Mettler, and Harrington. 'Eclipse' black bean was seeded near Fargo on May 22. Preemergence treatments were applied May 22 with 74°F, 35% relative humidity, 25% cloud cover, 4 mph wind velocity at 180°, and dry soil at 60°F. Treatments were applied with a backpack sprayer delivering 17 gpa at 40 psi through 11002 TT nozzles to a 7 foot wide area the length of 10 by 30 foot plots. The experiment was a randomized complete block design with four replicates.

		5/29	6/5	6/5	6/5	6/5	6/18	6/18	6/18	6/18
Treatment	Rate		DEB	Yeft	Rrpw	Colq	DEB	Rrpw	Colq	Vema
Untreated Check	0		5	0	0	0	5	0	0	0
Pendimethalin-h	15.2		5	72	86	91	5	85	90	67
Flumioxazin	0.75		5	72	91	91	5	89	92	80
SA-0370104	2.4		5	65	84	90	5	71	84	56
SA-0370104+Pend-h	1.6+15.2		5	74	87	89	5	87	93	66
SA-0370104+Pend-h	2.4+15.2		5	71	85	91	5	88	95	81
SA-0370104+Flum	1.6+0.5		5	62	89	87	5	84	90	70
SA-0370104+Flum	2.4+0.5		5	72	91	92	5	84	90	79
Suen&metolachlor	22.7		11	85	95	95	24	96	96	86
	16		5	84	89	91	5	90	86	74
Dimethenamid-p	10		Ŭ	0-1		51	-			
CV			17	12	5	4	44	5	4	7
LSD P=0.5		•	1	12	6	5	4	6	4	7
LOD F -0.0		•	i							

Environmental conditions resulted in slight injury to dry bean at both evaluations. Only sulfentrazone and metolachlor caused a greater level of injury relative to the untreated. This injury persisted through the season and was present on newer leaves in addition to causing stunted plants and slower development. This treatment also provided the greatest activity on weeds although other treatments gave similar control without damaging the crop. Flumioxazin provided about 90% control of pigweed and lambsquarters and 80% control of Venice mallow. The high rate of SA-0370104 applied with either pendimethalin or flumioxazin gave good control of weeds in this study but SA-0370104 alone gave fair control of pigweed and poor control of Venice mallow.

Pinto bean response to low dose rates of dicamba and glyphosate, Carrington, 2017. (Greg Endres and Mike Ostlie)

The multi-year field study continued (from 2015) at the NDSU Carrington Research Extension Center to examine the response of pinto bean to low dose (drift) rates of dicamba and glyphosate. Experimental design was a randomized complete block with three replications. The experiment was conducted on a dryland, conventionally-tilled Heimdal-Emrick loam soil. 'Lariat' was planted on May 31 in 22-inch rows at a rate to achieve 70,000 plants/A. Herbicide treatments were applied to the center 6.67 ft of 20 ft wide (9 rows) by 24 ft length plots with a CO₂-hand-boom plot sprayer delivering 9 gal/A at 35 psi through 8001 flat fan nozzles on July 18 with 79 F, 37% RH and 4 mph wind to pre- to bud to early bloom plants. XtendiMax (dicamba) application rates were targeted at 0.0193, 0.193 and 1.93 fl oz/A; Roundup PowerMax (glyphosate) rates were targeted at 0.025, 0.25 and 2.5 fl oz/A; plus herbicide combinations paired at low, medium and high rates. Plants from three herbicide-treated rows at 12 ft length of treatment numbers 1-2, 5-6 and 8 were hand-pulled and placed in windrows on September 12 and seed harvested with a plot combine on September 13 (Table). Plants from treatments 4, 7, and 10 were immature before October 13 killing frost (23 F). Treatments 3-4, 7, and 9-10 were hand-pulled October 16 and seed harvested on October 19.

Plant injury, based on visual evaluation of biomass reduction and chlorosis/necrosis, generally increased with increasing herbicide rates (Table). Compared to the untreated check, canopy closure was reduced by 7-12 percentage points with the low- and medium-rates of dicamba and dicamba plus glyphosate, and reduced 13-15 percentage points with the high rate of dicamba, glyphosate, and dicamba plus glyphosate. Also compared to the untreated check, plant maturity was delayed 6 days with the low rate of dicamba plus glyphosate, and 27-38 days with the medium and high rates of dicamba and dicamba plus glyphosate, and 27-38 days with the medium and high rates of dicamba and dicamba plus glyphosate. Seed yield with the low rate of dicamba, and the low and medium rates of glyphosate were statistically similar to the untreated check. The medium rate of dicamba, and low and medium rates of dicamba plus glyphosate reduced yield 943 to 1192 lb/A compared to the untreated check. The high rate of dicamba and glyphosate, and dicamba plus glyphosate resulted in no seed yield. Test weight was reduced with high herbicide rates. Also, seed size was reduced with the medium and high rates of dicamba and dicamba plus glyphosate, and with the high rate of glyphosate. Seed germination was 13% and 41% with the high rate of dicamba and glyphosate, respectively, compared to 78% with the untreated check.

				F	Plant				Ş	Seed		
Trea	atment	Bion redu (%	ction	Chlor necr (0-1	osis/ osis	Canopy closure (%)	PM ²	Yield	TWT		Germ	Seedling weight
No.	Description ⁴	7/31	8/8	7/31	8/8	8/17	Jday	lb/A	lb/bu	number /lb	%	g/plt ⁴
1	untreated check	0	0	0	0	87	248	3372	59.9	1161	78	1.1
2	Clarity L	22.7	26.7	0	2	80	251	2658	58.8	1082	77	1.3
 3	Clarity M	23.3	37.3	0	3	79	276	2429	57.4	1243	70	1.0
4	Clarity H	37.7	46	2	4	74	286	529.1	53.9	1348	13	1.2
5	RU PM L	13.3	13.3	0	1	85	246	2964	59.1	1181	75	1.3
6	RU PM M	11.3	15	0	1	84	246	2752	59.2	1167	78	1.2
7	RU PM H	40	41.7	4	3	72	286	596.9	53.5	1389	41	1.0
8	Clarity + RU PM L	20	29.7	0	2	80	254	2180	58.3	1094	78	1.2
9	Clarity + RU PM M	31.7	36.7	2	3	75	275	2208	58.2	1326	66	0.9
10	Clarity + RU PM H	48.3	50.3	5	5	72	286	0	x	х	x	x
mea	an	25	30	1	2	79	266	2318	57.9	1224	63	1.1
	. (%)	16.5	24.0	53.3	26.9	5.7	0.5	23.0	2.5	3.6	14.8	11.4
	D (0.05)	7	12	3	1	8	2	932	2.5	76	16	0.2
	none, 9=all tissue aff	ected.								•		
² PN 10.	1=Physiological matu	rity. 2	3 deg	rees o	ccurre	ed on Jda	y 286 t	o termir	nate gr	owth of tre	atments	4, 7 and

⁴Average plant weight (grams) of seedlings 2-3 weeks after planting of harvested seed.

Pinto bean response to low dose rates of dicamba and glyphosate, Carrington, 2018. (Greg Endres and Mike Ostlie)

The multi-year field study continued (from 2015) at the NDSU Carrington Research Extension Center to examine the response of pinto bean to low dose (drift) rates of dicamba and glyphosate. Experimental design was a randomized complete block with three replications. The experiment was conducted on a dryland, conventionally-tilled Heimdal-Emrick loam soil. 'ND Palomino' was planted on May 29 in 22-inch rows at a rate to achieve ≥70,000 plants/A. Herbicide treatments were applied with a CO₂-hand-boom plot sprayer delivering 9 gal/A at 35 psi through 8001 flat fan nozzles on July 9 with 74 F, 73% RH and 4 mph wind to bud to early bloom (V8-R1) plants. XtendiMax (dicamba) application rates were targeted at 0.0193, 0.193 and 1.93 fl oz/A; Roundup PowerMax (glyphosate) rates were targeted at 0.025, 0.25 and 2.5 fl oz/A; plus herbicide combinations paired at low, medium and high rates. All treatments included Activator 90 (NIS) at 0.25% v/v. Plants from three herbicide-treated rows at 12 ft length of treatment numbers 1, and 5-6 were hand-pulled and placed in windrows on August 30 and seed harvested with a plot combine on August 31 (Table). Plants from treatments 2 and 8 were hand-pulled and placed in windrows on September 14 and seed harvested on September 25. Plants from treatments 3-4, 7, and 9-10 were killed by frost (28 F) on September 28. Plants from treatments 3, 7, and 9 were hand-pulled and placed in windrows on October 2 and seed harvested on October 18. Plants from treatments 4 and 10 were too heavily damaged by herbicide to produce seed, thus were not harvested.

Plant injury, based on visual evaluation of biomass reduction and chlorosis/necrosis, increased with increasing herbicide rates (Table). Compared to the untreated check, canopy cover decreased with increasing herbicide rates. The high rate of dicamba, glyphosate, and dicamba plus glyphosate had 29-35% canopy reduction compared to the untreated check. Plant maturity was similar among the untreated check and the low and medium rates of glyphosate, but was delayed 16-35 days with all other herbicide treatments. Seed yield with the low rate of dicamba (trt 2), and the low and medium rates of glyphosate (trts 5 and 6) were statistically similar to the untreated check. Yield reduction with the medium rate of dicamba, high rate of glyphosate, and low and medium rates of dicamba plus glyphosate ranged from 7 to 50 percent compared to yield with the untreated check. The high rates of dicamba, and dicamba plus glyphosate resulted in no seed yield.

Tab	IC.			F	Plant			Se	eed
Trea	atment	redu	nass ction %)	Chlor ecros	osis/n sis (0-	Canopy closure (%)	PM ²	Yield	count
No.	Description	· · ·	, 7/30		, 7/30	7/30	Jday	lb/A	no./lb
1	untreated check	0	0	0	0	93	237	1579	1500
2	XtendiMax L	27	27	2	3	82	253	1205	1447
3	XtendiMax M	34	38	4	4	71	272	348	1562
4	XtendiMax H	- 47	52	6	6	66	272	0	X
5	RU PM L	7	7	0	1	89	237	1183	1549
6	RU PM M	11	12	1	1	91	237	1451	1505
7	RUPMH	38	38	5	4	67	272	117	1478
8	XtendiMax + RU PM L	28	29	3	3	81	253	785	1553
9	XtendiMax + RU PM M	38	40	4	4	72	272	371	1357
10	XtendiMax + RU PM H	55	65	7	7	60	272	0	x
								er	
mea	an	28	31	1	3	77	258	880	1494
C.V	. (%)	20.7	17.4	13.2	15.5	5.4	0.2	29.7	10.1
LSE	0 (0.05)	10	9	1	1	7	1	458	NS
¹ 0=i	none, 9=all tissu	e affe	cted.						
	1=Physiological ı wth of treatment		•	-	es occi	urred on J	day 27	1 to ter	minate
	endiMax rates (fl verMax rates (fl						3. Roui	ndup	

•

Pinto bean response following winter rye cover crop, Carrington, 2018.

(Greg Endres and Mike Ostlie)

The trial was conducted in 2018, at the NDSU Carrington Research Extension Center with support from Northarvest Dry Bean Growers Association to examine the performance of pinto bean with winter rye grown as a preplant (PP) cover crop (seeded in the fall of the previous growing season). Experimental design was a randomized complete block with four replications. The dryland trial was established on a conventionally tilled Heimdal-Emrick loam soil with 3.7% organic matter, 6.6 pH, 20 ppm P, 299 ppm K, and 1.0 ppm Zn. 'ND Dylan' rye was direct seeded into oat stubble in 7-inch rows at about 60 lb/A on October 4, 2017. 'Lariat' pinto bean was planted into tilled soil or rye residue at 83,300 seeds/acre in 21-inch rows on May 31, 2018. North Dakota Agricultural Weather Network (NDAWN) monthly rain (inches): April = 0.06; May = 1.28; June = 4.63; July = 2.65; and August = 0.24.

Rye termination treatments were designated by method and timing:

- 1. Tillage (2x roto-till) on October 17 (13 days after seeding rye) followed by preemergence (PRE) Roundup PowerMax (32 fl oz/A) plus NIS+AMS (Class Act NG; 2.5% v/v) and Spartan Charge (5 fl oz/A) on May 31 (conventional check).
- 2. PP tillage (2x roto-till) on April 26 (rye 1- to 2-leaf).
- 3. PP Roundup PowerMax plus NIS+AMS on April 26.
- 4. PP Roundup PowerMax plus NIS+AMS on April 26 followed by PRE Roundup PowerMax plus NIS+AMS and Spartan Charge (5 fl oz/A) on May 31.
- 5. PP Roundup PowerMax plus NIS+AMS on May 14 (rye 4-leaf plus tillers).

6. PP Roundup PowerMax plus NIS+AMS on May 30 (rye boot stage with some heads emerging). Raptor (4 fl oz/A) plus MSO (Destiny; 24 fl oz/A) and AMS (12 lb/100 gal) was applied across trial on June 15 for post-emergence (POST) control of green and yellow foxtail, and rye escapes. Also, Raptor plus SelectMax (12 fl oz/A) and MSO HC (16 fl oz/A) were POST applied to treatments 2-3 and 5 on June 28 for control of foxtail escapes. Herbicide treatments were applied with a hand-boom sprayer delivering 10 gpa through 8001 flat-fan nozzles at 35 psi.

Bean plants were hand-pulled for field drying on August 29 and seed harvested with a plot combine on August 31.

Rye termination method and timing had minimal influence on dates of bean plant emergence, flowering, and maturity (Table 1). Plant stand was similar among treatments. Plant stand across treatments (50,590 plants/acre) was 61% of planting rate. Mid-July canopy closure was greatest with the conventional check (trt 1), while late July/early August evaluations generally indicated similar canopy closure among treatments. Also, pod height was similar among treatments.

Table 1. Pint	o bean respon	se to rye cove	er crop, C	arringtor	ı, 2018.						
			Р	lant ^a					ļ	Seed	
Trt no.	Emergence	Stand (20- Jun)	Flower (R1)	Cane	opy closu	re (%)	Maturity (R9)	Pod ht	Yield	Test weight	Count
	DOY	plt/A	DOY	12-Jul	31-Jul	1-Aug ^b	DOY	cm	lb/A	lb/bu	no./lb
1	163	51,936	198	61	86	80	235	2	1171	55.6	1241
1	163	48,853	198	33	72	72	237	2	1080	55.6	1205
3	165	48,853	199	35	75	76	237	2	1104	55.8	1268
4	163	52,648	198	49	83	87	236	1	1237	55.7	1262
5	164	48,616	199	36	72	71	237	1	919	54.7	1223
6	163	52,648	198	49	81	81	235	2	1127	55.4	1279
Mean	163	50,592	199	44	78	78	236	1	1106	55.5	1246
CV (%)	0.4	11.0	0.4	15.9	6.3	11.0	0.3	95.0	24.9	1.3	7.8
LSD (0.10)	1	NS	1	9	6	NS	1	NS	NS	NS	NS
^a DOY (day o	of year): 163=	June 12; 199=	-July 18;	236=Au	g 24. Plai	nt stage at	stand count	t = VC.			
^b Canopeo rea											

Soil moisture was adequate for bean plant establishment and vegetative stage growth. However, during bean reproductive (seed production) stages, rainfall was limited to 0.72 inches (NDAWN) from July 5 to August 31. Thus, trial seed yield was greatly reduced. Yield, test weight and seed size were similar among treatments (Table 1). Yield with treatment 4 tended to be greater than others, likely due to increased soil moisture and weed control with PRE herbicide after planting; treatment 5 tended to have lowest yield.

Soil moisture was measured at 4-inch depth with a hand-held tester during mid-May to mid-July (Table 2). Soil moisture was consistently lower with rye termination at bean planting time with glyphosate (trt 6), when measured May 14 and 31, and June 15, compared to the standard check (trt 1). Also, soil moisture was reduced by half with early spring rye termination with tillage (trt 2) compared to treatment 1. Soil moisture was similar among all treatments when measured June 28 and July 12.

		S	oil moisture	a	
Trt no.	14-May	31-May	15-Jun	28-Jun	12-Jul
				%	
	T 1	1			
1	21.5	18.1	24.2	24.0	20.8
2	10.6	17.6	22.3	25.0	23.0
3	20.5	20.0	22.0	22.3	21.4
4	20.5	20.4	24.7	23.5	22.8
5	19.9	19.7	22.1	23.6	22.4
6	17.7	11.1	20.9	23.2	20.7
Mean	18.4	17.8	22.7	23.6	21.8
CV (%)	13	12.9	5.8	6.2	11.0
LSD (0.10)	3.0	2.8	1.6	NS	NS

Table 2. Soil moisture with pinto bean following a rye cover crop, Carrington, 2018

The trial contained grassy weeds: green and yellow foxtail, and rye escapes, plus late-season Kentucky bluegrass. Rye control at bean planting (May 31) was excellent (94-99%) with spring PP tillage or glyphosate (trts 2-5) (Table 3). Foxtail control was excellent at bean planting with presence of living rye (trt 6). Control of rye generally was excellent at June 15 and 28, and July 12 evaluations. Foxtail control was excellent (94-95%) on June 28 with PRE herbicides followed by POST Raptor or rye terminated at bean planting (trts 1, 4, and 6). Grass control generally was excellent with all treatments on July 12.

				Wee	d control ^a			
	31-	May	15-	Jun	28	-Jun	12	-Jul
Trt no.	rye	grass	rye	grass	rye	grass	rye	grass
					%			
1	74	71	99	75	99	95	99	96
2	98	0	91	38	94	63	99	95
3	94	63	85	61	85	69	96	90
4	96	50	99	73	99	94	99	92
5	99	44	99	51	99	69	99	89
6	0	93	99	71	99	95	99	89
	inse							
Mean	77	54	95	61	96	81	99	92
CV (%)	6.7	36.3	5.5	19.5	5.0	8.5	1.7	5.7
LSD (0.10)	6	24	6	15	6	9	NS	NS

In summary, lack of adequate rainfall and stored soil moisture during the bean reproductive period greatly reduced yield potential among all treatments. Delay of rye termination until bean planting (trt 6) reduced early season soil moisture for bean plants compared to the standard check. However, this treatment substituted for weed control obtained with the PRE herbicide while bean yield was similar to the standard check. **Faba bean tolerance to PRE and POST herbicides.** (Minot). The objective of the study was to evaluate faba bean tolerance to preemergence (PRE) and postemergence (POST) herbicides. Faba bean was planted on May 4. PRE and POST herbicides were applied May 5 and June 4, respectively. Sharpen, Metribuzin, Valor, Fierce, Raptor, and Tough are not labeled for use in faba bean as of 2018.

Treatments containing Metribuzin caused significant faba bean injury where many plants just turned black and died. We have not observed this Metribuzin injury in previous years, which may be attributed, in part, to the sandy loam soil. Raptor and Tough caused moderate to severe injury. Faba bean in the Raptor treatment recovered more than in previous years. Raptor applied with Basagran caused significantly less crop injury. The yield data in the table are confounded by crop injury as well as weed pressure, primarily lambsquarters. Basagran and Raptor treatments effectively controlled lambsquarters. Spartan-containing products generally provided good lambsquarters control, but had a few escapes. Valor and Fierce provided fair to good control of lambsquarters. Sharpen at 2 oz did not control lambsquarters. Dry soil conditions in May likely hindered activation of soil-applied herbicides.

				Injury		Height	Yield	Test wt.
Treatment	Rate	Timing	Jun-14	Jul-16	Aug-2	Jul-24	Aug-15	Aug-15
				%		-cm-	lb/A	lb/bu
Untreated		-	0	0	0	105	937	65.2
Sharpen	2 oz	PRE	0	0	· 0	104	1379	65.6
	4 oz	PRE	0	0	0	100	2024	66.0
Spartan + Sharpen	4 oz + 1 fl oz	PRE	0	0	0	104	2305	66.2
Authority MTZ	12 oz	PRE	30	25	26	92	1786	65.8
BroadAxe	25 oz	PRE	0	0	0	98	2553	65.9
Metribuzin	0.5 lb	PRE	60	51	52	88	1260	65.6
Prowl H2O	3 pt	PRE	0	0	0	99	1983	66.0
Valor	2 oz	PRE	0	0	0	106	1806	66.1
Fierce	3 oz	PRE	0	0	0	99	2176	65.9
Prowl H2O / Basagran + COC	2 pt / 2 pt + 1.5 pt	PRE / POST	9	8	8	93	2053	65.6
Prowl H2O / Raptor ^a	2 pt / 4 fl oz	PRE / POST	35	22	24	85	1954	65.4
Prowl H2O / Basagran + Raptor ^b	2 pt / 1 pt + 4 fl oz	PRE / POST	9	6	6	96	2741	66.0
Tough	1.5 pt	POST	65	49	53	83	1063	65.1
LSD (0.05)			6.2	12.0	12.1	11.6	675	0.6
CV							22	
^a Applied with MSO (1.5 pt) and 28	3% N (2.5%)							
^b Applied with MSO (1.5 pt)							1	

<u>Weed Control in faba bean (Prosper, ND) – H. Hatterman-Valenti, B. Johnson, and C. Auwarter.</u> This study was conducted at the Agric. Expt. Stn. near Prosper, North Dakota to evaluate pyroxasulfone crop safety and season-long weed control strategies in faba bean. 'Fan Fare' was seeded May 22 and harvested September 11. Preemergence (Appl. Code A) applications were made 5/25, three days after seeding, while POST (Appl. Code B) applications occurred on 6/7 when beans were 2-3 trifoliate stage. All herbicides were applied with a CO₂ backpack sprayer and a hand-boom equipped with XR8002 nozzles delivering 20 GPA at 40 PSI.

Weed Code	COLQ	RRPW	GRFT	COCB	COLQ	RRPW	GRFT	COCB
Rating Date	Jun-13-2018	Jun-13-2018	Jun-13-2018	Jun-13-2018	Aug-3-2018	Aug-3-2018	Aug-3-2018	Aug-3-2018
Days After First/Last Applic.	19 6	19 6	19 6	19 6	70 57	70 57	70 57	70 57
No. Treatment Rate Unit				%				
1 Pyroxasulfone 42.35 g/a	100.0 a	99.3 ab	96.3 ab	98.9 a	92.5 c	67.5 a	87.5 c	71.9 d
2 Pyroxasulfone 60 g/a	100.0 a	98.1 b	95.0 ab	98.1 a	95.0 bc	46.3 a	92.5 b	84.0 c
3 Pyroxasulfone 92.82 g/a	100.0 a	99.9 a	93.8 b	95.4 a	95.0 bc	68.8 a	96.3 ab	88.8 c
4 Spartan 4.5 fl oz/a	100.0 a	100.0 a	98.8 ab	99.7 a	100.0 a	98.8 a	96.3 ab	100.0 a
Dual Magnum 2 pt/a								
Pyroxasulfone 42.35 g/a								
5 Spartan 4.5 fl oz/a	100.0 a	100.0 a	100.0 a	99.7 a	100.0 a	100.0 a	98.8 a	100.0 a
Dual Magnum 2 pt/a								
Pyroxasulfone 47.06 g/a								
6 Spartan 4.5 fl oz/a	100.0 a	100.0 a	98.8 ab	99.9 a	100.0 a	98.8 a	100.0 a	100.0 a
Dual Magnum 2 pt/a						1		
Pyroxasulfone 58.82 g/a								
7 Spartan 4.5 fl oz/a	100.0 a	100.0 a	98.5 ab	99.7 a	97.5 ab	98.8 a	96.3 ab	96.3 b
Dual Magnum 2 pt/a								
8 Untreated	0.0 b	0.0 c	0.0 c	0.0 b	0.0 d	0.0 b	0.0 d	0.0 e

Table 1. Weed control evaluations.

Table 2. Crop injury evaluations and faba bean yields.

Jun-13-2018	Aug-3-2018	Sept-11-2018	Sept-11-2018
19 6	70 57		
%	-		lbs/A
0.0 b	0.0 a		1011.283 a
0.0 b	0.0 a		1100.800 a
0.0 b	0.0 a	1041.15 a	998.953 a
0.0 b	0.0 a	1176.23 a	1128.553 a
6.3 b	0.0 a	1034.33 a	992.405 a
7.5 b	0.0 a	1018.60 a	977.318 a
0.0 b	0.0 a	1194.55 a	1146.135 a
0.0 b	0.0 a	916.18 a	879.045 a
	19 6 	Jun-13-2018 Aug-3-2018 19 6 70 57 0.0 b 0.0 a 0.0 b 0.0 a	Jun-13-2018 Aug-3-2018 Sept-11-2018 19 6 70 57 g/100 ft2 0.00 ft2 0.0 b 0.0 a 1054.00 a 0.0 b 0.0 a 1041.15 a 0.0 b 0.0 a 1041.15 a 0.0 b 0.0 a 1147.30 a 0.0 b 0.0 a 1041.15 a 0.0 b 0.0 a 1176.23 a 6.3 b 0.0 a 1034.33 a 7.5 b 0.0 a 1018.60 a 0.0 b 0.0 a 1194.55 a

Faba bean were injured early by treatments 5 and 6, but plants outgrew injury (Table 2). Weed pressures were light so all treatments provided early season weed control. By August 3, the preemergence applications of pyroxasulfone alone did not provide sufficient RRPW control (Table 1). High COLQ and COCB control evaluations were due to a few plants observed in the untreated plots and not necessarily from the herbicide applications. The addition of pyroxasulfone applied postemergence did not statistically increase weed control compared to Spartan + Dual Magnum alone applied preemergence with the exception of COCB.

Weed Control in faba bean (Fargo, ND) - H. Hatterman-Valenti, B. Johnson, and C. Auwarter.

This study was conducted at the main Agric. Expt. Stn. just west of the NDSU campus, Fargo, North Dakota to evaluate pyroxasulfone crop safety and season-long weed control strategies in faba bean. 'Tabasco' was seeded May 24 and harvested September 11. Preemergence (Appl. Code A) applications were made 5/25, one day after seeding, while POST (Appl. Code B) applications occurred on 6/7 when beans were 1-2 trifoliate stage. All herbicides were applied with a CO₂ backpack sprayer and a hand-boom equipped with XR8002 nozzles delivering 20 GPA at 40 PSI.

Weed Code	RRPW	GRFT	VEMA	RRPW	GRFT	VEMA
Rating Date	Jun-13-2018	Jun-13-2018	Jun-13-2018	Jun-27-2018	Jun-27-2018	Jun-27-2018
Days After First/Last Applic.	19 6	19 6	19 6	33 20	33 20	33 20
No. Treatment Rate Unit			%			
1 Pyroxasulfone 42.35 g/a	47.5 abc	22.5 bc	18.8 b	67.5 a	20.0 b	31.3 b
2 Pyroxasulfone 60 g/a	25.0 bc	46.3 abc	22.5 b	46.3 a	22.5 b	18.8 b
3 Pyroxasulfone 92.82 g/a	67.5 ab	65.0 ab	42.5 ab	68.8 a	55.0 a	40.0 b
4 Spartan 4.5 fl oz/a	75.0 ab	93.8 a	80.0 a	98.8 a	72.5 a	77.5 a
Dual Magnum 2 pt/a						
Pyroxasulfone 42.35 g/a						
5 Spartan 4.5 fl oz/a	100.0 a	95.0 a	85.0 a	100.0 a	93.8 a	81.3 a
Dual Magnum 2 pt/a						
Pyroxasulfone 47.06 g/a						
6 Spartan 4.5 fl oz/a	100.0 a	95.0 a	87.5 a	98.8 a	88.8 a	87.5 a
Dual Magnum 2 pt/a						
Pyroxasulfone 58.82 g/a						
7 Spartan 4.5 fl oz/a	75.0 ab	93.8 a	81.3 a	98.8 a	92.5 a	82.5 a
Dual Magnum 2 pt/a						
8 Untreated	0.0 c	0.0 c	0.0 b	0.0 b	0.0 b	0.0 b

Table 1. Weed control evaluations.

Table 2. Crop injury evaluations and faba bean yields.

	Fava Bean	Fava Bean	
Jun-13-2018	Jun-27-2018	Sept-11-2018	Sept-11-2018
19 6	33 20		
9	-	g/100 ft2	Lbs/A
0.0 a	0.0 a	268.75 c	257.86 c
0.0 a	0.0 a	297.88 c	285.80 c
0.0 a			401.90 bc
0.0 a	0.0 a	573.20 ab	549.97 ab
0.0 a	0.0 a	782.68 a	750.95 a
0.0 a	0.0 a	639.93 ab	613.998 ab
0.0 a	0.0 a	584.35 ab	560.67 ab
0.0 a	0.0 a	196.55 c	188.58 c
	19 6 9 0.0 a 0.0 a 0.0 a 0.0 a 0.0 a	Jun-13-2018 Jun-27-2018 19 6 33 20	Jun-13-2018 Jun-27-2018 Sept-11-2018 19 6 33 20

Faba bean were not injured by any of the herbicide applications (Table 2). The preemergence applications of pyroxasulfone alone did not provide sufficient weed control, even when evaluated early at19 days after treatment (Table 1). The addition of pyroxasulfone applied postemergence did not statistically increase weed control compared to Spartan + Dual Magnum alone applied preemergence.

Flax Tolerance to Preemergence and Postemergence Herbicides Caleb Dalley, HREC, Hettinger, ND 2018

Flax 'York' was planted on May 15, 2018 at 38 lb/A at a depth of 1.5 inches using a John Deere 1590 no-till drill. Prior to planting, on May 4, the entire field was treated with glyphosate (Cornerstone 5 Plus @ 32 oz/A) to control winter annual weeds. Urea fertilizer (46-0-0) was applied on May 2 at a rate of 45 lb/A. Preemergence herbicide treatments were applied on May 16 using a tractor mounted research spray using a spray volume of 10 gallons per acre. Flax emerged on May 24. Postemergence treatments were applied on June 5. Flax was evaluated visually for injury at 7, 15, and 38 days after postemergence treatments were applied. Injury from POST application of Talinor was severe (61 to 81%), whereas PRE application of Talinor caused little or no injury. However, Talinor acts primarily as a POST herbicide and resulted in little control of either common mallow or kochia. POST applications of Talinor provided fair control of both common mallow and kochia. Armezon caused injury (bleaching) to flax with the injury being greater when applied at 0.75 oz/A compared with 0.5 oz/A at 15 DAT. Armezon in this trial provided only fair control of common mallow or kochia. Bison (bromoxynil plus MCPA) also caused minor injury to flax and provided fair to poor control of common mallow and kochia. Basagran caused very little injury to flax and fair control of common mallow but poor control of kochia. Raptor caused moderate injury to flax (29% 15 DAT) but provided excellent control of common mallow and fair control of kochia. The tank-mix of Basagran plus Raptor showed less injury to flax 15 DAT and also provided excellent common mallow control and fair control of kochia. Flax was harvested on September 28. Flax yield was reduced by POST Talinor treatments and in the untreated control. Even though moderate injury occurred following Raptor application, flax yield was not reduced and was second highest numerically or all treatments. Note: trial was impacted by a severe hailstorm on the night of June 26 that completely defoliated flax and weeds in this trial. This may have impacted both weed control and yield potential in this trial.

	pheation		Flax			Common mallow Kochia			Flax		
			7 DAT	15 DAT	38 DAT	15 DAT	38 DAT	15 DAT	Yield	Test	
Treatment	Rate	Timing		% Injury			% control-		LB/A	LB/BU	
1 Untreated			0	0	0	0	0	0	937bc	49.33bc	
2Coact+	2.75oz/a	PRE	0e	0f	0c	5d	28e	0d	1067ab	51.53ab	
Talinor	13.7oz/a										
COC	1% v/v										
3Coact+	3.60z/a	PRE	9d	0f	4c	0d	45d	23c	989ab	51.75a	
Talinor	18.2oz/a										
COC	1% v/v										
4Coact+	2.75oz/a	POST	73b	61b	70a	65b	56bcd	55ab	731cd	47.40c	
Talinor	13.7oz/a										
COC	1% v/v										
5Coact+	3.60z/a	POST	81a	78a	74a	74a	70b	65ab	651d	49.85ab	
Talinor	18.2oz/a										
COC	1% v/v										
6Armezon	0.5oz/a	POST	14cd	0f	0c	64bc	60bc	63ab	1174a	51.55ab	
COC	1% v/v										
7 Armezon	0.75oz/a	POST	12d	13de	4c	65b	69b	49b	1038ab	50.43ab	
COC	1% v/v										
8Bison	1pt/a	POST	10d	14d	5c	55c	53cd	50ab	947abc	51.10ab	
9Basagran	1pt/a	POST	3e	6ef	3c	63bc	64bc	48b	1061ab	50.58ab	
COC	1% v/v										
10Raptor	4oz/a	POST	18c	29c	15b	80a	100a	70a	1118ab	51.15ab	
NIS	0.25% v/v										
28% N	2.5% v/v										
11Basagran	1pt/a	POST	11d	18d	14b	80a	92a	66ab	1094ab	51.90a	
Raptor	4oz/a										
MSO	1% v/v										
LSD P=.05			4.94			1 1					
Treatment F				121.505		112.363					
Treatment Pro	b(F)			0.0001		0.0001		0.0001		0.0001	

Table. Flax response and weed control following preemergence and postemergence herbicide application.

Means followed by same letter or symbol do not significantly differ (P=.05, LSD) PRE, preemergence treatments were applied on May 16; POST, postemergence treatments were applied on June 5.

Flax Tolerance to Preemergence Herbicides at Hettinger, ND

Caleb Dalley, HREC, Hettinger, ND 2018

Flax 'York' was planted on May 15, 2018 at 38 lb/A at a depth of 1.5 inches using a John Deere 1590 no-till drill. Prior to planting, on May 4, the entire field was treated with glyphosate (Cornerstone 5 Plus @ 32 oz/A) to control winter annual weeds. Urea fertilizer (46-0-0) was applied on May 2 at a rate of 45 lb/A. Preemergence herbicide treatments were applied on May 16 using a tractor mounted research spray using a spray volume of 10 gallons per acre. Flax emerged on May 24. Flax was evaluated for injury on June 12 (27 days after treatment (DAT)) and Jul 13 (58 DAT). The only treatment causing visual injury was the herbicide acetochlor (Warrant) resulting in 8% and 19% injury at 27 and 58 DAT, respectively. Stand and height counts were measured on June 19 and while there were no significant differences in stand or height, flax height following acetochlor was lowest of all treatments. Common mallow control 27 DAT was greatest (81%) following application of sulfentrazone plus metolachlor (Broadaxe plus Dual II Magnum), and similar to sulfentrazone plus pyroxasulfone (Spartan plus Zidua), flumioxazin plus pyroxasulfone (Fierce) and pendimethalin (Prowl H2O) with control ranging from 74 to 76%. All other treatments resulted in poor control of common mallow. Baryard control was best following application of metolachlor (Dual II Magnum) sulfentrazone plus metolachlor, pendimethalin, and dimethenamid (Outlook). Control of barnyardgrass with these treatments was only fair (74 to 79%). All other treatments provided poor control of barnyardgrass. Plots were impacted by a severe hailstorm on the night of June 26 resulting in nearly complete defoliation. Further evaluations were not taken do to the damage to the plots. However, plot yields were measured on September 28. While yields showed no statistically significant differences, yields were lowest following application of acetochlor and second lowest in the untreated control. Yields ranged from 787 to 1015 LB/A. Test weight of flax was lowest following application of acetochlor. From these results, it appears that there are several options that could be pursued for preemergence weed control in flax. Although, the herbicide acetochlor may be too injurious to flax.

\mathbf{I} and \mathbf{I} I	unse ana	n ceu ce	THUE OF TO	ALC 11 AAAE	P		1.1.		
			Flax		Common mallow	Common mallow Barnyardgrass 1			κ
		Injury	Stand	height	27 DAT	27 DAT	27 DAT	Yield	Test
Treatment	Rate		plants/m	cm	%	control		LB/A	LB/BU
1 Untreated		0b	187	20	0c	Of	0e	836-	53c
2Zidua	3oz/a	0b	216	21	0c	71bcd	70b	1012-	56abc
3 Spartan	4oz/a	0b	221	21	76a	68cd	78ab	1016-	58a
Zidua	1.5oz/a								
4 Warrant	1.5qt/a	8a	213	19	5c	63d	66b	787-	49d
5Dual II Magnum	1.5pt/a	0b	196	20	0c	75abc	74ab	873-	55abc
6BroadAxe	22.8oz/a	0b	206	21	81a	78ab	84a	908-	57ab
Dual II Magnum	5.2oz/a								
7Fierce	3oz/a	0b	195	21	74a	74abc	74ab	870-	56abc
8Prowl H2O	3pt/a	0b	221	20	76a	79a	67b	967-	55abc
9Valor	2oz/a	0b	228	21	30b	45e	46c	872-	54c
10Outlook	18oz/a	0b	229	20	23b	74abc	21d	967-	55bc
LSD P=.05		2.3	43.3	1.8	7.8			204.6	2.9
Treatment F		9.000	0.940	0.846	179.594	63.687		1.188	5.741
Treatment Prob(F)		0.0001	0.5082	0.5821	0.0001	0.0001	0.0001	0.3417	0.0002

Table. Flax response and weed control following preemergence herbicide application.

Means followed by same letter or symbol do not significantly differ (P=.05, LSD)

Flax PRE evaluation for pigweed management. Ostlie

A flax study was established in 2018 near Carrington, ND to evaluate PRE products for pigweed species management. The trial was planted and sprayed on May 15, followed by an activating rain within 24 hours. Heavy pigweed infestation prevented flax harvest from this trial. Pigweeds consisted of a roughly 50/50 mixture of redroot pigweed and Powell amaranth.

Treatment	Stand	Phytotoxicity	Pigweeds	Pigweeds
	plant/a	6/6/2018	21 DAE	preharvest
check	1774064	0.0	0.0	0.0
Zidua	1831769	6.3	26.3	30.0
Spartan + Zidua	1901311	1.3	61.3	63.8
Warrant	1905750	3.8	6.3	0.0
Dual II Magnum	1645135	5.0	67.5	22.5
Spartan Elite + Dual Magnum	1751870	3.8	72.5	66.3
Fierce	1518397	3.8	56.3	77.5
Prowl H2O	1722277	6.3	0.0	0.0
Valor	1735594	5.0	5.0	8.8
Outlook	1534365	6.3	75.0	68.8
LSD (0.05)	222680	5.4	23.4	8.3

Flax stand was reduced with some herbicide combinations, including Fierce and Outlook. Injury to the emerged plants was less noticeable with only minor injury symptoms appearing, largely in the form of less vigor. Early and late season pigweed control followed largely the same trends. Some products faired very poor overall, with almost no noticeable differences following Valor, Prowl H2O, and Warrant. Dual II Magnum provided moderate early season control, but pigweeds were able to emerge later in the season. Fierce provided the greatest season-long control of pigweeds, even though both components of the product faired poor alone. It is unclear if the loss in flax stand with Fierce and Outlook would result in a yield reduction.

Industrial Hemp response to herbicides. Dr. Howatt and Mettler. Industrial hemp was seeded near Fargo June 4. Treatments were applied to 4 leaf hemp on June 28 with 86°F, 60% relative humidity, moderately clouded sky, 4.2 mph wind at 225°, and dry soil at 80°F. Treatments were applied with a backpack sprayer delivering 8.5 gpa at 40 psi through 11001 TT nozzles to a 7 foot wide area the length of 10 by 30 foot plots. The experiment was a randomized complete block design with four replicates.

		7/12	7/23
Treatment	Rate	Hemp	Hemp
Untreated Check	0	0	0
Clopyralid	1.5	4	0
Fluroxypyr	1.5	85	81
Thifensulfuron-sg+NIS	0.2+0.25%	63	47
Mesotrione+PO+UAN	1.5+20+2.5%	82	72
Bromoxynil	4	9	7
Fomesafen+PO	3+20	89	82
Metribuzin+PO	3+20	82	63
Bentazon+PO	12+20	93	93
Carfentrazone+NIS	0.128+0.25%	23	15
Glufosinate+AMS	6.4+24	96	94
Halauxifen	0.075	32	37
Imazamox+NIS+UAN	0.5+0.25%+32	40	25
CV		8	11
LSD P=.05		8	9

Clopyralid and bromoxynil were quite safe to hemp resulting in less than 10% injury. Carfentrazone caused moderate injury, but since carfentrazone does not translocate, hemp plants seemed to recover quickly from loss of leaf tissue. These are candidates for further investigation of herbicide registrations in hemp. Bentazon and glufosinate provided more than 90% control and offer the best options for control of volunteer hemp. Mesotrione, metribuzin, or fomesafen provided good control but surviving plants produced substantial regrowth and use for volunteer management would rely on substantial crop competition. Fluroxypyr gave 85% control and effect was longer lasting than mesotrione, metribuzin, or fomesafen.

2018 Bicyclopyrone Weed Control in Direct-Seeded Onion. H. Hatterman-Valenti and C. Auwarter.

This study was conducted at the Oakes Research Extension Center to evaluate bicyclopyrone containing treatments vs commercial standards in direct-seeded onion. Four varieties of yellow sweet Spanish onions (Calibra, Delgado, Hamilton and Sedona) were planted on April 30, 2018 at a rate of 250,000 seeds/acre. Plots were 4 rows by 20 feet with 18" centers arranged in a randomized complete block design with 4 replicates. Treatments were sprayed throughout the growing season with a CO2 pressurized sprayer equipped with 8002 XR flat fan nozzles with a spray volume of 20 GPA and a pressure of 40 psi. Extension recommendations were used for cultural practices throughout the year. Plots were harvested on 9/17 and graded into various categories.

Date:	5/10 (10	5/24 (24 DAP)	6/7 (38
	DAP)		DAP)
Crop Stage:	PRE (A)	Flag - 1 Leaf	2 Leaf (C)
		(B)	
Weed Size (Colq,Rrpw):	None	2"	2"-10"
Air Temperature (F):	43	67	75
Relative Humidity (%):	44	87	42
Wind (MPH):	10	9	9
Soil Temperature @ 4"	52	65	75
(F)			
Soil Moisture:	Adequate	Excess	Adequate
Cloud Cover:	90	20	0
Next Rain or Irrigation:	5/11	5/28	6/11

Table 1. Herbicide application information.

All herbicide treatments provided season-long redroot pigweed control and all herbicide treatments except treatment 10 (Goaltender + Buctril) provided season-long common lambsquarters control (Table 2). All treatments with A16003 tended to reduce onion stands regardless of the onion cultivar. Greatest total yields occurred with the handweeded plots followed by plots treated with Satellite HydroCap, GoalTender, and Buctril regardless of the onion cultivar.

Table 2. Calibra, Delgado, Hamilton and Sedona stand count, weed control and injury.

rabie 2. Calibra, I	Juigado, I	rannn	ion and	a beuo	na sia			und and n	սյա չ.		
Trt Treatment	Rate	Appl		ow-ft Stand				30 DAP	30 DAP	49 DAP	49 DAP
No. Name	Rate Unit	Code	Calibra	Delgado	Hamilton	Sedona	Colq % Control	Rrpw % Control	% Injury	Colq % Control	Rrpw % Control
1 Handweeded Check			52.0 a	42.7 ab	59.5 a	62.1 a	100.0 a	100.0 a	0.0 g	100.0 a	100.0 a
2 A16003	3.42 fl oz/a	ιA	21.5 c	12.4 de	11.3 d	28.7 c	98.8 a	100.0 a	38.5 d	95.0 ab	100.0 a
3 Satellite HydroCap	2 pt/a	А	54.8 a	46.5 a	57.5 a	57.1 ab	100.0 a	98.8 a	6.1 f	96.3 ab	97.5 a
4 A16003	3.42 fl oz/a	ιA	10.5 d	9.5 e	11.8 d	29.3 c	100.0 a	100.0 a	71.1 c	98.8 ab	100.0 a
Satellite HydroCap	2 pt/a	А									
5 A16003	2.57 fl oz/a	в	29.8 bc	22.4 cd	43.5 b	45.2 b	91.3 b	98.8 a	22.2 e	90.0 b	97.5 a
Preference	0.25 % v/v	В					"				
6 A16003	3.42 fl oz/a	ιВ	37.2 ab	27.6 bc	45.8 b	44.2 b	88.8 b	98.8 a	25.6 e	91.3 ab	97.5 a
Preference	0.25 % v/v	В						· · ·			
7 Buctril	1 pt/a	В	39.4 ab	21.1 cd	26.3 c	28,6 c	98.8 a	100.0 a	26.2 e	97.5 ab	100.0 a
Goal Tender	4 fl oz/a	ı C									
8 A16003	2.57 fl oz/a	в	10.1 d	1.7 f	4.0 de	2.6 d	100.0 a	100.0 a	92.7 b	100.0 a	100.0 a
Preference	0.25 % v/v	в	-								
Buctril	1 pt/a	В									
9 A16003	3.42 fl oz/a	в	4.6 d	0.8 f	2.3 de	3.2 d	100.0 a	100.0 a	95.3 b	98.8 ab	100.0 a
Preference	0.25 % v/v	В									
Buctril	1 pt/a	в									
10 Goal Tender	4 fl oz/a	ιВ	54.8 a	42.7 ab	62.5 a	56.5 ab	52.5 c	97.5 a	6.1 f	52.5 c	98.8 a
Buctril	1 pt/a	С									
11 Satellite HydroCap	2 pt/a	А	54.0 a	39.9 ab	57.0 a	56.3 ab	100.0 a	100.0 a	7.3 f	98.8 ab	98.8 a
Goal Tender	4 fl oz/a										
Buctril	1 pt/a	В									
12 A16003	3.42 fl oz/a		0.4 e	0.0 f	0.0 e	0.1 e	100.0 a	100.0 a	99.7 a	100.0 a	100.0 a
Buctril	1 pt/a	В									
LSD P=.05			3.08-	3.59-	7.55	1.66 –	4,60	2.40	2.29 - 6.28	5.51	2.29
LOD F00			12.58	11.77		10.53	4,00	2.40	2.29 - 0.28	5.51	2.29
Trt Treatment	Rate	Appl	9/17	9/17	9/17	9/17	9/17	9/17			
-----------------------	--------------	------	-------------	-------------	-------------	--------------	-------	--------------			
No. Name		Code	0 – 1"	1" – 2.25"	2.25" – 3"	3" – 4"	>4"	Total			
1 Handweeded Check			0.0 a	6.7 bc	26.0 a	17.9 a	0.3 a	54.0 a			
2 A16003	3.42 fl oz/a	A	0.1 a	5.0 bcd	5.8 b	2.7 bc	0.0 a	15.1 cd			
3 Satellite HydroCap	2 pt/a	A	0.1 a	19.7 a	18.4 a	0.7 cd	0.0 a	39.7 ab			
4 A16003	3.42 fl oz/a	A	0.3 a	3.9 bcd	4.3 bc	3.5 bc	0.3 a	13.4 cd			
Satellite HydroCap	2 pt/a	A									
5 A16003	2.57 fl oz/a	В	0.1 a	5.8 bcd	0.1 d	0.0 d	0.0 a	6.7 de			
Preference	0.25 % v/v	В									
6 A16003	3.42 fl oz/a	В	0.1 a	8.0 abc	0.4 cd	0.6 cd	0.0 a	8.8 de			
Preference	0.25 % v/v	В									
7 Buctril	1 pt/a	В	0.0 a	18.6 a	8.3 b	0.6 cd	0.0 a	29.6 bc			
Goal Tender	4 fl oz/a	С									
8 A16003	2.57 fl oz/a	В	0.0 a	1.5 cd	2.0 bcd	0.7 cd	0.0 a	4.6 de			
Preference	0.25 % v/v	В									
Buctril	1 pt/a	в									
9 A16003	3.42 fl oz/a	В	0.1 a	0.9 cd	0.6 cd	1.0 cd	0.0 a	3.3 de			
Preference	0.25 % v/v	в									
Buctril	1 pt/a	В									
10 Goal Tender	4 fl oz/a	В	1.0 a	3.7 bcd	0.0 d	0.0 d	0.0 a	4.0 de			
Buctril	1 pt/a	С									
11 Satellite HydroCap		A	0.0 a	11.9 ab	27.8 a	7.6 b	0.0 a	48.0 ab			
Goal Tender	4 fl oz/a	в									
Buctril	1 pt/a	в									
12 A16003	3.42 fl oz/a	A	0.0 a	0.0 d	0.1 d	0.4 cd	0.0 a	0.4 e			
Buctril	••••	В									
LSD P=.05			0.94 - 0.98	4.51 - 9.67	1.89 - 9.65	1.61 - 10.09	0.30	5.01 - 17.19			

Table 3. Calibra harvested bulb count in 10 row-ft.

Table 4. Calibra cwt/acre.

Tuble - R. Cullbru Cwy	40.01							
Trt Treatment	Rate	Appl	9/17	9/17	9/17	9/17	9/17	9/17
No. Name	Rate Unit	Code	0 — 1"	1" — 2.25"	2.25" – 3"	3" – 4"	>4"	Total
1 Handweeded Check			0.000 a	24.856 bc	198.416 ab	246.998 a	7.388 a	490.155 a
2 A16003	3.42 fl oz/a	Α	0.024 a	18.352 c	45.554 c	46.216 bcd	0.000 a	113.139 bcd
3 Satellite HydroCap	2 pt/a	Α	0.020 a	70.772 a	127.783 b	8.109 cd	0.000 a	211.263 b
4 A16003	3.42 fl oz/a	Α	0.151 a	11.373 cd	37.441 c	65.179 bc	6.540 a	124.268 bcd
Satellite HydroCap	2 pt/a	Α						
5 A16003	2.57 fl oz/a	В	0.072 a	14.925 c	1.913 de	0.000 d	0.000 a	18.239 e
Preference	0.25 % v/v	В						
6 A16003	3.42 fl oz/a	В	0.036 a	25.780 bc	3.556 de	9.626 cd	0.000 a	39.718 cde
Preference	0.25 % v/v	В			I			
7 Buctril	1 pt/a	В	0.000 a	65.080 a	64.193 c	6.746 cd	0.000 a	145.700 bc
Goal Tender	4 fi oz/a							
8 A16003	2.57 fl oz/a		0.000 a	5.300 cd	25.031 cd	12.308 cd	0.000 a	48.558 cde
Preference	0.25 % v/v							
Buctril	1 pt/a							
9 A16003	3.42 fl oz/a		0.077 a	3.279 cd	5.374 de	18.371 cd	0.000 a	30,944 de
Preference	0.25 % v/v		0.017 a	0.270 00	0.07 1 00			
Buctril	1 pt/a	<u> </u>		4 400 1	0.000	0.000 d	0.000 a	5.802 e
10 Goal Tender	4 fl oz/a		0.391 a	4.422 cd	0.000 e	0.000 d	0.000 a	5.602 e
Buctril	1 pt/a	С						
11 Satellite HydroCap	2 pt/a	А	0.000 a	52.994 ab	221.766 a	108.411 b	0.000 a	385.971 a
Goal Tender	4 fl oz/a	В						
Buctril	1 pt/a	в						
12 A16003	3.42 fl oz/a	A	0.000 a	0.000 d	1.360 de	7.076 cd	0.000 a	8.405 e
Buctril	1 pt/a							
LSD P=.05			0.39 - 0.47	15.52 - 25.97	16.02 - 77.20	38.81 - 112.06	8.32	37.74 - 165.78
					I			

Table 5. Delgado harvested bulb count in 10 row-ft.

Trt Treatment	Rate .	Annl	9/17	9/17	9/17	9/17	9/17	9/17
No. Name		Code	0 – 1"	1" – 2.25"	2.25" – 3"	3" – 4"	>4"	Total
1 Handweeded Check			0.0 a	1.3 bc	14.7 ab	23.6 a	0.5 a	41.0 a
2 A16003	3.42 fl oz/a	A	0.0 a	2.2 bc	2.3 c	1.6 cde	0.3 a	8.0 bc
3 Satellite HydroCap		А	0.1 a	19.3 a	11.6 ab	0.5 de	0.0 a	32.7 a
4 A16003	3.42 fl oz/a	Α	0.3 a	1.4 bc	1.3 c	5.7 bc	0.3 a	10.1 bc
Satellite HydroCap	2 pt/a	А						
5 A16003	2.57 fl oz/a	В	0.0 a	0.9 bc	0.2 c	0.0 e	0.0 a	1.2 cd
Preference	0.25 % v/v	В						
6 A16003	3.42 fl oz/a	В	0.0 a	0.9 bc	0.0 c	0.1 de	0.0 a	1.3 cd
Preference	0.25 % v/v	В						
7 Buctril	1 pt/a	В	0.0 a	4.5 bc	9.2 b	2.6 cd	0.0 a	16.5 b
Goal Tender	4 fl oz/a	С						
8 A16003	2.57 fl oz/a	В	0.1 a	0.1 bc	0.3 c	0.3 de	0.3 a	1.6 cd
Preference	0.25 % v/v	в						
Buctril	1 pt/a	в						
9 A16003	3.42 fl oz/a		0.0 a	0.2 bc	0.3 c	0.1 de	0.0 a	0.7 cd
Preference	0.25 % v/v							
Buctril	1 pt/a	в						
10 Goal Tender	4 fl oz/a		0.4 a	3.6 bc	0.0 c	0.0 e	0.0 a	4.6 bcd
Buctril		c						
11 Satellite HydroCap		A	0.0 a	6.5 b	19.2 a	9.8 b	0.3 a	36.3 a
Goal Tender	4 fl oz/a		0.0 4	0.0 %				
Buctril	1 pt/a	В						
12 A16003	3.42 fl oz/a		0.0 a	0.0 c	0.1 c	0.0 e	0.0 a	0.1 d
			0.0 a	0.0 C	0.10	0.0 6	5.0 a	0.1 4
Buctril	1 pt/a	D	0.83 - 9999	2.75 – 9.91	1.57 – 7.41	1.35 - 7.48	0.54	3.46 - 15.34
LSD P=.05			0.03 - 9999	2.75 - 9.91	1.57 - 7.41	1.55 - 7.46	0.04	0.70 - 10.04

Table 6. Delgado cwt/acre.

	· .		047	0/17	0147	0//7	0/17	9/17
Trt Treatment		Appl	9/17	9/17	9/17	9/17	9/17	
No. Name	Rate Unit	Code	0 - 1"	1" - 2.25"	2.25" - 3"	3" - 4"	>4"	Total
1 Handweeded Check			0.000 a	6.108 bcd	123.156 ab	339.352 a	15.160 a	491.222 a
2 A16003	3.42 fl oz/a		0.000 a	7.813 bcd	24.064 c	32.058 c	6.428 a	80.252 b
3 Satellite HydroCap			0.040 a	69.034 a	94.468 ab	8.263 c	0.000 a	178.949 b
4 A16003	3.42 fl oz/a	А	0.218 a	4.483 bcd	13.885 c	106.331 b	9.370 a	141.211 b
Satellite HydroCap	2 pt/a	А						
5 A16003	2.57 fl oz/a	В	0.000 a	2.120 cd	2.800 c	0.000 c	0.000 a	5.432 c
Preference	0.25 % v/v	в		1				
6 A16003	3.42 fl oz/a	В	0.000 a	2.306 cd	0.000 c	2.800 c	0.000 a	6.697 c
Preference	0.25 % v/v	в						
7 Buctril	1 pt/a	В	0.000 a	20.791 bc	81.761 b	39.314 c	0.000 a	145.060 b
Goal Tender	4 fl oz/a	С						
8 A16003	2.57 fl oz/a	В	0.032 a	0.084 d	3.394 c	4.589 c	6.205 a	15.858 c
Preference	0.25 % v/v	в						
Buctril	1 pt/a	в						
9 A16003	3.42 fl oz/a	В	0.000 a	0.687 cd	3.777 c	2.358 c	0.000 a	8.300 c
Preference	0.25 % v/v	в						
Buctril	1 pt/a	в						
10 Goal Tender	4 fl oz/a	В	0.259 a	7.921 bcd	0.000 c	0.000 c	0.000 a	9.527 c
Buctril	1 pt/a	С						
11 Satellite HydroCap		A	0.000 a	27.489 b	164.338 a	132.137 b	7.675 a	338.489 a
Goal Tender	4 fl oz/a	В						
Buctril	1 pt/a	в						
12 A16003	3.42 fl oz/a	А	0.000 a	0.000 d	1.242 c	0.000 c	0.000 a	1.242 c
Buctril		В						
LSD P=.05	. pou		0.50 - 9999	7.35 - 24.22	15.42 - 64.52	24.42 - 117.75	16.08	24.77 - 155.17
						A		

Table 7. Hamilton harvested bulb count in 10 row-ft.

Trt Treatment	Rate	Appl	9/17	9/17	9/17	9/17	9/17	9/17
No. Name	Rate Unit	Code	0 - 1"	1" – 2.25"	2.25" - 3"	3" – 4"	>4"	Total
1 Handweeded Check			0.0 b	2.7 abc	20.0 a	32.4 a	0.1 b	57.0 a
2 A16003	3.42 fl oz/a	А	0.3 b	0.8 bc	2.0 b	2.1 cde	0.1 b	6.4 cd
3 Satellite HydroCap	2 pt/a	Α	0.0 b	17.2 a	18.8 a	1.6 cde	0.0 b	39.6 ab
4 A16003	3.42 fl oz/a		1.5 a	1.2 bc	2.1 b	3.9 cd	0.6 a	10.2 cd
Satellite HydroCap	2 pt/a	А						
5 A16003	2.57 fl oz/a	В	0.0 b	7.0 ab	2.3 b	0.4 e	0.0 b	10.8 cd
Preference	0.25 % v/v	в						
6 A16003	3.42 fl oz/a	В	0.3 b	6.4 ab	1.9 b	0.4 e	0.0 b	10.1 cd
Preference	0.25 % v/v	В						
7 Buctril	1 pt/a	В	0.0 b	2.9 abc	14.9 a	5.2 c	0.0 b	25.1 bc
Goal Tender	4 fi oz/a	С						
8 A16003	2.57 fl oz/a	В	0.3 b	0.4 bc	0.5 b	0.6 e	0.0 b	2.0 de
Preference	0.25 % v/v	в						
Buctril	1 pt/a	в						
9 A16003	3.42 fl oz/a	В	0.3 b	2.1 abc	2.1 b	0.9 de	0.0 b	7.0 cd
Preference	0.25 % v/v	в						
Buctril	1 pt/a	В						
10 Goal Tender	4 fl oz/a	В	0.8 ab	12.9 a	1.1 b	0.0 e	0.0 b	22.0 bc
Buctril	1 pt/a	С						
11 Satellite HydroCap	2 pt/a	A	0.0 b	7.4 ab	28.1 a	12.7 b	0.0 b	52.3 a
Goal Tender	4 fl oz/a	В						
Buctril	1 pt/a	В						
12 A16003	3.42 fl oz/a	A	0.0 b	0.0 c	0.0 b	0.0 e	0.0 b	0.0 e
Buctril	1 pt/a	В						
LSD P=.05	•		0.81	2.95 - 12.34	4.13 - 12.02	1.64 – 17.90	0.32 - 0.42	8.05 - 17.87

Table 8. Hamilton cwt/acre.

Trt Treatment	Rate	Appl	9/17	9/17	9/17	9/17	9/17	9/17
No. Name	Rate Unit	Code	0 – 1"	1" – 2.25"	2.25" – 3"	3" – 4"	>4"	Total
1 Handweeded Check			0.000 a	12.516 bcd	169.020 a	470.858 a	9.370 b	670.751 a
2 A16003	3.42 fl oz/a	Α	0.113 a	2.347 cd	20.809 b	34.448 cd	6.668 b	66.172 de
3 Satellite HydroCap	2 pt/a		0.000 a	59.824 a	137.040 a	27.487 cd	0.000 b	232.900 c
4 A16003	3.42 fl oz/a	A	0.863 a	4.084 cd	20.016 b	83.060 bc	26.675 a	135.704 cd
Satellite HydroCap	2 pt/a	Α						
5 A16003	2.57 fl oz/a	В	0.000 a	14.848 bcd	17.531 b	4.725 cd	0.000 b	43.634 de
Preference	0.25 % v/v	в						
6 A16003	3.42 fl oz/a	В	0.175 a	20.038 a-d	16.080 b	6.182 cd	0.000 b	51.031 de
Preference	0.25 % v/v	в						
7 Buctril	1 pt/a	В	0.000 a	15.679 bcd	136,455 a	79.642 bc	0.000 b	244.007 c
Goal Tender	4 fi oz/a							
8 A16003	2.57 fl oz/a		0.400 a	0.821 d	7.987 b	8.075 cd	0.000 b	22.478 ef
Preference	0.25 % v/v		000 4	0.02.1 4				
Buctril	1 pt/a		0.040 -	8.303 bcd	14.575 b	15,616 cd	0.000 b	48.241 de
9 A16003	3.42 fl oz/a		0.240 a	0.303 DCu	14.575 D	15.010 Cu	0.000 b	40.241 06
Preference	0.25 % v/v							
Buctril	1 pt/a	В						
10 Goal Tender	4 fl oz/a	В	0.305 a	38.453 ab	10.816 b	0.000 d	0.000 b	54.089 de
Buctril	1 pt/a	С						
11 Satellite HydroCap	2 pt/a	А	0.000 a	31.832 abc	211.054 a	189.219 b	0.000 b	448.955 b
Goal Tender	4 fl oz/a	В						
Buctril	1 pt/a	в						
12 A16003	3.42 fl oz/a		0.000 a	0.000 d	0.000 b	0.000 d	0.000 b	0.000 f
Buctril	1 pt/a	В	0.000 u					
LSD P=.05	i pua	5	0.5344	12.31 - 33.03	36.50 - 95.98	40.22 - 173.60	12.51	61.57 - 208.70
LOD F00			0.0044	12.01 - 00.00	00.00 - 00.00	10.22 110.00	.2.01	

.

Table 9. Sedona harvested bulb count in 10 row-ft.

Trt Treatment		Appl	9/17	9/17	9/17	9/17	9/17	9/17
	Rate Unit	Code	0 – 1"	1" – 2,25"	2,25" – 3"	3" – 4"	>4"	Total
1 Handweeded Check	·		0.0 a	8.4 a	27.2 a	26.0 a	0.0 a	62.0 a
	3.42 fl oz/a	A	0.5 a	10.2 a	1.8 cd	1.3 cd	0.0 a	19.0 c
3 Satellite HydroCap		A	0.3 a	23.1 a	16.4 ab	1.7 cd	0.0 a	45.8 b
4 A16003	3.42 fi oz/a	A	1.3 a	6.7 a	6.0 bc	13.0 b	2.0 a	29.5 c
Satellite HydroCap	2 pt/a	A						
5 A16003	2.57 fl oz/a	В	0.8 a	14.1 a	7.2 bc	0.3 cd	0.0 a	23.3 c
Preference	0.25 % v/v	В						
6 A16003	3.42 fl oz/a	В	0.5 a	13.0 a	6.9 bc	0.7 cd	0.0 a	22.5 c
Preference	0.25 % v/v	В						
7 Buctril	1 pt/a	В	0.0 a	7.4 a	14.4 ab	6.3 bc	0.0 a	28.8 c
Goal Tender	4 fl oz/a	С						
8 A16003	2.57 fl oz/a	В	0.5 a	0.0 b	0.5 cd	0.7 cd	0.0 a	2.5 d
Preference	0.25 % v/v	в						
Buctril	1 pt/a	В						
9 A16003	3.42 fl oz/a	В	0.3 a	0.4 b	0.1 cd	0.6 cd	0.0 a	2.0 d
Preference	0.25 % v/v	В						
Buctril	1 pt/a	в						
10 Goal Tender	4 fl oz/a	В	0.5 a	18.2 a	1.5 cd	0.1 d	0.0 a	28.0 c
Buctril	1 pt/a	С						
11 Satellite HydroCap	2 pt/a	A	0.0 a	9.5 a	26.3 a	11.3 b	0.0 a	49.3 b
Goal Tender	4 fl oz/a	В						
Buctril	1 pt/a	В						
12 A16003	3.42 fi oz/a	A	0.0 a	0.2 b	0.0 d	0.0 d	0.0 a	0.3 d
Buctril		В						
LSD P=.05			0.89	4.10 - 11.33	3.53 - 12.62	2.58 - 11.05	1.7	12.62

Table 10. Sedona cwt/acre.

Trt Treatment	Rate	Appl	9/17	9/17	9/17	9/17	9/17	9/17
No. Name	Rate Unit	Code	0 – 1"	1" – 2.25"	2.25" - 3"	3" – 4"	>4"	Total
1 Handweeded Check			0.000 a	30.411 a	254.874 a	416.798 a	0.000 b	705.280 a
2 A16003	3.42 fl oz/a	Α	0.094 a	31.261 a	14.296 cd	20.823 c	0.000 b	88.404 cd
3 Satellite HydroCap	2 pt/a	А	0.036 a	76.911 a	120.203 ab	30.298 c	0.000 b	256.713 bc
4 A16003	3.42 fl oz/a	А	0.543 a	21.282 a	62.751 bc	227.724 b	59.663 a	374.508 b
Satellite HydroCap	2 pt/a	A						
5 A16003	2.57 fl oz/a	В	0.234 a	47.231 a	51.151 bc	6.176 c	0.000 b	109.774 cd
Preference	0.25 % v/v	в						
6 A16003	3.42 fl oz/a	В	0.052 a	43.819 a	61.026 bc	13.948 c	0.000 b	128.417 cd
Preference	0.25 % v/v	в				2		
7 Buctril	1 pt/a	В	0.000 a	32.251 a	127.364 ab	83.954 c	0.000 b	248.893 bc
Goal Tender	4 fl oz/a	С						
8 A16003	2.57 fl oz/a	В	0.191 a	0.000 b	5.979 cd	18.132 c	0.000 b	29.943 de
Preference	0.25 % v/v	в						
Buctril	1 pt/a	в						
9 A16003	3.42 fl oz/a		0.012 a	0.888 b	2.469 cd	14.451 c	0.000 b	19.430 de
Preference	0.25 % v/v							
Buctril		В						
10 Goal Tender	4 fl oz/a		0.060 a	53.447 a	17.242 cd	1.711 c	0.000 b	85.630 cd
Buctril	1 pt/a	C	0.000 a	55.447 a	11.242 00	1.7 11 0	0.000 D	00.000 00
	2 pt/a	A	0.000 a	38.694 a	206.318 a	148.019 b	0.000 b	400.912 b
11 Satellite HydroCap			0.000 a	50.094 a	200.310 a	140.013.0	0.000 b	400.012.0
Goal Tender	4 fl oz/a							
Buctril	1 pt/a	B					0.000.1	0.000
12 A16003	3.42 fl oz/a		0.000 a	0.326 b	0.000 d	0.000 c	0.000 b	0.326 e
Buctril	1 pt/a	В						
LSD P=.05			0.35 – 0.48	11.16 – 38.41	33.06 - 118.46	38.83 - 176.79	18.19	34.38 - 241.75

2% clay with 1.2% organic matter and a pH of 5.8. Treatments were applied on May 25 as a preemergence treatment with shoots 3 to 4 inches below the top of the hill. All treatments were applied to the center of the plots with a 9-ft-wide boom equipped with XR11002 flat fan nozzles calibrated to Russet were planted near Park Rapids, MN on May 17, 2018 in plots measuring 12 ft wide x 25 ft long. Soil characteristics were 92% sand, 6% silt, deliver 15 gallons per acre. Potatoes emerge on June 2, 2017. Plots were rated for crop injury and weed control at 1, 2 and 4 weeks after emergence. Effect of pyroxasulfone tank mixtures on Russet Burbank and Umatilla Russet. Robinson, Brandvik and Ihry. Russet Burbank and Umatilla Harvest occurred on September 19, 2018. The experiment was a randomized complete block design with 4 treatments.

Significant crop injury was observed when sulfentrazone was included in the treatment. Weed control was relatively good with most treatments, as weed pressure was low in this trial. Yields were similar across treatments.

Treatment	Rate		Umatul	Umatilla Russet		Kusset	Russet Burbank		Ked Ku	Kea Kool Figweeu	cu	пашу.	Dally INBILISHAUC	e	Comm	COMMON FAMORAGIAN	sylual iver
		-	Crop ii	Crop injury (%)		Crop ii	Crop injury (%)		Efficacy (%)	y (%)		Efficacy (%)	cy (%)		Efficacy (%)	:y (%)	
			6/8	6/19	<i>2/1</i>	6/8	6/19	<i>2//</i>	6/8	6/19	11	6/8	6/19	<i>1/6</i>	6/8	6/19	<i>2//2</i>
1 Non-treated check			100	100	100	100	100	100	0	0	0	0	0	0	0	0	0
2 Zidua	3.5	fl oz/a	95	100	100	86	100	100	100	75	100	100	100	100	95	75	85
Metribuzin	0.5	Ib/a															
3 Zidua	3.5	fl oz/a	98	100	100	100	100	100	98	98	75	100	100	100	98	100	100
Dual	1	pt/a									α την βοληγορική την του το το το ποιοιοργία του το το το ποιοιοργία του το το ποιοιοργία του το το ποιοιοργία						
4 Sulfentrazone	3	oz/a	95	100	100	95	100	100	93	75	75	100	75	80	93	75	80
5 Zidua	3.5	fl oz/a	96	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Metribuzin	0.5	lb/a												,			
Dual	1	pt/a															
Matrix	1.5	oz/a															
6 Zidua	3.5	fl oz/a	97	100	100	100	100	100	100	100	100	100	100	100	100	100	8
Metribuzin	0.5	lb/a															
Dual	1	pt/a								1							
7 Metribuzin	0.5	lb/a	92	100	100	67	100	100	96	100	100	96	100	100	96	98	60
Dual	1	pt/a															
Sulfentrazone	С	oz/a															
Mean			96	100	100	98	100	100	84	78	79	85	82	83	83	78	78
CV ¹			4	ı	ı	З	·	ı	8	34	34	ŝ	23	18	6	34	29
$LSD^2 p=0.05$	1		su	ĩ	ı	su	1	ı	10	39	39	4	28	22	11	39	33
LSD p=0.10			4	t	ı	su	ı	ı	8	33	33	ŝ	23	18	6	33	27
1The CV stands for coefficient of variation and is expressed as	òr coeffic	ient of vs	ariation	and is ex	nressed	as a perc	centage.]	The CV	is a mea	sure of v	ariability	v in the	a nercentage. The CV is a measure of variability in the trial. Large CVs mean a large amount of	ge CVs n	nean a la	arge amo	ount of

treatments exceeds the LSD value at 0.05 or 0.10, it means that with 95 or 90 percent confidence, respectively, the higher-numbered treatments has a significan advantage. When the difference between two treatments is less than the LSD value, no significant difference was found between the two under these growing conditions.

	Treatment Rate <4 oz 4-6 oz 6-1	Rate		<4 oz	4-6 oz		0 oz 10-14 oz	>14 oz	Total yield	Total Marketable	US#1 >4 oz	US#2 >4 oz	z0 9<	>10 oz
									cwt/a				6	~~~~%
1	l Non-treated check	U.		127	178	162	21	11	500	373	358	14	38	9
5	2 Zidua	3.5	fl oz/a	176	197	158	22	S	558	382	369	13	33	ŷ
	Metribuzin	0.5	0.5 Ib/a											
3	3 Zidua	3.5	fl oz/a	161	179	128	25	7	495	334	318	16	31	S.
	Dual	1	pt/a											
4	4 Sulfentrazone	3	oz/a	137	171	172	50	12	542	404	386	18	42	11
5	5 Zidua	3.5	fl oz/a	137	183	165	50	12	547	410	392	19	41	11
	Metribuzin	0.5	Ib/a											
	Dual	1	pt/a											
	Matrix	1.5	oz/a					n mangang sa mangang pangang na mangang na ma	100 ODDAL MARKANA AND AND AND AND AND AND AND AND AND					
Ş	6 Zidua	3.5	fl oz/a	192	219	119	16	0	546	355	345	6	52	ę
	Metribuzin	0.5	lb/a											
	Dual		pt/a											
43	7 Metribuzin	0.5	lb/a	153	185	172	41	6	560	408	387	20	39	×
3	Dual	1	pt/a											
	Sulfentrazone	ŝ	oz/a			!								
	Mean			155	187	154	32	7	535	381	365	16	36	٢
J	CV			17	13	23	89	109	10	14	13	69	25	<i>4</i>
1	$LSD \ p=0.05$			su	su	SU	SU	su	SU	SU	su	SU	su	SU
Ĩ	LSD p=0.10			su	su	su	su	SU	SU	SU	SU	SU	su	SU

Table 5. Yield of Russet Burbank potato (cwt/a) as affected by various herbicide preemergence treatments in Hubbard, MN 2018.

43

	Treatment Rate <4 oz 4-6 oz		Rate		<4 0Z	4-6 oz	6-10 0Z	10-14 oz	>14 oz	Total yield	Total Marketable	US#1 >4 oz	US#2 >4 0z	9× 20	>10
									tube	tuber number/a				0	~~~~%
Zidua 3.5 $\frac{11}{0.2x}$ 9.6444 64.614 3.4485 3.086 545 Metribuzin 0.5 b/a 2.5565 $58,938$ 3.449 182 Zidua 3.5 $\frac{1}{10}$ $92,565$ $58,938$ 3.449 182 Zidua 3.5 $6/24$ $55,176$ 3.749 182 Dual 1 p/a $80,405$ $55,176$ 3.449 1271 Zidua 3.5 $6/24$ $55,756$ $58,914$ 1.271 Zidua 3.5 $6/24$ $55,756$ $58,97$ 1.271 Metribuzin 0.5 b/a $77,864$ $60,440$ $5.7,756$ $6,897$ 1.271 Metribuzin 0.5 b/a $77,864$ $60,440$ $5.7,756$ $6,897$ 1.271 Metribuzin 0.5 b/a $71,864$ $72,600$ $5,990$ 908 Metribuzin 0.5 b/a $74,76$ <t< th=""><th></th><th>1-treated check</th><th>Y</th><th></th><th>72,782</th><th>58,262</th><th>35,393</th><th>3,086</th><th>1,089</th><th>170,610</th><th>97,829</th><th>94,380</th><th>3,449</th><th>24</th><th>e</th></t<>		1-treated check	Y		72,782	58,262	35,393	3,086	1,089	170,610	97,829	94,380	3,449	24	e
		B		fl oz/a	99,644	64,614	34,485	3,086	545	202,373	102,729	99,644	3,086	19	2
3 $idua$ 3.5 $idua$ 3.5 $idua$ 3.449 3.449 182 Dual 1 pta $2,555$ $5,3146$ $3,449$ 1271 5 Sulfentrazone 3 $ozta$ $80,405$ $55,176$ $5,897$ 1271 5 Zidua 3.5 $idua$ $3.7,208$ $6,897$ $1,271$ 6 Sulfentrazone 1 pta $77,864$ $60,440$ $35,756$ $6,897$ $1,271$ 7 Metribuzin 0.5 $1b/a$ $77,864$ $60,440$ $35,756$ $6,897$ $1,271$ 6 Zidua 1 pta $77,864$ $60,440$ $35,756$ $6,897$ $1,271$ 7 Metribuzin 0.5 bba $111,804$ $72,600$ $2,420$ 0 8 $ozta$ 0.5 bba $2,420$ 0 0 Metribuzin 0 bba $111,804$ $72,600$ $2,420$ 0 0 9 Metribuzin 0 0 <td>Met</td> <td>ribuzin</td> <td></td> <td>b/a</td> <td></td>	Met	ribuzin		b/a											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ua		fi >z/a	92,565	58,988	28,314	3,449	182	183,497	90,932	87,483	3,449	18	7
	Dua	IJ	н —	ot/a											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	The second	fentrazone		sz/a	80,405	55,176	37,208	6,897	1,271	180,956	100,551	97,647	2,904	25	ŝ
		ua		fi oz/a	77,864	60,440	35,756	6,897	1,271	182,226	104,363	100,370	3,993	24	2
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	Met	tribuzin		lb/a											
Matrix 1.5 oz/a 11,804 72,600 25,894 2,420 0 6 Zidua 3.5 $\frac{1}{0.2a}$ 111,804 72,600 25,894 2,420 0 Metribuzin 0.5 $1b/a$ 1 pt/a 1 pt/a 9 7 Metribuzin 0.5 $1b/a$ $87,483$ $60,258$ $36,845$ $5,990$ 908 7 Metribuzin 0.5 $1b/a$ $87,483$ $60,258$ $36,845$ $5,990$ 908 10al 1 pt/a $87,483$ $60,258$ $36,845$ $5,990$ 908 Cubal 1 pt/a $87,483$ $60,258$ $36,845$ $5,990$ 908 Cubal 1 pt/a $87,483$ $60,258$ $36,845$ $5,990$ 908 Cubal 2 $88,935$ $61,477$ $33,413$ $4,546$ 752 Mean 13 22 $88,935$ 13 <td< td=""><td>Duɛ</td><td>1</td><td>1</td><td>pt/a</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Duɛ	1	1	pt/a											
	Mat	trix		oz/a					4/3 GARADOGANA ALAD TIMUNT MEDAPAKANDA						
Metribuzin 0.5 b/a Dual 1 pt/a Dual 1 pt/a 7 Metribuzin 0.5 b/a 87,483 60,258 5,990 908 1 pt/a 87,483 60,258 36,845 5,990 908 1 pt/a 1 pt/a 87,483 60,258 36,845 5,990 908 Nual 1 pt/a 87,483 60,258 36,845 5,990 908 Nual 1 pt/a 87,483 60,258 36,845 5,990 908 Mean 3 oz/a 88,935 61,477 33,413 4,546 752 Mean 13 22 88 13 22 88 109 LSD $p=0.05$ 1 max max max max max max		ua		fl oz/a	111,804	72,600	25,894	2,420	0	212,718	100,914	98,494	2,420	13	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mei	tribuzin		lb/a											
Metribuzin 0.5 $1b/a$ $87,483$ $60,258$ $36,845$ $5,990$ 908 Dual 1 pt/a 908 908 Dual 1 pt/a 908 Sulfentrazone 3 oz/a 908	Duƙ	al		pt/a											
Dual 1 pt/a Sulfentrazone 3 oz/a 88,935 $61,477$ $33,413$ $4,546$ 752 18 13 22 88 109 $=0.05$ $23,193$ ns ns ns ns		tribuzin		lb/a	87,483	60,258	36,845	5,990	908	191,483	104,000	100,370	3,630	23	4
Sulfentrazone 3 oz/a 88,935 61,477 33,413 4,546 752 18 13 22 88 109 =0.05 23,193 ns ns ns ns	Duí	le	1	pt/a											
88,935 61,477 33,413 4,546 752 18 13 22 88 109 =0.05 23,193 ns ns ns ns	Sul	fentrazone		oz/a											
18 13 22 88 109 23,193 ns ns ns ns ns	ſean				88,935	61,477	33,413	4,546	752	189,123	100,188	96,912	3,276	21	б
23,193 ns ns ns ns	V.				18	13	22	88	109	10	10	6	54	31	91
	SD p=0.0	5			23,193	su	su	su	SU	su	su	SU	su	SU	su
su su su su	SD p=0.10	0			19,191	su	su	SU	SU	22,060	SU	SU	SU	SU	su

Treatment	ent	Rate	<4 oz	4-6 oz	6-10 oz	10-14 oz	>14 oz	Total yield	Treatment Rate <4 oz	US#1 >4 oz	US#2 >4 oz	Z0 9<	>10 oz
	-			100	СШ F	5	00		877	PCP	23	53	%
1 Z	Non-treated check		87	166	173	/1	٥٤	ددد	440	+7+	C1		~~
2 Z	Zidua	3.5 fl oz/a	a 98	143	228	71	29	569	471	443	28	51	18
ž	Metribuzin	0.5 lb/a											
3 Z	Zidua	3.5 fl oz/a	a 97	154	175	51	27	505	407	380	28	50	15
D	Dual	1 pt/a								ALXY TABLE MARK ALXY TABLE TRADUCTION AND A TABLE AND A DOMESTIC AND A			
4 S	Sulfentrazone	3 oz/a	85	154	169	42	24	474	389	366	24	48	14
5 Z	Zidua	3.5 fl oz/a	'a 87	141	205	80	42	554	468	430	38	59	21
Ą	Metribuzin	0.5 lb/a											
D	Dual	1 pt/a											
Ą	Matrix	1.5 oz/a						<u>And COUNTY and An ISON MALE TO BE AND AND AND AND AND AND AND AND AND AND</u>					
6 Z	Zidua	3.5 fl oz/a	'a 98	132	209	17	19	534	436	424	12	56	11
2	Metribuzin	0.5 lb/a											
Ц Ц	Dual	1 pt/a											
٢	Metribuzin	0.5 lb/a	123	164	193	64	29	573	450	426	23	49	15
д 15	Dual	1 pt/a											
S	Sulfentrazone	3 oz/a											
Mean			67	151	193	65	30	535	438	413	25	53	17
CV			28	20	25	49	76	17	21	21	52	19	41
LSD p=0.05	=0.05		su	su	su	SU	su	SU	SU	su	SU	su	su
LSD p=0.10	=0.10		SU	su	su	su	SU	SU	SU	Su	SU	su	su

1 Non-treated check	Rate		<4 oz	4-6 oz	6-10 oz	10-14 oz	>14 oz	Total yield	Total Marketable	US#1 >4 oz	US#2 >4 oz	Z0 9<	>10 0Z
1 Non-treated								tuber number/a				. % —	, ,
	l check		50,276	53,543	36,845	9,801	3,630	154,094	103,818	100,188	3,630	33	6
2 Zidua	3.5	fl oz/a	56,084	46,827	47,735	9,983	2,723	163,350	107,267	102,366	4,901	37	~
Metribuzin		0.5 lb/a					it that						
3 Zidua	3.5	fl oz/a	54,813	50,276	37,752	7,260	2,723	152,823	98,010	92,021	5,990	31	9
Dual	1	pt/a											
4 Sulfentrazone	ne 3	oz/a	47,916	49,913	35,937	5,808	2,360	141,933	94,017	89,117	4,901	31	9
5 Zidua	3.5		48,824 46,283	46,283	42,653	10,890	3,812	152,460	103,637	96,921	6,716	39	10
Metribuzin	0.5	lb/a											
Dual	1	pt/a											
Matrix	1.5	oz/a						a bala di colo 20 Yen kan da					
6 Zidua	3.5	fl oz/a	54,087 42,290	42,290	44,105	10,527	1,815	152,823	98,736	95,651	3,086	38	9
Metribuzin	0.5	lb/a											
Dual	1	pt/a											
7 Metribuzin	0.5	lb/a	68,970	53,180	40,838	8,894	2,904	174,603	105,815	100,914	4,901	30	L
Dual	1	pt/a											
Sulfentrazone	one 3	oz/a											
Mean			54,424	48,901	40,838	9,023	2,852	156,012	101,614	96,740	4,875	34	8
C			29	20	24	62	71	15	18	18	41	27	48
$LSD \ p=0.05$			SU	su	su	SU	su	su	SU	SU	SU	SU	su
$LSD \ p=0.10$			SU	su	su	su	su	SU	ns	SU	SU	su	Su

Effect of pyroxasulfone on potato cultivars. Robinson, Brandvik and Ihry. Eight potato cultivars (Bannock russet, Clearwater Russet, Ivory Russet, Lamoka, Russet Burbank, Russet Norkotah, Shepody, and Dakota Russet) were planted near Park Rapids, MN on May 14, 2018 in plots measuring 6 ft wide x 25 ft long. Soil characteristics were 92% sand, 6% silt, 2% clay with 1.2% organic matter and a pH of 5.8. Treatments were applied on May wide boom equipped with XR11002 flat fan nozzles calibrated to deliver 15 gallons per acre. Potatoes emerge around June 1, 2017. Plots were rated 25 as a preemergence treatment with shoots 3 to 4 inches below the top of the hill. All treatments were applied to the center of the plots with a 9-ftfor crop injury and weed control at 1, 2 and 4 weeks after emergence. Harvest occurred on September 17, 2018. The experiment was a randomized complete block design with 3 treatments. Significant crop injury was not expressed at the 3.5 or 7 oz/a rates of pyroxasulfone at any of the timings. There was no significant yield loss between 0, 3.5 and 7 oz/a within cultivars tested. Potato crop safety to pyroxasulfone was good when treatments were applied with shoots at 3 to 4 inches below the top of the hill.

Cultivar	Treatment	Rate	ບັ	Crop injury	ury	Commo	Common Lambsquarters	uarters	SNA	Smartweed	eed	Hairy	Hairy Nightshade	hade	Eastern Black Nightshade	Nightshade
		oz/a	6/8	— % — 6/19	7/6	6/8	6/19	2/6	6/8	6/19	- Effica 7/6	Efficacy (%) 7/6 6/8	6/19	2/6	6/19	2/6
Bannock Russet	NT	0	100	100	100	0	0	0	0	0	0	0	0	0	0	0
Bannock Russet	Zidua	3.5	100	100	100	100	100	87	67	65	80	100	93	100	100	100
Bannock Russet	Zidua	٢	100	100	100	100	100	100	100	100	100	100	- L6	100	100	100
Clearwater	NT	0	100	100	100	0	0	0	0	0	0	0	0	0	0	0
Clearwater	Zidua	3.5	100	100	100	100	95	100	100	80	100	100	76	100	57	100
Clearwater	Zidua	ь	100	100	100	100	80	100	100	100	100	100	100	100	100	100
Ivory Russet	NT	0	100	100	100	0	0	0	0	0	0	0	0	0	0	0
Ivory Russet	Zidua	3.5	100	100	100	100	100	100	100	80	93	100	100	100	100	100
Ivory Russet	Zidua	7	100	100	100	100	100	100	100	76	93	98	67	100	67	. 80
Lamoka	NT	0	100	100	100	0	0	0	0	0	0	0	0	0	0	0
Lamoka	Zidua	3.5	100	100	100	100	95	100	100	82	100	100	100	100	100	100
Lamoka	Zidua	F	100	100	100	100	100	100	67	100	100	100	100	100	100	100
Russet Burbank	NT	0	100	100	100	0	0	0	0	0	0	0	0	0	0	0
Russet Burbank	Zidua	3.5	100	100	100	100	100	100	98	100	100	100	100	100	100	100
Russet Burbank	Zidua	7	100	100	100	100	100	100	100	80	100	100	100	100	100	100
Russet Burbank	Outlook	21	100	100	100	100	100	92	83	LL	80	LL	40	93	55	100
Russet Norkotah	NT	0	100	100	100	0	0	0	0	0	•	0	0	•	0	0
Russet Norkotah	Zidua	3.5	100	100	100	100	100	100	100	95	100	100	100	100	100	100
Russet Norkotah	Zidua	7	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Shepody	NT	0	100	100	100	0	0	0	0	0	0	0	0	0	0	0
Shepody	Zidua	3.5	100	100	100	100	100	100	100	83	100	100	100	100	100	100
Shepody	Zidua	٢	98	100	100	100	100	100	100	76	100	100	100	100	100	100
Shepody	Outlook	21	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Dakota Russet	IN	0	100	100	100	0	0	0	0	0	0	0	0	0	0	0
Dakota Russet	Zidua	3.5	100	100	100	98	6	87	67	17	11	98	100	100	95	95
Dakota Russet	Zidua	5	100	100	100	100	100	100	100	93	100	100	100	100	100	100
Dakota Russet	Outlook	21	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Mean			100	100	100	70	69	69	66	63	68	69	99	70	67	69
CV			1	ı	I	1	11	10	30	30	17	7	21	б	22	10
$LSD \ p=0.05$			su	ı	ı	1	13	11	33	31	18	7	23	4	24	11

I able 2. Graded yield (cwta) of seven cultivars treated with pyroxasuitone in fruodaty, 1919 2010	ield (cwt/a) oi	seven c	ultivars t	reated WI	un pyruxas			-0107 NT					
Cultivar	Product	Rate	<4 oz	4-6 oz	6-10 oz	10-14 oz	>14 oz	Total yield	Total Marketable	US#1 >4 oz	US#2 >4 oz	>0 0z	>10 oz
		oz/a						cwt/a				%	
Bannock Russet	Non-treated	0	35	74	121	108	44	383	348	326	21	71	40
Bannock Russet	Zidua	3.5	33	60	153	138	74	459	425	407	18	79	47
Bannock Russet	Zidua	٢	35	73	157	62	31	374	339	322	18	71	30
Clearwater	Non-treated	0	120	147	131	21	10	429	309	301	8	37	٢
Clearwater	Zidua	3.5	167	196	107	13	7	485	318	310	8	25	'n
Clearwater	Zidua	۲	192	199	84	6	0	484	292	288	4	19	2
Ivory Russet	Non-treated	0	23	60	130	94	32	339	315	265	51	74	32
Ivory Russet	Zidua	3.5	45	98	202	90	24	459	414	372	42	67	24
Ivory Russet	Zidua	٢	.56	115	182	36	7	391	335	311	24	56	6
Lamoka	Non-treated	0	32	95	226	78	53	453	421	412	9	5	33
Lamoka	Zidua	3.5	3	131	199	54	ŝ	451	388	382	9	57	. 13
Lamoka	Zidua	r	59	97	152	71	19	398	339	337	2	62	23
Russet Burbank	Non-treated	0	91	153	208	48	17	516	425	395	30	52	12
ト Russet Burbank	Zidua	3.5	129	205	182	42	8	565	437	398	39	40	6
	Zidua	7	111	154	179	59	24	528	416	383	34	50	16
Russet Burbank	Outlook	21	132	187	155	27	0	502	369	352	17	37	5
Russet Norkotah	Non-treated	0	46	87	167	95	32	427	381	367	13	68	29
Russet Norkotah	Zidua	3.5	4	83	192	119	80	518	474	465	10	75	37
Russet Norkotah	Zidua	٢	48	75	210	142	4	519	471	460	11	76	36
Shepody	Non-treated	0	50	78	204	105	61	498	447	418	29	74	33
Shepody	Zidua	3.5	39	65	199	119	45	466	428	387	41	78	35
Shepody	Zidua	٢	34	63	155	113	88	453	419	370	49	78	44
Shepody	Outlook	21	24	59	175	132	102	491	467	386	82	83	46
Dakota Russet	Non-treated	0	64	126	205	49	15	459	395	378	17	58	14
Dakota Russet	Zidua	3.5	37	89	211	63	25	425	388	375	12	70	20
Dakota Russet	Zidua	Þ	5	164	223	65	11	534	462	445	16	55	4 - 14
Dakota Russet	Outlook	21	66	171	201	26	0	497	398 00 000	383	15	48	9
Mean			70	115	174	74	30	463	393	370	23	61	22
CV			42	27	25	39	96	17	18	18	86	16	42
LSD p=0.05			48	51	11	47	47	su	SU	su	32	16	15
LSD p=0.10			40	43	59	39	39	SU	96	16	27	13	13

Table 2. Graded yield (cwt/a) of seven cultivars treated with pyroxasulfone in Hubbard, MN 2018.

Table 3. Tuber number per plot of of seven cultivars treated with pyroxasulfone in Hubbard, MN 2018	mber per plot (of of sev	ven cultiva	rs treated	with pyrox	asulfone in	Hubbard,	, MN 2018. Total viald	Total Markatahla	11S#1 >4 oz	11S#2 >4 oz		>10 oz
Culuval	LIUUUU	Date 07/a	70					Tither number /s					%
Rannock Russet	Non-treated	0	18.876	21.296	22.264	12.826	3,630	78,892	60,016	56,144	3,872	50	21
Bannock Russet	Zidua	3.5	17,424	17,424	27,830	16,698	6,292	85,668	68,244	65,582	2,662	59	27
Bannock Russet	Zidua	7	17,908	20,812	28,314	9,438	2,420	78,892	60,984	57,838	3,146	51	16
Clearwater	Non-treated	0	67,034	46,222	26,862	2,904	484	143,506	76,472	74,294	2,178	33	7
Clearwater	Zidua	3.5	92,444	61,710	22,990	1,694	242	179,080	86,636	84,458	2,178	14	1
Clearwater	Zidua	٢	88,088	51,062	14,520	968	0	154,638	66,550	65,824	726	10	-1
Ivory Russet	Non-treated	0	15,730	22,264	32,912	12,342	2,662	85,910	70,180	63,646	6,534	56	18
Ivory Russet	Zidua	3.5	22,022	27,830	38,236	11,374	2,420	101,882	79,860	73,084	6,776	50	13
Ivory Russet	Zidua	٢	28,314	35,090	36,058	4,598	242	104,302	75,988	71,874	4,114	40	5
Lamoka	Non-treated	0	17,666	29,282	46,222	10,648	2,178	105,996	88,330	86,636	1,694	55	12
Lamoka	Zidua	3.5	39,688	46,464	45,738	8,954	484	141,328	101,640	99,704	1,936	39	7
Lamoka	Zidua	7	33,638	30,250	31,702	10,164	1,936	107,690	74,052	73,568	484	43	12
Russet Burbank	Non-treated	0	43,076	43,318	38,478	6,292	1,452	132,616	89,540	83,974	5,566	35	9
	Zidua	3.5	71,632	66,792	39,204	5,808	726	184,162	112,530	105,028	7,502	25	ю
S Russet Burbank	Zidua	7	55,176	45,254	33,154	6,534	2,178	142,296	87,120	81,554	5,566	31	٢
Russet Burbank	Outlook	21	67,760	56,144	32,186	3,630	0	159,720	91,960	88,572	3,388	23	2
Russet Norkotah	Non-treated	0	27,588	28,556	35,090	13,552	3,388	108,174	80,586	77,440	3,146	48	16
Russet Norkotah	Zidua	3.5	26,136	27,346	41,382	17,908	8,470	121,242	95,106	93,654	1,452	55	21
Russet Norkotah	Zidua	٢	25,410	22,748	41,382	18,876	4,356	112,772	87,362	85,426	1,936	57	21
Shepody	Non-treated	0	24,200	21,780	37,268	12,826	5,324	101,398	77,198	73,568	3,630	54	18
Shepody	Zidua	3.5	26,862	22,022	42,592	16,940	4,114	112,530	85,668	78,408	7,260	57	19
Shepody	Zidua	7	18,876	19,118	31,218	15,246	7,986	92,444	73,568	67,034	6,534	09	27
Shepody	Outlook	21	15,004	19,844	38,720	19,360	9,680	102,608	87,604	76,714	10,890	99	28
Dakota Russet	Non-treated	0	31,702	35,816	39,204	5,808	1,210	113,740	82,038	78,892	3,146	41	٢
Dakota Russet	Zidua	3.5	23,958	30,492	47,674	9,680	2,662	114,466	90,508	88,330	2,178	33	12
Dakota Russet	Zidua	٢	46,706	59,290	55,176	10,648	1,210	173,030	126,324	122,210	4,114	38	٢
Dakota Russet	Outlook	21	53,240	52,514	40,898	3,388	0	150,040	96,800	93,654	3,146	34	3
Mean			37,635	35,583	35,825	9,967	2,805	121,816	84,180	80,263	3,917	43	12
CV			46	25	34	44	96	29	28	28	83	21	49
$LSD \ p=0.05$			28,264	20,578	su	7,238	4,421	58,579	SU	SU	su	15	10
LSD p=0.10			23,594	17,178	16,709	6,041	3,690	48,898	SU	SU	4,439	12	8

Carryover of herbicides in potato production systems

Andy Robinson, Extension Potato Agronomist – NDSU/U of M Eric Brandvik, Research specialist Peter Ihry, Ag Tech

Summary of 2018 research study

Soil characteristics were 84% sand, 12% silt and 4% clay with 1.25% organic matter and a pH of 6.6. Raptor was applied at 0, 1, 2 and Herbicide injury to potato plants is a common concern in potato production because of the high value of potatoes and the sensitivity of residues carried over in seed. One of the common herbicides that is used in dry bean production prior to potato is imazamox (Raptor). The purpose of this project was to evaluate the effects of imazamox carryover in soil on potato growth, development and tuber yield. 4 oz/a in the August 15, 2017. Following herbicide application, the field was planted to a mustard green manure crop, was tilled that fall, but not fumgiated. Russet Burbank and Umatilla Russet whole seed (2-3 oz) and cut seed (2-2.5 oz) were planted on May 11, potatoes other herbicides. Herbicide injury commonly occurs from soil carryover, drift from nearby herbicide treatment and from 2018 and harvested in September 19, 2018.

decrease in tubers sized 10-14 oz. This slight shift in tuber size resulted in a smaller percentage of tubers <6 oz when compared to the Raptor treatments had no effect on yield or marketable yield. The rates of 1 and 2 oz/a Raptor caused an increase in tubers <4 oz, and carryover issues as yields were similar across treatments. A study was initiated in 2018 with treatments of 0, 1, 2, 4 and 8 oz/a Raptor non-treated check. Differences were found between Russet Burbank and Umatilla Russet, which was expected. One important item that was learned, is that without fall fumigation it seemed that microbial breakdown of imazamox occurred and there were no and metam-sodium was applied in strips across plots to determine the effects of fumigation on imazamox breakdown.

	>10 oz	~~~~%	17 a	- 11 b	13 ab	17 a	0.0021
	>6 oz	%	53 ab	44 b	46 ab	53 a	0.0129
	US#2 >4 oz		18	12	21	17	0.3348
	US#1 >4 0Z US#2 >4 0Z		434	404	412	442	0.2360
Hubbard, MN.	yield		452	416	433	459	0.2322
in 2018 near H	Total yield	— cwt/a —	555	546	560	564	0.8848
usset yield	>14 oz		22 ab	10 b	19 ab	28 a	0.0055
Umatilla Rı	10-14 oz		71 a	49 b	53 ab	67 ab	0.0376 0.3565 0.3404 0.0364
rbank and	6-10 oz		205	184	188	202	0.3404
Russet Bu	4-6 oz		153	173	173	162	0.3565
zamox) on	<4 oz		0 104 ab* 153	130 a	127 ab	4 105 b	0.0376
Table 1. Effects of Raptor (imazamox) on Russet Burbank and Umatilla Russet yield in 2018 near Hubbard, MN.	Herbicide Rate (oz/a) <4 oz 4-6 oz 6-10 oz 10-14		0 1	Level T and the second s	2 1	4 1	
Table 1. Effec	Herbicide		Non-treated	Raptor	Raptor	Raptor	p-value

*Means separated with Tukey pair-wise comparison at p=0.05

•

5 Table 2. Effects of Raptor (imazamox) on Russet Burbank and Umatilla Russet tuber number in 2018 near Hubbard, MN.

	-												
Herbicide	Rate (oz/a)	<4 oz		4-6 oz 6-10 oz 10-14 e	10-14 oz	0z >14 oz	Z	Total yield	Marketable yield	US#1 >4 oz	US#2 >4 oz	z0 9<	>10 oz
												0	~~~~~%
		1)0m)					~	
Non-treated	0	60,031 ab 49,958	5 49,958	43,469	9,892 a	2,133	33 ab	165,483	105,452	102,366	3,086	34 ab	8 ab
Raptor	T	76,282 a	56,369	39,463	6,897 b	36	985 b	179,996	103,714	101,277	2,437	28 b	5 b
Raptor	7	72,963 ab	b 56,436	39,887	7,474 ab	0 1,815	l5 ab	178,575	105,612	101,854	3,758	28 ab	6 ab
Raptor	4	60,130 b 52,571	52,571	43,005	9,353 ab		2,712 a	167,770	107,640	104,672	2,968	34 a	8 a
p-value	19 J W 19 4 7 19 19 19 19 19 19 19 19 19 19 19 19 19	0.0405		0.3448 0.3307	0.0403	0.1).0095	0.1943	0.8906	0.8911	0.5133	0.0240	0.0062

Seed type	<4 oz	4-6 oz	6-10 oz	10-14 oz	>14 oz	Total	Seed type <4 oz $4-6$ oz $6-10$ oz $10-14$ oz >14 oz $10-14$ oz $10-14$ oz >10	US#1 >4 oz	US#2 >4 07	z0 9<	>10 oz
-					CW	cwt/a				%	
RB cut	133 a	172 ab	172 c	50 b	11 b	537	405 b	389 b	15 b	43 c	11 c
RB whole	141 a	199 a	177 bc	31 b	12 b	560	419 ab	411 ab	8 b	39 c	7 c
Umatilla cut	78 b	128 c	214 ab	88 a	38 a	546	468 a	452 a	16 ab	62 a	23 a
Umatilla whole	111 a	161 b	215 a	72 a	22 b	580	469 a	443 ab	27 a	53 b	16 b
p-value	<0.0001	<0.0001	0.0016	<0.0001	<0.0001	0.2297	0.0091	0.0206	0.0003	<0.000 1	<0.000 1
Table 4. Effects of I	Raptor (îmazamo	xx) on Russet Bu	rbank cut, Russet	t Burbank whole	e, Umatilla Ru	isset cut and Um	Table 4. Effects of Raptor (imazamox) on Russet Burbank cut, Russet Burbank whole, Umatilla Russet cut and Umatilla Russet whole seed on tuber number in 2018 near Hubbard, MN.	uber number in 2018 I	near Hubbard, MN	7	
Seed type	<4 oz	4-6 oz	6-10 oz	10-14 oz	>14 oz	Total yield	Marketable yield	US#1 >4 0Z	US#2 >4 oz	z0 9<	>10 oz
					tuber ni	tuber number/a				0	~~~~%
RB cut	76,871 a	56,414 ab 37,069 b	37,069 b	6,961 bc	1,068 b	1,068 b 178,382 a	101,512	99,078	2,434 b	26 c	5 bc
										,	,

11 a

ပ

ŝ

υ G

24 42

م

107,707

108,952 101,977 109,779 0.2058

188,656 a

р a

4,408 c 12,290 a

ab

38,426 44,597

> ы υ

5

79,704

đ

41,512 64,977

46,075 b

Umatilla cut RB whole

148,052 b 174,164 a

3,578 1,141

99,255

p, 1,245 2,723

7 b <0.0001

5,311 a <0.0001

104,468

0.2590

0.0003

<0.0001

<0.0001

2,140 b

9,935 ab

45,509 a 0.0037

52,196 b

ab

64,385

Umatilla whole p-value

<0.0001

0.0001

<0.0001 34 b

Figure 1. Pictures of 0, 1, 2 and 4 oz/a R

aptor on June 8, 2018.

Adjuvant Comparison with Potato Desiccants, Grand Forks1. H. Hatterman-Valenti and C. Auwarter.

This study was conducted at the Northern Plains Potato Growers Association dryland research site near Grand Forks, ND to evaluate different adjuvants when added to a common vine desiccant, diquat, on 'Red Norland' potato. Plots were 4 rows by 20 feet arranged in a randomized complete block design with 4 replicates. Seed pieces (2 oz) were planted on 36-inch rows and 12-inch spacing on June 19, 2018. Extension recommendations were used for cultural practices throughout the year. Plots were sprayed on August 27 with a CO2 pressurized sprayer equipped with 8002 XR flat fan nozzles with a spray volume of 20 GPA and a pressure of 40 psi. Plots were rated 1, 3 and 8 days after planting (DAP).

Table 1. Herbicide applica	tion informati
Date:	8/27
Air Temperature (F):	57
Relative Humidity (%):	78
Wind (MPH):	10
Soil Moisture:	Excess
Cloud Cover (%):	100
Next Rain:	8/31

Table 1. Herbicide application information.

Table 2. Percent Necrosis on Leaves and Stems, NDVI and Canopy Cover rating	able 2. Percent Necrosis on Leaves and Stems, NDVI an	d Canopy Cover ratings.
---	---	-------------------------

Trt	Treatment	F	Rate	Appl	1	DAA		3 DAA-			8 DAA	
No.	Name	Rate L		Code	Leaf Senescence	NDVI	Leaf Senescence	Stem Senescence	NDVI	Leaf Senescence	Stem Senescence	Canopy
1	Reglone	1 p	ot/a	А	13.8 a	0.73150 a	48.8 a	25.0 a	0.50565 b	87.5 a	80.0 a	4.546 b
2	Reglone	1 p	ot/a	A	11.3 a	0.68550 a	47.5 a	22.5 a	0.53558 b	83.8 a	71.3 a	9.944 b
	Preference	0.25 %	% v/v	Α								
3	Reglone	1 p	ot/a	Α	13.8 a	0.69143 a	45.0 a	21.3 a	0.52878 b	85.0 a	75.0 a	6.004 b
	Accudrop	0.25 %	% v/v	А								
4	Reglone	1 p	ot/a	A	8.3 a	0.69730 a	43.3 a	20.0 a	0.53187 b	70.0 a	60.0 a	13.912 b
	Noble	3 f	l oz/a	А								
5	Reglone	1 p	ot/a	А	16.3 a	0.73373 a	43.8 a	21.3 a	0.54995 b	84.7 a	78.3 a	3.479 b
	Accudrop	0.25 %	% v/v	А								
	Noble	3 f	l oz/a	А								
6	Reglone	1 p	ot/a	A	16.7 a	0.66645 a	36.7 a	18.3 a	0.56087 b	88.3 a	73.3 a	8.924 b
	Preference	0.25 %	% v/v	A								
	Interlock	4 f	l oz/a	А								
7	Regione	1 c	ot/a	A	17.5 a	0.67120 a	53.8 a	27.5 a	0.54123 b	81.3 a	73.8 a	8.075 b
	Accudrop	0.25 9		А								
	Interlock		l oz/a									
8	Regione	1 c	ot/a	A	15.0 a	0.74157 a	47.5 a	22.5 a	0.52398 b	77.0 a	68.8 a	5.326 b
	AG8050		l oz/a	A								
9	Regione			A	18.8 a	0.74090 a	45.0 a	25.0 a	0.52208 b	81.3 a	71.3 a	9.186 b
	AG14039		l oz/a	А								
10	Untreated				0.0 b	0.68137 a	0.0	0.0 b	0.80433 a	0.0 b	0.0 b	51.429 a
			LSC) P=.05	7.19	0.1000	18.71	12.25	0.0335	14.37	15.44	5.52 - 14.51

Regione alone provided just as much leaf and stem necrosis as regione plus an adjuvant (Table 2). The use of NDVI or % Canopy Coverage data resulted in similar statistical results as using % necrosis data. The use of NDVI or %Canopy Cover provides ways to evaluate necrosis without the subjectiveness of the visible rating system.

Adjuvant Comparison with Potato Desiccants, Grand Forks2. H. Hatterman-Valenti and C. Auwarter.

This study was conducted at the Northern Plains Potato Growers Association dryland research site near Grand Forks, ND to evaluate different adjuvants when added to a common vine desiccant, diquat, on 'Red Norland' potato. Plots were 4 rows by 20 feet arranged in a randomized complete block design with 4 replicates. Seed pieces (2 oz) were planted on 36-inch rows and 12-inch spacing on June 19, 2018. Extension recommendations were used for cultural practices throughout the year. Plots were sprayed on August 27 with a CO2 pressurized sprayer equipped with 8002 XR flat fan nozzles with a spray volume of 20 GPA and a pressure of 40 psi. Plots were rated 1, 3 and 8 days after planting (DAP).

Table 1. Herbicide applica	tion informati
Date:	8/27
Air Temperature (F):	57
Relative Humidity (%):	78
Wind (MPH):	10
Soil Moisture:	Excess
Cloud Cover (%):	100
Next Rain:	8/31

Table 1. Herbicide application information.

Table 2. Percent Necrosis on	Leaves and Stems	NDVI and Canor	ov Cover ratings
	Leaves and Stems	, ND VI and Cano	by cover ratings.

Trt	Treatment		Rate	Appl	1	DAA		3 DAA-			8 DAA	
No.	Name	Rate	Unit	Code	Leaf Senescence	NDVI	Leaf Senescence	Stem Senescence	NDVI	Leaf Senescence	Stem Senescence	Canopy
1	Untreated				0.0 b	0.69073 a	0.0 b	0.0 b	0.79793 a	0.0 b	0.0 b	41.14 a
2	Reglone	1	pt/a	Α	15.0 a	0.70277 a	53.8 a	30.0 a	0.53830 b	86.3 a	78.8 a	3.64 b
.3	Regione	1	pt/a	Α	13.8 a	0.73803 a	53.8 a	26.3 a	0.50120	93.3 a	85.0 a	1.89 b
1	Activate Plus	0.1	% v/v	А								
4	Reglone	1	pt/a	А	7.5 ab	0.69960 a	47.5 a	25.0 a	0.50658 b	78.8 a	70.0 a	7.40 b
	AG17054	0.1	% v/v	А								
5	Reglone	1	pt/a	Α	10.0 ab	0.78647 a	55.0 a	28.8 a	0.52905 b	87.5 a	76.3 a	4.29 b
	AG17055	0.1	% v/v	Α								
6	Reglone	1	pt/a	A	3.3 ab	0.81165 a	58.3 a	31.7 a	0.53815 b	86.7 a	76.7 a	3.34 b
	AG17056	0.1	% v/v	А								
7	Reglone	1	pt/a	Α	10.0 ab	0.68360 a	53.8 a	27.5 a	0.50933 b	89.5 a	81.3 a	2.89 b
	Activate Plus	0.25	% v/v	А								
			LSD	P=.05	8.73	0.148	16.53	11.24	0.040	12.24	12.90	3.48 – 10.55

Regione alone provided just as much leaf and stem necrosis as regione plus an adjuvant (Table 2). The use of NDVI or % Canopy Coverage data resulted in similar statistical results as using % necrosis data. The use of NDVI or %Canopy Cover provides ways to evaluate necrosis without the subjectiveness of the visible rating system.

Adjuvant Comparison with halosulfuron in Pumpkin, Fargo. H. Hatterman-Valenti and C. Auwarter.

This study was conducted at the NDSU AES main station at Fargo, ND to evaluate different adjuvants when added to halosulfuron on pumpkin. Plots were individual plants in a row arranged in a randomized complete block design with three replicates. Pumpkin seed was planted May 30 on a 10 ft grid pattern. Extension recommendations were used for cultural practices throughout the year. Plots were sprayed on August 27 with a CO2 pressurized sprayer equipped with 8002 XR flat fan nozzles with a spray volume of 20 GPA and a pressure of 40 psi. Plots were rated 1, 3 and 8 days after planting (DAP).

Table 1. Herbicide application information.

6/22
73
70
5
dry
50
6/24

Table 2. Percent	pumpkin	injury an	d weed	control evaluations.

Pes	t Code		Pumpkin		VEMA	RRPW			VEMA	RRPW
1			Jun-29-2018					Jul-13-2018		
	Name	Rate Unit	%	%	%	%	%	%	%	%
1	Untreated		0.0 c	0.0 a	0.0 c	0.0 b	0.0 a	0.0 a	0.0 c	0.0 d
	Sandea	0.5 oz/a	3.3 bc	0.0 a	16.7 bc	15.0 b	0.0 a	1.7 a	13.3 c	16.7 cd
3	Sandea	0.5 oz/a	5.0 abc	0.0 a	71.7 a	60.0 a	0.0 a	23.3 a	60.0 ab	40.0 a-d
	Preference	0.25 % v/v								
4	Sandea	0.5 oz/a	1.7 c	0.0 a	30.0 b	23.3 ab	0.0 a	0.0 a	30.0 bc	23.3 bcd
	InterLock	3 fl oz/a								
5	Sandea	0.5 oz/a	15.0 a	0.0 a	75.0 a	58.3 a	0.0 a	8.3 a	56.7 ab	46.7 a-d
	Preference	0.25 % v/v								
	InterLock	3 fl oz/a								
6	Sandea	0.5 oz/a	6.7 abc	0.0 a	65.0 a	55.0 a	0.0 a	10.0 a	70.0 ab	46.7 a-d
	AG16134	0.25 % v/v								
7	Sandea	0.5 oz/a	6.7 abc	0.0 a	73.3 a	53.3 a	0.0 a	18.3 a	71.7 ab	46.7 a-d
	AG16134	0.25 % v/v								
	InterLock	3 fl oz/a								
8	Sandea	0.5 oz/a	13.3 ab	0.0 a	76.7 a	63.3 a	0.0 a	11.7 a	58.3 ab	46.7 a-d
	AG8050	6.4 fl oz/a								
a	Sandea	0.5 oz/a	8.3 abc	0.0 a	85.0 a	51.7 a	0.0 a	20.0 a	90.0 a	68.3 ab
	Prime Oil	1 % v/v	0.0 0.00	0.0 4	00.0 u	0				
10	Sandea	0.5 oz/a	8.3 abc	0,0 a	73.3 a	65.0 a	0.0 a	6.7 a	76.7 ab	56.7 abc
10	Supurb HC	1 pt/a	0.0 000	0.0 a	70.0 u	00.0 u	0.0 u			
- 11	•		12.2 ch	0.0 a	80.0 a	65.0 a	3.3 a	13.3 a	80.0 ab	73.3 a
11	Sandea	0.5 oz/a	13.3 ab	0.0 a	00.0 a	05.0 a	J.J a	15.5 a	00.0 ab	70.0 a
	AG14039	8 fl oz/a						40.0 -	00.0.eh	70.0
12	Sandea	0.5 oz/a	13.3 ab	0.0 a	80.0 a	65.0 a	0.0 a	13.3 a	80.0 ab	70.0 ab
	Supurb HC	1.5 pt/a								
LS	D P=.05		6.38		19.07	26.60	2.82	14.55	30.44	29.08

Sandea plus adjuvants (Preference +Interlock, AG8050, AG14039, and Superb HC) caused 13-15% crop injury 7 DAT (Table 2). Sandea + Prime Oil provided best Venice mallow control (90%) 21DAT. Sandea + AG14039 or Superb HC provided best redroot pigweed control (73, 70%) 21 DAT, almost two-fold more than Sandea + Preference.

Sunflower response and weed control from herbicides applied pre-plant and post-plant preemergence near Hettinger, ND

Caleb Dalley, HREC, Hettinger, ND 2018

A trial was established on May 22, 2018 to determine sunflower response and weed control following early pre-plant (EPP) and preemergence (PRE) herbicide treatments. On May 31, sunflower were planted in 30-inch rows using a John Deere planter at a rate of 20,000 seeds/A at a depth of 1.5 inches. Nine days prior to planting, and EPP treatments were applied using a handheld back-pack sprayer with a 76-inch spray boom. PRE treatments were applied on June 4 using the same procedures. All EPP and PRE treatments were tank-mixed with glyphosate (Cornerstone 5 Plus @ 32 oz/A plus AMS at 8.5 lbs/100 Gal). The delay between planting and PRE application was due to persistent winds that prevented application. Sunflower emerged on June 7. Weeds emerging in trial included green foxtail and wild buckwheat. Green foxtail was controlled equally well when treatments were applied preplant or PRE. Wild buckwheat control was almost always greater following preplant application compared with PRE application. This may be due to greater amounts of rainfall after preplant vs PRE application which allowed for greater emergence of wild buckwheat following the PRE application timing. Sunflower yield was not affected by herbicide treatment or timing of herbicide treatment. Although yield in untreated plots was numerically the lowest, the difference was not significant. Weed populations in this trial were low, which was likely the reason for lack of yield response to herbicide treatments.

				Green	foxtail	Wild bu	ckwheat	-
	Rate		Sunflower	28 DAT	42 DAT	28 DAT	42 DAT	Sunflower yield
Treatment	oz/A	Timing	% injury		% cont	rol		lb/A
1Untreatead			0	0	0	0	0	3280
2Authority Supreme	8.5	EPP	0	87ab	88b	90a	91ab	3580
3Spartan Charge	5.75	EPP	0	71d	66d	90a	94a	3637
4Spartan Elite	26	EPP	0	98a	96a	90ab	91ab	3893
5Zidua SC	4	EPP	0	89ab	91ab	75bc	82bc	3625
6Authority Supreme	5.8	PRE	0	88ab	93ab	68c	75c	3985
7Authority Supreme	8.5	PRE	0	94ab	94ab	68c	74c	4110
8Spartan Charge	3.75	PRE	0	74cd	79c	71c	79bc	3856
9Spartan Elite	19	PRE	0	85bc	92ab	73c	78c	3823
10Zidua SC	3	PRE	0	88ab	95a	78abc	86abc	3679
LSD P=.05			•	10.76	7.01	13.89	11.74	602.05
Treatment F			0.000	4.439	15.797	3.672	3.086	0.926
Treatment Prob(F)			1.0000	0.0029	0.0001	0.0079	0.0183	0.5213

Table. Sunflower response and weed control following early pre-plant and preemergence herbicide treatments.

Means followed by same letter or symbol do not significantly differ (P=.05, LSD) EPP, early pre plant treatments, applied on May 22 (9 days before planting; PRE, preemergence treatments, applied on June 4 (4 days after planting)

Dandelion control with herbicides. Dr. Howatt and Mettler. The experiment was established near Fargo on October 13, 2017. Treatments were applied to dandelion and thistle October 13 with 42°F, 57% relative humidity, 0% cloud cover, 3 mph wind velocity at 355°, and dry soil at 52°F. Treatments were applied with a backpack sprayer delivering 8.5 gpa at 40 psi through 11001 TT nozzles to a 7 foot wide area the length of 10 by 30 foot plots. The experiment was a randomized complete block design with four replicates.

		2018	2018
Treatment	Rate	Dandelion	Thistle
MCPA	16	21	0
Fluroxypyr	16	20	7
2,4-D	16	25	0
2,4-DP	16	0	0
Dicamba-C	2	22	0
Halauxifen&Florasulam+NIS+AMS	0.3+0.25%+11	25	0
Triclopyr-U	4	24	0
Aminopyralid	1.25	99	99
Quinclorac&Sulfentrazone&2,4-D&Dicamba	24.6	70	66
Carfentrazone&2,4-D&MCPP&Dicamba	17.6	25	7
MCPA&Dicamba&Triclopyr	25.2	24	5
Triclopyr&Sulfentrazone&2,4-D&Dicamba	20	24	7
2,4-D&MCPP&Dicamba	26	23	7
Untreated Check	0	0	0
CV		81	94
LSD P=.05		33	19

Only aminopyralid provided exceptional and extended control of dandelion and Canada thistle.

Creeping Charlie control with herbicides. Dr. Howatt and Mettler. The experiment was established near Absaraka, North Dakota on October 12, 2017. Treatments were applied to creeping Charlie on October 12 with 62°F, 48.6% relative humidity, 0% cloud cover, 0.9 mph wind velocity at 0° and dry soil at 61°F. Treatments were applied with a backpack sprayer delivering 8.5 gpa at 40 psi through 11001 TT nozzles to a 7 foot wide area the length of 10 by 30 foot plots. The experiment was a randomized complete block design with four replicates.

		7/12/2018
Treatment	Rate	Creeping Charlie
2,4-D	16	93
2,4-DP	16	85
Dicamba-C	2	65
Fluroxypyr	2	27
Quinclorac&Sulfentrazone&2,4-D&Dicamba	24.6	96
Triclopyr-U	4	75
Quinoclorac+MSO	8+32	67
Halauxifen&Florasulam+NIS+AMS	0.3+0.25%+11	63
Carfentrazone&2,4-D&MCPP&Dicamba	17.6	70
MCPA&Dicamba&Triclopyr	25.2	82
Triclopyr&Sulfentrazone&2,4-D&Dicamba	20	88
2,4-D&MCPP&Dicamba	26	78
Untreated Check	0	0
CV		10
LSD P=.05		11

The premix of quinclorac and sulfentrazone and 2,4-D and dicamba provided 96% control of creeping Charlie 10 months after application. 2,4-D provided 93% control but 2,4-DP only gave 85% control. Triclopyr gave 75% control but the addition of sulfentrazone and 2,4-D and dicamba increased control to 88% while the addition of MCPA and dicamba gave 82% control.