1993 NORTH DAKOTA Weed Control Research

Weed Research Projects, Department of Crop and Weed Sciences NORTH DAKOTA STATE UNIVERSITY Fargo, N.D. 58105 White Section: Experiment titles, climatic, edaphic and general information.

Sugarbeet weed control, tit	le	s									•		-			-				•		•	•	I
General weed control in cro	pps	,	ti	tl	es			•			•			• •		•	•	•	•	•				II
Weed control in reduced til	lla	, ae	s	vs	te	ms	,	ti	tl	es														IV
Perennial weed control, tit	le	s-		1																		-		v
Climatic data, Carringtion																								VI
Climatic data, Casselton .	•	•	ĺ.	•		0		Č.	1	16			1	2										VII
Climatic data, Crookston .		•0		5	•	1		50			10	11												VIII
Climatic data, Crookston . Climatic data, Dickinson .		1	·	0	•			•	•			10				12		5	3					IX
Climatic data, Dickinson .	·	•		·	•	16	•	•	•	6.5						9.								х
Climatic data, Fargo	0	•	•	1		•0	•	•	•			•	•	•		•	.						9	ХI
Climatic data, Hettinger .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	XII
Climatic data, Minot	21	•	•	10	10	•	•	•	1	•	•	1	1	1	1	•	•	1	•	1	T	•	12	XIII
Climatic data, Olivia	•	•	•	•	•	•	•	•	•	•	•	•	1	•	•	•	•	•	•	•	1	1	•	XIV
Climatic data, Prosper	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	1	•	•	
Climatic data, Williston .		•				•		•		•	•	•	•	•	•	•	·	•	•	•	•	•	•	XV
Soil characteristics					•	•		•			•	•	•		•	•	•	•	•	•	•	•	•	XVI
Key to abbreviations					•								•	•	•		•		•	•	•	•	•	XVII
List of adjuvants								•							•			•	•	•	•	•	•	XIX
List of herbicides tested	1																					•		XX
HIDE OF HELETOIRED CODUCT																								

Gold Section: Sugarbeet Weed Control

1 Preplant incorporated herbicides, Crookston Postemergence herbicides over soil-applied herbicides, Minto . . . 2 Triflusulfuron over soil-applied herbicides, Fargo 4 6 7 Postemergence herbicides on sugarbeet, Benson 8 10 Redroot pigweed control with postemergence herbicides, Mooreton . . . 11 Kochia control with postemergence sugarbeet herbicides, Ortonville . . . 12 Kochia control with postemergence herbicides, Oslo 13 Lanceleaf sage control with postemergence herbicides, Wolverton . . . 14 Multispecies evaluation of postemergence sugarbeet herbicides, Renville 15 Multiple postemergence applications, Crookston 16 18 Adjuvant comparison with triflusulfuron, Crookston 20 Comparison of Terra and Nor-Am desmedipham and desm&phen, Fargo 21 Comparison of Terra and Nor-Am desmedipham and desm&phen, Mooreton . . . 22 Triflusulfuron tank-mixed with insecticide, Fargo 23 Soil-applied herbicides and Counter 15G insecticide, Crookston 2.4 26 Triflusulfuron and insecticide interaction, St. Thomas 27 30 Barley cover crop seeding rate and stage of control, Fargo 32 34 36 37 Multispecies evaluation of soybean herbicide soil residual, Fargo . . . 38 39 40 Late season new leaf removal effect on sugarbeet, Fargo 41 42

Ι

Page

Green section: General Weed Control in Crops

NALEWAJA	Page	e File
Wild oat control in wheat, Fargo 1993 Wild oat control in wheat, Hettinger 1993 Wild oat control in wheat, Minot 1993 Wild oat control in wheat, Williston 1993 Difenzoquat for wild oat control in barley, Fargo 1993 Difenzoquat plus adjuvants for wild oat control in barley, Fargo 1993 Control of wild oats plus other weeds, Fargo 1993 Barban plus thifensulfuron and tribenuron for wild oat control, Fargo 1993	2 3 4 5 6 7	W02 W03 W04 W05 W06
Broadleaf and grass control in wheat, Fargo campus 1993 Broadleaf and grass control in wheat, Carrington 1993 Broadleaf and grass control in wheat, Dickinson 1993 Broadleaf and grass control in wheat, Hettinger 1993 Broadleaf and grass control in wheat, Minot 1993 Broadleaf and grass control in wheat, Minot 1993 Broadleaf and grass control in wheat, Williston 1993 Sulfonylurea mixture for broadleaf weed control, Fargo 1993 Wild buckwheat control in wheat, Fargo 1993 Phenoxy and alternatives in wheat, Fargo 1993 F-8426 for weed control in wheat, Fargo 1993 2,4-D plus surfactants in wheat, Fargo 1993 2,4-D plus surfactants in wheat Exp 2, Fargo 1993 Propanil for foxtail control in wheat, Fargo 1993 2,4-D or Dicamba with Penncozeb, Fargo 1993 3,5-D or Dicamba with Penncozeb, Fargo 1993 3,5-D or Dicamba with Penncozeb, Fargo 1993 3,5-D or Dicamba w	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	WH1 WH2 WH3 WH4 WH6 WH7 WH9 WH10 WH10 WH10 WH11 WH12 WH13 WH14 F9304 WH15 WH16 WH16B WH16B WH18 WH19
Lanceleaf sage control in wheat, Minot	28	
Competition experiment in corn, Casselton 1993 Total POST weed control in corn, Casselton 1993 ZOLLINGER		CO1 CO2
Weed control in corn from PPI herbicides, Casselton Weed control in corn from PRE herbicides, Casselton Weed control in corn from POST herbicides, Casselton Weed control in corn, Carrington	31 32 33 34	
NALEWAJA Bentazon + Thifensulfuron in soybeans, Prosper 1993 Imazethapyr with adjuvants in soybeans, Casselton 1993 Soluble Boron plus acifluorfen and bentazon in soybeans, Prosper 1993 ZOLI INGER	35 36	SB1 SB2 SB3
Weed control in soybean from PPI herbicides, Casselton Weed control in soybean from PRE herbicides, Casselton Weed control in soybean from POST herbicides, Casselton Weed control in soybean, Mooreton, ND	38 39 40 41	

Green section continued: General Weed Control in Crops

NALEWAJA POST weed control in drybeans, Casselton 1993	42	DB5
Weed control in dry bean from herbicides, Casselton	43 44	
NALEWAJA Weed control in flax, Fargo 1993	45	FX1
ZOLLINGER Sunflower response to nicosulfuron residue, Grand Forks	46	
Effect of imazethapyr on establishing alfalfa Control of established alfalfa, Fargo	47 48	
NALEWAJA Surfactants and salts with Roundup, Fargo 1993 Surfactants and salts with Roundup, Carrington 1993 Surfactants and salts with Roundup, Minot 1993 Surfactants and salts with Roundup, Williston, 1993 Sethoxydim with commercial adjuvants, Fargo 1993	50	SP3

Blue Section: Weed Control in Reduced Tillage Systems Synergistic Interactions with Herbicides

	Dago	E:la
Wheat response to clomazone plus safener, Fargo Thifensulfuron plus synergists for foxtail control in wheat, Fargo Quinclorac plus adjuvants in wheat, Harbin, Heilongjiang Prov., China POST chlorimuron and imazethapyr in soybean. Harbin	. 1	WH8
POST chlorimuron and imazethapyr in soybean, Harbin, Heilongjiang Prov., China POST chlorimuron and imazethapyr in soybeans, 81378 Army Farm,	. 4	SB1
HELLONG LLANG PROVI UNINA	5	SB2
 Weed control economics in a minimum till and no-till soybean-wheat rotation, Fargo 1992. Multiple applications of bentazon in drybeans, Fargo. Bentazon, acifluorfen, and imazethapyr in drybeans, Fargo. Bentazon combinations in drybeans, Fargo. EPTC for weed control in drybeans, Fargo. Economics of fallow with Detectspray, broadcast sprayer. 	22 23 24 25	DB4 DB2 DB3 DB1
Economics of fallow with Detectspray, broadcast sprayer, and tillage, Fargo Sulfosate and glyphosate for control of volunteer wheat	26	FA2
and foxtail, Fargo	28	FA4

	Pi	nk	Se	ecti	on	P	ere	nni	ial	We	ed	Co	onti	ol																	Pa	ge
The second with the second	Le C C C C C C C C C C C C C C C C C C C	var af qui on sal on apj ea on	riou y s inc ipa t fo ipa plic fy ipa · le	is a purison riso prin riso afy	adjurge ac, on a nula on alor urg on	an of atic of ne e c of	intsontr d n pic ons liqu or ont var ge	ol iico lora for uid wit rrol iou con	witt osul am le and h g h g s li utro	h in fur afy d p glyp iqu	ma on nine sp ow ohc	zet e, e vde osat	hap este ge o r pi te o	r, a con iclo r a	 , in and tro orar dju der	 pc 1 . n f va 2,4	 aqu otas form nts 	nul for	 m atio	 ons ula	 tio	 ns	 						· · ·	•••	 2 5 8-	4 5-7
			ntro	ol	••	•••	•••	•••	•••	•••	•••	•••		•••	•••	•••		•••	••		• •	••	 ••	•••	•••	•••	••	• • •			•	
	5	spi	urg	e						• • •						• •		• •													12-	14
		¢																														
																												2				

	Ι		Dre	ecipitatio	. 14	CLIMA	1	the second s					1 7	-	T .			
Date	April	May	June			G	1	oril		ay		ine	Ju		1	gust		mber
	April	wiay	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
1 2				.11			36	21	55	28	65	37	73	52	74	50	75	55
				.19	.15		41	21	64	38	65	39	78	48	71	53	74	-
3		Т			.11		46	23	75	44	67	39	78	60	67	48	78	45
4				.02		.01	51	27	77	45	70	38	71	-	69	51	78	47
5		.38		.04	.26	Т	52	29	77	45	72	45	69	54	69	56	63	40
6 7	00	.48	.28	.41			51	32	76	54	66	44	67	49	72	46	66	36
	.09	.51	.78	.01	Т		41	34	71	51	65	43	65	52	- î	47	70	40
8		1.28	.85				46	27	57	47	63	49	73	51	82		83	47
9	20	.28	.69	.07			50	28	64	43	73	53	77	50	89	59	83	43
10	.30			.43		.01	53	31	74	44	82	54	78	56	89	60	67	39
11 12	2				.15		51	29	80	50	86	55	68	44	85	64	82	-
					.19		50	29	76	49	84	63	65	42	76	53	-	46
13			.58	.62		.01	52	28	87	45	74	-	60	51	72	46	58	36
14				1.00	.30		53	32	67	37	59	49	70	44	84	60	54	35
15			.02	1.02			56	28	56	32	62	42	70	53	83	57	66	33
16	70		.46	.61			64	29	63	41	61	50	73	56	77	56	63	41
17	T T			1.09			68	26	63	37	66	49	76	57	84	59	64	29
18 19	1	T		.46			65	33	51	36	71	49	76	55	81	49	67	35
20		Т		.07			50	27	55	35	73	50	71	52	79	55	61	34
20 21		.03		10			52	22	64	36	86	1	74	49	75	52	61	48
			10	.10	07	.05	61	28	73	41	90	52	72	55	83	54	59	47
22	20	.05	.10	2.20	.07	.02	67	27	84	51	82	63	71	59	82	65	56	39
23 24	.28 .04	.42	1.86	.05	.10		66	40	51	42	77	52	72	58	77	60	68	32
24 25	.04		.17	.02			58	38	55	39	70	45	78	61	88	59	75	41
25 26		40		1.90	22		51	22	70	38	63	45	74	63	87	62	76	36
	10	.42			.33	.02	51	32	56	39	- 2	-	80	57	76	57	57	33
27	.18	.02	£. 5 s	.67			67	38	48	32	63	-	79	62	70	52	54	35
28		.02		.02	.09		64	33	60	41	65	42	76	57	78	50	56	33
29		.62	.71		1.38		50	36	60	46	66	45	80	57	59	51	61	29
30		.01	1.12		.03		44	34	61	39	74	55	86	61	67	50	69	34
31									60	39			87	60	70	40		

I۸

,

						CLIM			ASSEL						1			1
- 30	. de		Pre	cipitatio	n		A	oril	M		Ju		Ju			gust		ember
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
1	104			.03	180		39	24	48	31	62	38	72	55	84	56	74	48
2	135	18	1	163		189	42	22	55	25	67	38	73	52	75	53	79	53
3				.58	.03	Т	43	22	64	35	68	39	80	60	72	52	69	42
4		102.1	1.185	1.99		Т	49	27	74	37	69	43	70	57	72	52	79	53
5	1		128	110		Т	52	29	79	42	70	42	64	60	73	55	65	37
6	1133	180	.54	101			53	30	83	41	70	42	73	57	77	48	69	37
7	.11	.12	-32	.46	3.1		50	34	81	60	74	53	65	46	77	60	69	42
8	.28	.77	.20			198	45	35	83	56	65	53	68	49	77	60	73	46
9	.05	.48	.10	.01		T	51	31	74	53	66	56	72	52	85	62	85	51
10		1.0		.02		Т	49	28	67	44	75	48	82	56	91	63	69	43
11		Sec. 19		14 193			47	32	76	45	85	51	80	52	93	66	67	44
12	103			6.03	.16		50	29	84	47	89	65	70	44	83	63	80	51
12			.62	.32		.08	48	28	76	43	86	67	71	49	75	48	83	41
14		.02		1.152	.80	.05	48	34	89	48	76	52	59	45	79	49	46	40
15		.02	0.001	.47	1.1.2.8		58	30	75	32	59	38	74	48	83	60	75	29
15			1.28	5.75		108	58	29	65	33	65	42	71	59	83	56	62	29
17			1.20			1.1.1	66	30	65	40	72	52	76	63	83	56	66	33
18	.04				Т		71	38	70	35	67	50	77	67	79	53	63	39
19				Т			55	26	56	38	71	50	79	56	82	53	69	33
20		1. 200	1			.38	56	26	60	44	72	47	74	52	78	55	65	36
20 21		100	- 330	Const.	18 -	.04	63	27	67	35	80	58	75	54	75	55	58	50
21 22	1	.31	102				66	27	73	38	90	62	76	56	82	64	65	45
22	6. J.		.76	.21		Т	68	27	74	51	85	60	70	60	78	60	54	30
23 24	.12	1.12	.76	.21			53	44	57	45	79	53	71	62	83	56	68	30
24 25	.14	.02	.70	1.95	Sec. 188-1		65	24	62	58	71	53	68	62	93	68	75	37
25 26		.02	.01	T.75	1	199	50	27	73	39	67	55	72	62	97	63	75	37
26 27		.70		.07			67	28	65	41	65	46	85	63	72	53	52	26
		./0		, T		Т	67	28	53	38	63	49	80	61	76	49	68	37
28	ty han	1		.04	Sections		68	32	66	39	69	49	78	56	81	60	56	29
29			1.37	.04			53	32	65	38	67	53	83	61	71	55	61	30
30 31	T	.60	1.5/	.05					65	40			87	63	71	40		

.

	1		Pr	ecipitatio	n		A	oril	M	ay	I	ne	T.	ily	1 4	gust	Conto	ma la cue
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	ember Min
1			1			1	39	22	53	32	66	37	73	53	70	51	78	55
2		36		101	.06		34	23	63	40	68	37	79	54	69	52	65	43
3		101	108	.15	.02	.33	48	26	73	45	67	38	77	62	68	52	77	43
4		.02	101	.33	.16		51	30	80	42	74	38	74	57	73	54	60	40
5		1.12	138	.06			53	30	84	50	74	52	70	53	68	47	63	43
6	Т		.52	.22		. I	53	32	84	57	70	47	63	51	75	49	66	39
7	.10	.06	.65				49	35	80	58	69	53	64	47	76	58	68	45
8		.16	.20	.03	.18	10-8	45	29	76	59	67	55	73	49	83	59	76	52
9		Т	Т			- '38	47	27	63	39	73	49	79	57	87	60	62	39
10	Т			L L			45	31	79	41	82	57	73	49	92	65	65	41
11	0.164				- L		47	27	85	49	85	66	-65	47	83	61	73	52
12					.32	Т	48	26	75	40	85	63	68	52	72	45	72	40
13			.21	.23		.08	52	33	89	45	73	52	63	47	75	53	45	39
14			.01	.47	.28		58	27	65	35	58	36	74	50	83	61	53	28
15		.02		.25	- 186	105	60	26	55	36	67	49	70	57	81	52	61	38
16			.44	.35		. 88	62	28	61	39	63	49	77	63	78	53	60	32
17	.03			.07	911		65	31	65	34	71	45	79	53	80	56	62	32
18				.33	12 A A		51	26	57	38	72	49	80	55	81	56	69	36
19				.62		2 I	53	22	58	40	73	44	72	50	75	55	67	41
20	- 92	118	10	10		.05	55	24	64	29	81	58	73	48	75	53	56	49
21	38	.77	38			.55	61	32	71	45	89	61	73	57	81	59	63	46
22	12	00	.25	.05	Т		67	36	75	52	87	60	75	60	78	63	53	34
23	.13	.80	.42	.04			60	40	58	44	77	55	75	63	82	58	67	36
24	Т	0.5	.55	1.10			60	21	61	39	70	53	75	68	94	62	75	39
25		.05	.02	1.39		1	49	21	68	32	64	50	74	63	90	61	73	44
26	0.2	10		0.7	.02	.01	65	39	61	41	58	47	82	62	68	55	48	31
27 28	.02	.18	Т	.07		.06	59	31	54	37	58	39	81	60	74	47	62	35
28 29			0.5	.07	.96		66	37	65	40	68	48	75	51	80	55	50	25
30	T	T	.05	Tutty	1.06	Sentember	52	36	62	48	65	52	83	58	68	54	56	28
	T	.25	.39	and the state			46	35	66	40	65	53	85	62	69	45	69	35
31		.08				C. C. C. A.	1.10		61	34	1		76	57	72	47		

VIII

			Pre	cipitatio	n		Ap	ril	M	ay	Ju	ne	Ju	ıly	Aug	gust	Septe	ember
Date	April	May	June	July	August	September	Max	Min	Max	Mir								
1	T		.07	.12			33	25	50	25	56	42	72	52	80	59	77	42
2		10	.14	.07	324	· · · · ·	42	23	57	34	55	40	75	47	75	49	72	50
3	- 18	103		1.05	.02	.08	47	19	70	40	64	42	80	63	69	47	63	39
4		100	.01	Т		- 9° - 1	53	28	72	47	63	35	74	56	62	50	81	46
5		1000	1000	.29	.01	.12	56	32	78	48	67	45	65	55	73	50	60	48
6	Т	.18	.30	.01		.03	41	29	67	51	50	45	59	51	71	43	65	35
7	Т	.32	.03	.29	.12	.15	49	32	70	50	61	47	70	59	71	53	67	35
8		Т	2.55	.12		100	55	22	63	46	54	46	69	51	81	54	67	34
9		Т	.03	.03	1.1.2		55	24	55	50	62	42	70	51	85	52	84	48
10	.50			.25		-19	61	32	57	34	77	44	73	54	84	52	67	34
11	Т			Т			50	30	73	38	81	53	65	51	81	55	74	41
12					.05		51	28	77	37	81	53	70	48	89	48	88	56
13	Т	() () () () () () () () () ()	-0.01	.30			52	29	80	42	73	57	60	45	70	52	64	29
14	Т			130	.15		50	29	85	45	60	40	60	41	71	53	41	17
15				Т	Т		52	22	71	42	70	45	63	51	82	57	60	23
16			.07	.23		12	57	29	69	30	54	47	56	67	83	57	70	38
17			.02	.17			62	30	68	46	60	45	64	44	83	55	58	26
18	100		1. 1. 1	.01			65	36	64	26	65	39	75	68	80	47	61	26
19	.68			.04			47	26	60	27	70	40	73	43	79	47	66	48
20		1.1	104	1.1			43	22	59	29	77	47	75	50	76	49	62	43
21	.02	1154	.02	Т	205		44	21	70	40	91	56	75	54	79	61	77	42
22	1.16		.05	.12			58	28	77	52	91	61	73	58	88	58	63	38
23	.24	Т	.03	.06	.22		69	37	77	45	83	47	78	54	76	57	55	23
24	.24	.08	.40	.08	- 81	101.	47	34	51	43	58	38	65	50	82	50	68	31
25	.02	.05	.05	.53			53	30	58	32	63	45	68	62	85	54	75	40
26	.06		Т	.40	183	101	57	36	76	43	70	38	78	54	78	52	70	35
27	.05	.14		.37	.14		71	36	56	42	74	43	70	56	72	43	52	51
28				.01			63	34	62	41	68	48	65	47	73	47	66	32
29	within a	salath -	.97	300		and a second second	54	30	48	42	74	49	80	57	76	53	64	25
30		.80	.46	enter portes	.12		54	25	64	45	70	44	84	57	58	43	68	27
31		.01		Т	.08		1		60	43			87	62	65	33		

ΙX

						CLI			FARGO									
		120	Pro	ecipitatio	n		Ap	oril	M	ay	Ju	ne	Ju	ıly	Aug	gust	Septe	ember
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Mir
1				Т		T	42	25	52	33	68	40	75	60	75	58	82	58
2	-02	174		.27	.06		44	21	64	29	69	38	81	55	72	54	70	48
3	- 99		5 a 1	Т	.01	.01	50	23	74	42	70	38	74	62	71	54	79	44
4	105	102	108	.03			51	27	80	46	72	42	75	63	74	53	66	47
5	134		- 189	.38	.07	.01	52	33	83	47	75	46	73	60	73	54	68	42
6	-34		.26	Т	.33		51	35	83	60	70	56	65	53	77	51	70	39
7	.10	.14	.17	.01			45	38	82	62	67	55	69	46	78	56	72	45
8	.10	.14	.15	Т	.07		49	36	76	58	68	57	75	50	85	64	85	48
9		Т	.01	Т		Т	47	32	65	51	74	57	81	54	91	62	68	48
10	.11			10e			43	28	77	47	85	51	80	56	95	63	69	40
11	.03		Т	101	Т		48	36	84	47	89	65	70	52	91	72	79	51
12			103	.34	Т		47	32	78	50	86	67	73	47	75	55	84	49
13			.59		G	.15	50	30	89	45	76	61	62	54	79	47	49	42
14			Т	4.42	.64	Т	57	36	73	43	63	46	74	47	84	67	57	36
15	3.		.10	.73			58	27	59	32	68	39	71	58	83	63	63	34
16	Т		.66	- 120			66	28	64	34	73	54	79	62	79	57	67	41
17	Т	Т			.07		71	31	69	39	71	54	80	63	82	68	63	35
18	.01	-					54	35	58	34	72	50	81	58	82	56	69	35
19	120	Т				.13	54	31	60	41	73	57	74	58	79	57	63	42
20		Т	- 03	- 03	Т	.10	56	26	66	39	81	50	76	53	78	57	58	51
21		1	2.55	13		.05	62	27	74	35	89	61	75	56	84	61	63	55
22	1.	.07	.28	.08	Т	- TR	68	37	75	53	86	67	76	62	76	67	57	36
23	.18	1.03	1.24	.01	Т	103	55	47	61	50	80	62	73	63	82	63	68	31
24	Т	.28	.02	1.05	107	21	63	33	63	46	73	54	75	66	94	60	74	39
25		.03	.01	.38		0	50	25	75	38	69	54	72	65	96	70	76	45
26		.02		Т	Т	Т	67	31	63	39	66	51	84	63	72	60	60	34
27	.16	.49	14	.01		.04	62	44	54	48	63	48	82	64	76	53	66	29
28	.01		165	1.100	.01		68	37	66	39	71	47	78	61	83	52	53	32
29	.04	.25	.71	Т	.17	achemine	52	35	66	48	67	54	84	57	79	57	60	30
30		.22	.08		.03	Т	51	36	66	43	71	57	89	64	72	49	72	44
31		Т							62	38			80	66	74	43	Sep	(Supp

÷

 \times

.

			Pre	cipitatio	n		Ap	ril	M	av	Ju	ne	Ju	ily	Au	gust	Septe	ember
Date	April	May	June	July	August	September	Max	Min	Max	Mir								
1	1		.40	.20		-	34	25	48	24	68	45	76	52	81	50	77	38
2		13	.20	.57			40	24	54	27	57	45	74	51	73	51	73	47
3	103	36		.12	10		46	22	67	36	61	36		60	69	43	63	38
4			185	34		.02	50	22	73	47	62	35	76	52	60	44	82	44
5				3.5		.17	54	30	75	49	65	44	65	53	70	48	58	39
6	110	.17	3.7	193	1.1		45	28	64	49	71	49	66	53	70	45	61	33
7	.05	.21	.15	1.1.2	.20		52	32	73	49	60	51	70	46	66	49	67	34
8		.19	1.43	123	- 103		49	25	65	43	58	47	68	45	79	55	72	35
9		.26	111				57	30	65	43	59	47	73	45	86	52	84	53
10	.24			.18			59	37	63	34	75	48	78	49	88	50	66	35
11				.05			46	27	71	35	81	55	65	41	85	62	72	43
12					.36		48	32	73	35	82	55	69	49	88	53	88	43
13			0.0	.68			48	34	72	35	82	45	62	47	66	54	68	31
14			181		.15		44	29	83	50	82	41	60	41	72	54	41	18
15				.15			51	22	73	42	82	42	64	52	81	55	58	27
16			.10	.78			55	25	62	28	55	40	72	75	80	57	71	44
17		.07	1	.05			58	28	68	42	67	49	66	47	82	54	57	35
18	34/1			.73			65	36	64	28	61	42	72	51	80	47	56	30
19	.25			.08			57	27	63	34	66	42	73	44	78	47	56	30
20					1.1		36	25	58	28	73	48	73	51	77	52	55	45
21				100			41	21	68	37	89	54	74	60	75	59	72	44
22		.06		.15			59	30	74	57	88	60	72	59	87	57	65	34
23		.03	.08	.77	.02	-1	70	45	76	50	84	46	77	55	76	57	51	23
24	.31		.15				48	34	55	45	56	39	67	54	82	48	68	32
25				.27		-	55	33	59	33	65	47	62	55	92	57	75	34
26				-10	Т		55	35	74	44	71	42	76	52	74	53	70	37
27		.06		.74			70	43	74	46	76	46	57	53	67	42	56	35
28							63	34	65	45	76	51	65	50	72	48	66	33
29	where a	TRACT 1	.85	San I	- Addition	ad monitorial	60	26	58	44	74	53	78	55	76	47	62	26
30		.30	.98	altern etc.	Т		57	27	70	49	63	44	81	62	56	46	66	43
31		.02	- Pro-						55	40			90	58	66	34		

XI

						CL	IMATIO		· · · · · · · · · · · · · · · · · · ·		Construction of the Index of the Index							
				ecipitatio			-	oril	M	ay	Ju	ne	Jı	ıly	Aug	gust	Septe	ember
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Mi
1							33	18	53	25	63	37	76	55	79	58	72	48
2		-			.06	.11	40	18	61	31	57	40	76	51	72	56	70	52
3		.02	.17	.18	.08	State State	46	20	68	41	62	45	79	55	64	48	61	48
4		10 100 3				.07	51	27	73	41	66	41	65	51	65	45	78	49
5				.97			56	31	81	45	59	41	65	46	71	47	59	40
6	.03	.11	.47	.28		.02	55	32	81	53	59	48	61	51	70	46	62	37
7		.17		.24	183		43	35	73	55	67	47	64	46	74	49	65	41
8		.58	2.38	.03			54	28	73	41	59	49	64	47	76	58	69	42
9		Т	.10		Т		46	26	57	48	58	50	74	52	84	57	83	57
10	.60			.19			57	29	69	42	78	52	74	55	90	58	63	40
11	.65			.01	.11		35	30	78	50	82	59	66	45	82	61	67	40
12	.07	205		.06			47	32	83	49	83	63	58	42	85	49	82	51
13		1. 23	Т		.22	.12	48	28	82	51	79	51	62	46	70	48	58	34
14	.01			.44			55	29	89	46	67	46	67	44	74	52	58	28
15				.09			52	28	67	36	68	47	70	54	78	58	53	28
16			.06	.05	115		59	29	59	32	64	50	73	56	79	57	65	44
17			.09	.09			61	30	54	37	58	44	65	50	80	59	59	32
18	.03			.61	136		65	33	58	42	67	44	76	54	79	51	60	35
19				100			47	27	54	40	73	44	73	49	78	55	64	38
20	.24			.29			49	27	58	34	77	61	71	49	751	49	61	41
21		1				Т	51	27	69	43	92	42	75	53	77	52	70	42
22		.06	143	.57	.40	Т	61	30	75	53	88	64	67	65	80	59	62	37
23		.65	.13	1.12	.10		72	34	79	49	85	49	74	53	80	62	53	36
24	.19	14	.17	.61			54	35	55	43	60	43	68	54	80	59	65	40
25			.07	.32		. 17	51	21	58	40	62	47	73	56	82	57	71	41
26			.02	.34		163	53	21	66	38	64	47	73	56	74	53	67	41
27	.03	.26		.03	.19		71	39	59	41	62	38	78	60	70	50	52	40
28	100	.12	30	.57			66	33	47	39	64	44	63	54	71	52	65	32
29		Т	.46	.47	.11		51	33	60	40	67	48	89	56	67	51	53	33
30	April	.83	.13		.59	Septemper.	47	24	54	45	61	51	81	62	58	47	60	33
31				copitsus	.06		.,		63	41	VI.	51	84	53	50 62	47	00	55

XII

						CL	MATIC	and the second se	M		Ju	ne	Ju	lv	Aug	ust	Septe	mbe
1			Pre	cipitatio			Ap		Max	Min	Max	Min	Max	Min	Max	Min	Max	Mi
Date	April	May	June	July	August	September	Max	Min		34	63	38	66	59	80	59	69	47
1	.23	.41			.58	and the second second	34	22	54		63	47	72	59	76	55	74	5
2		.49	.28	.69			39	22	47	40	68	43	79	59	74	55	73	4
3					.04		44	28	55	32	68	43	80	61	68	49	71	4
4				.90			51	29	72	32	69	46	79	62	71	53	70	
5		38		.17			51	30	65	32	72	57	76	60	70	49	65	
6			1 38			.03	51	31	79	42		57	75	59	73	53	68	
7	, d	.48	.08	13-1		.07	46	32	69	60	76	57	73	56	76	62	70	
8	.45	1.75	1.87	.74		Sec. 2	41	36	73	56	73		78	62	82	65	74	
9		.23	.06	.35	.06	104	41	33	75	59	74	55	78	62	90	60	68	
10	1	.04					51	27	66	53	74	55	72	61	89	63	65	
11	.74	.24		.32			49	31	59	52	84	59	77	51	85	67	77	
12							43	33	78	51	89	62		51	82	56	88	
13			.43	.02		.30	43	31	79	45	83	63	75 73	57	80	62	63	
14	.34		110	.02		.10	43	31	76	47	77	55	1	57	78	64	49	
15	.09				1.38		40	33	76	40	63	52	76	60	84	66	59	
16	1. 18		.69	38			52	31	62	38	70	55	80	67	82	60	71	
17		1000	4.53	.24	1		59	31	64	46	74	57	82 82	63	83	65	56	
18		1.1.1	.18		.90	.06	60	31	66	44	70	56		62	83	66	65	
19			.69	.34			69	29	61	39	61	55	83			55	54	
20			.71			1.16	48	32	58	37	59	54	79	57	79	55	55	
21		1.36	1.74				57	29	62	40	75	56	79	57	76	63	59	
22		1.084	.96			.16	60	29	62	53	84	61	79	56 58	80	64	61	
23			1,138.9	.66	.14		67	33	69	54	87	64	70		79	61	62	
24		.37	.83	35	1.1.1.1	100	67	44	65	47	82	58	71	64	89	61	68	
25		.05	.12	.88			60	34	58	43	73	56	82	62		68	70	
26				1		.03	57	31	72	44	73	57	77	62	89	62	52	
27	.48	.37			.21		60	36	73	49	76	51	83	62	90	55	66	
28							66	39	75	42	72	51	83	63	73		60 49	
20	VOL0	2000	- Janie	1.000	The second	September 1	71	39	64	46	72	54	73	57	74	56		
30		.04	.58		.15		59	31	62	53	72	59	82	58	75	64	57	
31		.35				1 Sec. 1 (27)	2 1330	17.59	57	41			86	65	75	47		

XIII

10	T		D	ecipitatio		CDD	MATIC						1 05		28			
Date	April	May	June	-			1	oril		lay	1	ine	1	uly	Au	gust	Sept	ember
1	April	way	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
		125						1	53	31	66	37	72	58	73	55	76	52
2					.20		09	36	65	26	58	42	81	53	70	52	68	43
3		-02	113	.16		.04	57	31	79	36	66	40	74	58	70	52	77	40
4		75	1 23				. eo	34	79	38	71	41	72	60	72	52	63	43
5				.31	.08	.04	67	11	83	39	75	42	70	57	71	54	66	36
6			.35	.28	1.1		1. 67	33	81	56	66	55	62	50	76	50	69	36
7		.94	.31			16	- 60 -	2.9	82	58	64	52	64	48	76	50	72	40
8		.31	.24		.16		57	38	72	57	65	57	72	49	84	60	82	44
9			.12	1.000		1.15	48	32	64	50	72	55	79	51	90	60	67	46
10	S			.08			. 😢 .	29	75	45	85	48	77	56	91	60	68	38
11			18		0.61	196	- 60	31	83	44	88	58	67	50	82	68	78	45
12			1 23	34	.08		5. 59	24	78	49	86	63	70	44	73	50	80	47
13			.63	.39		.08	83	31	91	43	74	58	60	63	76	46	48	40
14					.51		. 90	- 33	73	41	60	46	72	46	82	63	56	30
15			.16	2.24		10	1 22	31	58	35	66	39	67	56	82	60	62	28
16			.98	2.60		79.	13	31	64	35	70	53	76	62	76	56	65	20 39
17	1.00		1000			2	12	33	66	40	68	52	77	59	77	56	62	31
18				.04			1 th .	21	57	36	70	48	78	54	79	53	69	30
19						.16	51	27	59	42	72	54	72	55	77	52	63	30
20			102	0.038		.04	111	33	65	39	81	47	72	51	76	56	56	52 50
21	148		1.87	44.0			1.61	136	74	33	91	57	74	52	81	53	62	50
22		.20	.47	.12		C. 763.	198	35	74	52	85	64	73	60	74	64	55	55 31
23		.71	1.46	.04		102	- 31	35	59	49	76	61	72	61	81	59	55 68	31 28
24		.28		1.34			121	20	59	45	70	53	77	64	90	59	75	28 32
25				.51			15	30	73	38	68	53	70	64	94	66	76	
26		.08		.04	184		199	38	62	38	63	51	82	62	72			37
27		.47	.25	.04		.04	120	22	52	46	63	47	⁰² 79	61	75	59	56	27
28	39	11			188		24	22	64	40	60	45	76			47	66	25
29	A Drill	.31	1.02	July	.31	September	bella .	2010	66	40	65	45 52	83	50	79	46	54	28
30		.24	.12	dpitatio			1		64	47	71	56		54	70	55	61	26
31						(Cr)	AV. S IC	hury	62	42	/1	50	86	60	70	46	72	42
									04	-91			78	63	71	41	and the state of the	

AIX

10.00 M.O. 10.00 CA.			Dwg	cipitatio	n		Ap	ril	M	ay	Ju	ne	Ju	ly	Aug	gust	Septe	mber
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
$\frac{Date}{1}$	April	Iviay	June	.08	Ingust	T	43	28	62	31	67	49	75	50	76	53	66	53
2	1 0 3	1-1-1	.10	.03	.14	.03	51	25	71	29	67	41	81	49	76	54	65	50
23			.14	3.80	.02		56	25	70	42	54	40	81	57	63	45	80	48
3			.17	.26	.02		61	31	80	46	68	44	68	53	73	52	77	48
4	Т		.21	.20	.09	.01	59	30	80	47	68	50	60	51	72	51	65	43
5	.27	1.	.02	.40	.02	T	53	29	80	54	66	44	69	53	71	47	69	39
0 7	.21	.18	.10				59	30	77	54	62	52	68	46	80	54	73	42
8		.10	2.05	Т			54	31	58	44	60	46	73	49	86	61	84	51
9	Т	.13	1 2.05 T	T	1212		60	25	67	40	77	47	71	52	90	56	76	48
9 10	.01	.15	1	.01			58	36	77	41	81	52	72	53	91	58	71	38
10	.01		.01	.01	- Paralan		53	33	82	42	81	58	69	44	87	61	86	46
12	.04		.06	Т	.14	.05	53	29	85	47	80	55	68	45	68	47	84	43
12	.04		.20	.28		.08	53	29	88	50	68	48	67	49	72	51	46	32
13	.03		.20	.07	.04		53	34	71	50	70	43	70	45	81	57	59	25
15	.05			.12			60	30	54	40	70	50	69	55	84	56	65	41
16		14	.50	.34			64	32	70	37	66	51	67	50	83	58	60	41
17	Т	12-13		.07	.42	L. Down	66	37	60	42	69	42	74	49	81	55	63	32
18	T	15 1		.19	Т		59	37	62	32	71	44	75	54	77	50	69	30
19				.07		1. 18. 1	50	28	63	36	79	49	74	47	77	54	68	40
20	Т		1				52	27	73	36	90	45	75	53	80	51	74	4
21		1.18		.31		.08	65	30	84	43	90	57	75	58	82	58	62	4
22		Т	.05	.40	3.77	184 - 17	70	27	81	53	89	61	76	57	82	62	60	3
23		.05	.21	.02	.13	1411年1月	70	46	73	47	68	48	72	51	80	59	69	32
24	.29		.18		1.15-11		64	37	62	45	59	42	77	53	81	60	73	3'
25		1.18.1			T	121-12	60	26	73	42	58	50	78	60	79	55	74	4.
26	1 to 1	Т			.22		74	40	71	41	72	43	77	54	62	63	66	3.
27	Т	.21	131	.90	.13	Т	71	. 35	55	45	73	41	72.	47	72	47	68	4:
28	T		12	12	.01	1.6 12 19	62	30	62	42	71	51	79	53	73	53	66	3:
29	.01	.12	.47	181	.31	13-13-13	56	34	64	51	72	53	83	59	71	51	70	3
30		.11	.02	Т	.05		60	27	63	48	75	48	83	68	63	45	70	49
31									70	44			82	53	74	44		

٧X

	Soil Texture	Organic matter	لاح	<u>Ib/A</u>		PM
Camp Grafton (Goat)	Sandy loam	Г	pН	N	P	K
Camp Grafton (Insect)		4.7	7.2	3	3	180
	Loamy sand	2.8	7.0	3	3	98
Carrington, ND	Loam	3.6	7.2	Fertilized	by test	
Casselton, ND (Dalrymple)	Silty clay	5.0	7.9	Applied 8	BO ID N	15
Chaffee, ND	Fine sandy loam	6.7	7.4	20	36	950
Crookston, MN	Loam	4.5	7.9	172	9	130
Crookston, MN (Multiple application)		6.3	8.2	466	71	>9999
Cuba, ND		7.0	8.2	3	4	100
Fargo, ND (Sec. 22)	Silty clay	6.0	7.5	190	26	1095
Fargo (time of thinning, new leaf removal, post Lorsban, Upbeet & insecticide)	Silty clay	5.0	7.3	111	32	380
Fargo (Grass control experiment)	Silty clay	4.9	7.5	125	20	290
Fargo (Cover crops, tillage, Upbeet over soil applied herbicides, Terra Betanex and Betamix, methanol)	Silty clay	5.1	7.2	133	15	345
Fargo (Sec.22) Sugarbeet weed control	Clay	5.7	7.7	29	13	365
Fargo (Sec. 22) 1992 Residue Expt.	Clay	5.3	7.7	84	14	430
Fargo (Sec. 22) Residue experiments	Clay	6.0	7.8	40	29	440
Hunter, ND	Sand	7.4	6.8	14	8.6	
Jamestown, ND (Pipestem Dam)		6.8	6.8	28	5	290
Minot, ND	Loam	2.7	7.0	Fertilized	by test	<u></u>
Minto, ND		7.7	7.7	122	58	1300
Mooreton, ND		3.9	7.0	19	22	250
Oslo, MN	82382	6.1	7.8	119	26	280
Prosper, ND	Silt loam	3.6	7.5			
Renville, MN	·	7.4	7.9	36	9	125
Sheyenne ND, Grasslands (Goat)	Sandy loam	6.2	7.5	8	4	85
Sheyenne ND, Grasslands (Insect)	Loamy sand	2.5	6.9	3	7	125
St. Thomas, ND	Loam	3.8	7.8	66	30	160
Valley City, ND	Stony loam	9.4	6.7	5	5	1415
West Fargo, ND	Silty clay	3.6	7.2	8	42	1460
Williston, ND	Loam	2.3	6.8	Fertilized t		1400
Wolverton, MN		5.8	6.6	32	25	430

KEY TO ABBREVIATIONS AND EVALUATIONS

Crop injury, crop stand and weed control ratings are based on a visual estimate using a scale of 0 to 100 with 0 = n0 effect and 100 = complete kill.

All preplant incorporated or preemergence treatments were applied in 17 gpa water at 35 psi through 8002 nozzle tips and all postemergence treatments were applied in 8.5 gpa water at 35 psi through 8001 nozzle tips except where stated otherwise.

All treatments were applied with a bicycle wheel-type plot sprayer unless otherwise stated. Preplant incorporation was by field cultivator + harrow or as stated in table and preemergence incorporation was by harrowing twice.

Treatments with a + indicate tank mixtures, with an & indicate formulation mixtures and with a / indicate a separate application.

The survey of the second se	Species	Ball in 1
Abww = Absinth wormwood	Fota, fxtl = Foxtail species	Sabu, Fisb = Sandbur
Alfa = Alfalfa	Grft = Green foxtail	Safl, Saff = Safflower
Amaz = Amaranth	Gfpw = Greenflower pepperweed	Shpu = Shepardspurse
Barl, Bar = Barley	Girw = Giant ragweed	Soyb, Sobe = Soybean
Bdlf = Broadleaf	Howe = Horseweed	Spkw = Spotted knapweed
Biww = Biennial wormwood	Hrsw = Hard red spring wheat	Spsp = Spotted spurge
Bubu = Buffalo bur	KOCZ = Kochia	Sugb, Sgbt = Sugarbeet
Bygr = Barnyardgrass	Latu = Ladysthumb	Sunfl,Sufl, Cosf = Sunflower
Cath = Canada thistle	Lent = Lentils	Tabw = Tame buckwheat
Cano = Canola	Lesp = Leafy spurge	Tamu = Tansy mustard
Cocb = Common cocklebur	Lisa = Lanceleaf sage	Taoa = Tame oats
Colq = Common lambsquarters	Mael = Marshelder	Tumu = Tumble mustard
Coma = Common mallow	Mesa = Meadow salsify	Tymu = Tame yellow mustard
Copu = Common purslane	Mign = Mignonettte	Vowh = Volunteer wheat
Cosf = Volunteer sunflower	Nabe = Navy bean	Vele = velvetleaf
Cram = Crambe	Nfcf = Nightflowering catchfly	Vema = Venice mallow
Dobr = Downy brome	Pest = Perennial sowthistle	Wesa = Western salsify
Domu = Dog mustard	Pesw = Pennsylvania smartweed	Wht = Wheat
Duru = Durum wheat	Pnto = Pinto bean	Wibw = Wild buckwheat
Ebns = Eastern black nightshade	Powe = Pondweed	Wimu = Wild mustard
Fach = False chamomile	Prle = Prickly lettuce	Wioa = Wild oats
Fibw = Field bindweed	Prmi = Proso millet	Wipm = Wild proso millet
Fipc = Field pennycress	Prpw = Prostrate pigweed	Yeft = Yellow foxtail
Flwe, Flix = Flixweed	Qugr = Quackgrass	
Foba = Foxtail barley	Rrpw = Redroot pigweed	
Fomi, Ftmi = Foxtail millet	Ruth = Russian thistle	

XVII

P	METHODS
PPI = Preplant incorporated	EPOST = Early Postemergence
PEI = Preemergence incorporated	P, PO, $POST = Postemergence$
PRE, PE = Preemergence	POSTDIR = Postemergence Directed
MISC	CELLANEOUS
DF = Dry flowable	alk = alkanolamine
F = Fall	bee = Butoxyethyl ester
FL = F = Flowable	dea = diethanolamine
S = Spring	dma = Dimethylamine
L = Liquid	ioe = isooctyl ester
LC = Liquid concentrate	MS, MVO = methylated vegetable oil
WP = Wettable powder WDG = Water dispersible granules	PO, OC = Petroleum oil concentrate (17% emulsifier)
G = Granules or gallon/A	SURF = S = Surfactant
SG = Soluble granules	NIS = nonionic surfactant
Inc = I = Incorporation %ir = inju = Percent injury rating	28N, UAN = 28% liquid nitrogen fertilizer
% sr = $%$ std, strd = Percent stand reduc	AMS = ammonium sulfate tion AMN = ammonium nitrate
HT = Plant height	
SPK = Spike stage	bini = Option wheet Prito - Pinto bean
Tswt = TW = Test weight	bna = Bastern black nightahade Powe = Pondwood actual = Relea chomonile Phase - Prickly latives
Yld = Yield	

Adjuvants	Company
Mor-Act = Petroleum oil adjuvant	Wilbur Ellis
Scoil = Methylated seed oil	AGSCO
Sun-It II = containing methylated seed oil	AGSCO
DASH, DASH-HC	BASF Corp
Methoil	Farmland Industries
MSO	Loveland Industries
Dyne-Amic	Helena Chemical
MES-100	Automation and Automation
ECO-Gard II	T-Tech
R-11 model B lacast s	Wilbur Ellis
Preference	Cenex Land-O-Lakes
Li700	Loveland Industries
Kenetic	Helena
Silwet L-77	Loveland Industries
Spray Booster S	Cenex Land-O-Lakes
Activator 90	Loveland Industries
AD-100	Riverside
Active-it	AGSCO
ASPA-80	Amway
Wet-sol 99	Schoeffer Mfg
Agra-wet	Loveland Industries
Dispatch	Loveland Industries
Purity 100	Rosens
ChemPro 6000	
EOP	Wilbur Ellis
Cayuse	Wilbur Ellis
Cenex SAS	Cenex Land-O-Lakes
X-77 = Nonionic surfactant	Valent

LIST OF HERBICIDES TESTED IN 1993

Common Name	Alalana	and a second		
or Code Name	Abbre- viation	Company	Formulation	Trade Name
Acetochlor+Dichlormid	Acet	Zeneca	6.4 lb/gal EC	Surpass
Acetochlor+MON 4660	Acet	Monsanto	7 lb/gal EC	Harness Plus
Acifluorfen	Acif	BASF	2 lb/gal E,S	Blazer
Alachlor	Alac	Monsanto	4 lb/gal E 4 lb/gal MT, 15% G 65% WDG	Several
Atrazine	Atra	Various	80% WP, 90% DF, 4 lb/gal F	Numerous
Bentazon	Bent	BASF	4 lb/gal S	Basagran
Bromoxynil	Brox	Rhone-Poulenc	2 lb/gal E	Buctril
Chlorimuron	Clim	DuPont	25% DF	Classic
Clethodim	Clet	Valent	2 lb/gal	Select
Clopyralid	Clpy	DowElanco	3 lb/gal S	Stinger
Clopyralid+2,4-D	Clpy&2,4-D	DowElanco	0.38 + 2 lb/gal S	Curtail
Cyanazine	Cyan	DuPont	80% WP, 90% DF 4 lb/gal F	Bladex
Cycloate	Cycl	Zeneca	6 lb/gal E	Ro-Neet
Desmedipham	Desm	Nor-Am	1.3 lb/gal E	Betanex
Desmedipham +				
Phenmedipham	Desm&Phen	Nor-Am	0.65+0.65 lb/gal E	Betamix
Dicamba	Dica	Sandoz	4 lb/gal S	Banvel, Clarity
Dimethenamid	Dime	Sandoz	7.5 lb/gal EC	Frontier
Diclofop	Difp	Hoechst-Roussel	3 lb/gal E	Hoelon
Diethatyl	Diet	Nor-Am	4 lb/gal E	Antor
Difenzoquat	Dife	American Cyanamid	2 lb/gal S	Avenge
Endothall	Endo	Pennwalt	3 lb/gal S	Herbicide 273
EPTC	EPTC	Zeneca	7 lb/gal E 25% G	Eptam
EPTC+Dichlormid	EPTC+Dclr	Zeneca	6.7 lb/gal EC 25% G	Eradicane

Common Name or Code Name	Abbre- viation	Company	Formulation	Trade Name
Ethalfluralin	Etha	DowElanco	3 lb/gal E 10% G	Sonalan
Ethametsulfuron	DPX-A7	DuPont		Medolashior
		Carl Double	75% DF	Muster
Ethofumesate	Etho	Nor-Am	4 lb/gal F 1.5 lb/gal E	Nortron
F8426		FMC	50%	None
F6285	COLUMNA TO WAT	FMC	4 lb/gal F	None
Fenoxaprop	Fenx	Hoechst-Roussel	0.79 lb/gal E	Option II
Fenx & 2,4-D & MCPA		Hoechst-Roussel	2.71 lb/gal E	Tiller
Fenx & MCPA		Hoechst-Roussel	0.67+4 lb/gal E	Dakota
Fenx & MCPA & Thifensulfuron & Tribenuron		Hoechst-Roussel	1.6:7.6:0.187:0.092	Cheyenne
Fluazifop-P	Flfp-P	Zeneca	1 lb/gal E	Fusilade 2000
Fluazifop+P+ Fenoxaprop	Flfp+Fenx	Zeneca	2.66 lb/gal E	Fusion
Flumetsulam + Metolachlor	Flum & Meto NAF2	DowElanco	7.66 lb/gal	Broadstrike+Dual
Flumetsulam + Trifluralin	Flms & Trif XRM-5313	DowElanco	3.65 lb/gal	Broadstrike+Treflan
Flumichloral	Fime	Valent	0.86 lb/gal EC	Resource
Fluroxypyr	Flox	Dow Elanco	1.7 lb/gai	Starane
Glyphosate	Glyt	Monsanto	3 lb/gai S	Several
Glyphosate & 2,4-D	Glyt & 2,4-D	Monsanto	0.9 + 0.8 lb/gal S	Landmaster II
Glyphosate + 2,4-D	Glyt & 2,4-D	Monsanto	0.9 + 1.5 lb/gal	Landmaster BW
Glyphosate &				
dicamba	Glyt & Dica	Monsanto	1.1 + 0.5 lb/gal S	Fallowmaster
Imazaquin	Imqn	American Cyanamid	1.5 lb/gal	Scepter
Imazethapyr	Imep	American Cyanamid	2.0 lb/gal	Pursuit
Imazamethabenz	Immb	American Cyanamid	2.5 lb/gal E	Assert
Lactofen	Lact	Valent	2 lb/gal S	Cobra

Common Name or Code Name	Abbre- viation	Company	Formulation	Trade Name
MCPA	MCPA	Rhone-Poulenc	4 lb/gal E, S	Several
Metolachlor	Meto	Ciba-Geigy	8 lb/gal E	Dual
Metribuzin	Metr	Mobay DuPont	4 lb/gal F, 75% DF 4 lb/gal F, 75% DF	Sencor Lexone
Metsulfuron	Mets	DuPont	60% DF	Ally/Escort
MON-12000	MON12037	Monsanto	75% DF	Permit
MON12041	MON12041	Monsanto	15% DF MON1200 45% DF MON13900	Battalion
MON-13200	MON13200	Monsanto	2 lb/gal	None
Nicosulfuron	Nico	DuPont	75% DF	Accent*
Paraquat	Para	Zeneca	2.5 lb/gal S 2 lb/gal S	Gramoxone Extra Cyclone
Pendimethalin	Pend	American Cyanamid	4 lb/gal E 3.3 lb/gal E	Prowl
Picloram	Picl	DowElanco	2 lb/gal S	Tordon 22K
Picloram + 2,4-D		DowElanco	2.54 lb/gal	Tordon 101
Picloram + Triclopyr		DowElanco	3.0 lb/gal	Access
Primisulfuron	Prim	Ciba Geigy	75% DF	Beacon
Propachlor	Prcl	Monsanto	4 lb/gal F	Ramrod
Propanil	Prnl	Rhom & Haas	80% DF	Stampede SDEDF
Pyrazon	Pyzn	BASF	4.2 lb/gal F	Pyramin
Quincloràc	Qucl BAS-514-34	BASF	75% WP 50% DF	Facet Impact
Quizalofop-P	Qufp	DuPont	0.88 lb/gal EC	Assure II
Sethoxydim	Seth, Sth	BASF	1.5 lb/gal E 1.0 lb/gal E	Poast Poast-plus*
Sulfometuron	Sume	DuPont	75% DF	Oust
Thifensulfuron	Thif	DuPont	25% DF	Pinnacle
Thifensulfuron & Tribenuron	Thif & Trib	DuPont	75% DF (2:1)	Harmony Extra
Tribenuron	Trib	DuPont	75% DF	Express

Common Name or Code Name	Abbre- viation	Company	Formulation	Trade Name
Triallate	Tria	Monsanto	4 lb/gal E, 10% G	Far-Go
Triflusulfuron	Tfsu	DuPont	50%DF	Upbeet
Triasulfuron	Trsu	Ciba-Geigy	75% DF	Amber
Triclopyr	Trcp	DowElanco	4 lb/gal	Garlon*
Trifluralin	Trif	DowElanco	4 lb/gal E 10% G	Several*
2,4-D	2,4-D	Various	Various E, S, WSP	Numerous
2,4-DB	2,4-DB	Various	2 lb/gal	Numerous

^a Abbreviations in the tables may consist of only the first one, two, or three listed letters when space was limited. Abbreviations of numbered compounds vary with available space, but usually use the first letters and numbers. Preplant incorporated herbicides, Crookston, 1993. Preplant incorporated herbicides were applied in 17 gpa water at 40 psi through 8002 nozzles to the center four rows of six row plots 1:00 pm April 28 when the air temperature was 65F, soil temperature at six inches was 46F, relative humidity was 44%, wind velocity was 14 mph, and soil moisture was good. Incorporation was with a rototiller set four inches deep for treatments containg EPTC or cycloate and two inches deep for dimethenamid. 'Beta 2988' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 14. Counter 15G at 12 pounds product per acre was applied in a two inch band and drag chain incorporated at planting. Sethoxydim + crop oil at 0.2 lb ai/A + 1 qt/A was applied to the entire plot area June 15. Kochia, green foxtail, prostrate pigweed, and wild buckwheat control and sugarbeet injury were evaluated June 19.

		Sgbt	Kocz	Grft	Prpw	Wibw
Treatment	Rate	inj	cntl	cntl	cntl	cntl
	lb/A	00	0,0	olo	90	아
EPTC	2	13	51	74	70	48
Cycloate	4	5	25	85	63	24
EPTC+Cycloate	1+2.5	14	38	91	75	29
EPTC+Cycloate	1.5+2.5	23	59	91	84	53
EPTC+Cycloate	1.5+2	16	48	90	75	35
EPTC+Cycloate	2+2	24	66	91	86	64
EPTC+Cycloate	1+3	13	45	91	74	35
EPTC+Cycl+Ethofumesa	te-SC 1+2+2	20	84	98	92	89
EPTC+Cycl+Ethofumesa	te-SC 1+2+3	23	83	98	92	90
Cycloate+Ethofumesat	e-SC 2+2	11	64	97	83	54
Dimethenamid	1.5	48	63	90	96	83
EXP MEAN		19	57	91	81	55
C.V. %		47	21	6	9	21
LSD 5%		13	17	8	11	17
LSD 1%		17	24	10	14	23
# OF REPS		4	4	4	4	4

Summary

All treatments except cycloate at 4 lb/A and cycloate+ethofumesate at 2+2 lb/A caused significant sugarbeet injury. Injury reported in this table at Crookston was greater than with the same treatments applied at Renville on a heavier soil. Dimethenamid caused greater injury than any other treatment. EPTC+cycloate+ethofumesate gave greater control of kochia and wild buckwheat than other treatments, except dimethenamid gave similar control of wild buckwheat. All treatments except EPTC alone and cycloate alone gave over 90% control of green foxtail. Only EPTC+cycloate+ethofumesate and dimethenamid gave over 90% control of prostrate pigweed.

Postemergence herbicides over soil applied herbicides, Minto, 1993. EPTC + cycloate at 1 + 2.5 lb ai/A was applied in 15 gpa water at 40 psi through 11002 nozzles to one half of each 40 foot plot May 5. Incorporation was twice with a "Kongskilde Triple K" field cultivator operated 3 inches deep. 'Beta 2988' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 5. Counter 15G at 12 pounds product per acre was applied in a 2-inch band and drag chain incorporated at planting. The first half of split applied postemergence herbicide treatments was applied 2:45 pm May 25 when the air temperature was 58F, soil temperature at six inches was 60F, relative humidity was 72%, wind velocity was 9 mph, soil moisture was good, sugarbeet was in the 2 leaf stage, redroot pigweed was in the cotyledon to 2 leaf stage, common lambsquarters was in the cotyledon to 4 leaf stage, and common mallow and wild mustard were in the cotyledon to 2 leaf stage. Single application treatments and the second half of split applications were applied 2:30 pm June 1 when the air temperature was 72F, soil temperature at six inches was 60F, relative humidity was 32%, wind velocity was 4 mph, soil moisture was good, sugarbeet and redroot pigweed were in the 2 to 4 leaf stage, common lambsquarters was in the 6 leaf stage, common mallow was in the 3 to 4 leaf stage, and wild mustard was in the 4 to 6 leaf stage. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sethoxydim + Scoil at 0.3 lb ai/A + 1 qt/A was applied to entire plot area June 14. Redroot pigweed, common lambsquarters, common mallow, and wild mustard control and sugarbeet injury were evaluated June 24.

			No	Soil A	pplied	Herbi	cide
			Sgbt	Rrpw	Colq	Coma	Wimu
Postemergence Tr	eatment*	Rate	inj	cntl	cntl	cntl	cntl
		lb/A			%		
Desmedipham/Desm		0.16/0.25	0	80	85	3	88
Desmedipham/Desm	edipham	0.25/0.33	3	90	95	10	100
NA-307/NA-307		0.16/0.25	0	63	89	8	95
NA-307/NA-307		0.25/0.33	0	61	90	3	93
Clopyralid/Clopy		0.09/0.09	0	14	50	20	37
Desm+Clpy/Desm+C		0.09/0.33+0.09	3	94	100	20	100
Des+Clpy+Tfsu/sa		/.25+.09+.0156	3	94	100	68	100
Des+Tfsu/Des+Tfs	u 0.25+0.01	56/0.33+0.0156	0	97	98	66	100
Des+Endo/Des+End	o 0.25+0	0.25/0.33+0.33	0	81	90	9	100
Des+Endo+AMS/sam	e 0.25+0.25+2	.5/.33+.33+2.5	16	59	70	68	95
/Endothall		/0.75	0	0	0	0	0
/Endothall+AMS		/0.75+2.5	0	0	0	38	0
Des+Tfsu+Endo/sa	me .25+.0156+.25,	/.33+.0156+.33	0	99	91	66	100
NA-307+Tfsu/same	0.16+0.015	56/0.25+0.0156	0	81	88	64	100
Tfsu+X-77/same	0.0156+0.25	\$/0.0156+0.25%	0	68	23	66	100
No postemergence	herbicide applied	1 O	0	0	0	0	0
C.V. %			154	12	14	27	7
LSD 5%			3	11	13	12	8
LSD 1%			4	14	18	16	11
# OF REPS			4	4	4	4	4

* X-77=non-ionic surfactant from Valent; AMS=ammonium sulfate; NA-307=desmed.pham+phenmed.pham+ethofumesate, 1:1:1 ratio

Experiment continued on next page.

Postemergence	herbicides	over	soil	applied	herbicides.	Minto.	1993
(continued)					A TERRET STORES		

			EPTC + Cycloate				
			Sgbt	Rrpw	Colq	Coma	Wimu
Postemergence Treatm	nent*	Rate	inj	cntl	cntl	cntl	cntl
		lb/A			% -		
Desmedipham/Desmedip		0.16/0.25	4	96	99	34	100
Desmedipham/Desmedip	ham	0.25/0.33	9	99	100	35	100
NA-307/NA-307		0.16/0.25	0	93	99	20	98
NA-307/NA-307		0.25/0.33	3	90	100	25	100
Clopyralid/Clopyrali	.d	0.09/0.09	8	79	84	28	40
Desm+Clpy/Desm+Clpy	0.25	+0.09/0.33+0.09	11	99	100	28	100
Des+Clpy+Tfsu/same	.16+.09+.015	6/.25+.09+.0156	8	100	100	70	100
Des+Tfsu/Des+Tfsu	0.25+0.0	156/0.33+0.0156	3	100	100	75	100
Des+Endo/Des+Endo	0.25	+0.25/0.33+0.33	5	95	100	38	100
Des+Endo+AMS/same	0.25+0.25+	2.5/.33+.33+2.5	38	89	99	73	100
/Endothall		/0.75	0	74	60	15	0
/Endothall+AMS		/0.75+2.5	0	75	50	48	0
Des+Tfsu+Endo/same	.25+.0156+.2	5/.33+.0156+.33	5	100	100	79	100
NA-307+Tfsu/same		156/0.25+0.0156	5	96	97	73	100
Tfsu+X-77/same		5%/0.0156+0.25%	0	95	68	75	100
No postemergence her			0	74	61	0	0
						Ŭ	Ŭ
C.V. %			82	7	10	28	3
LSD 5%			7	9	13	18	3
LSD 1%			9	13	17	23	5
# OF REPS			4	4	4	4	4

* X-77=non-ionic surfactant from Valent; AMS=ammonium sulfate; NA-307=desmedipham+phenmedipham+ethofumesate, 1:1:1 ratio

Summary

Desmedipham+endothall+ammonium sulfate caused more sugarbeet injury than the other treatments. Sugarbeet injury and weed control tended to be greater when postemergence herbicides were applied to plots previously treated with soil-applied EPTC+cycloate as compared to untreated plots. NA-307 gave less control of redroot pigweed and similar control of common lambsquarters and wild mustard compared to desmedipham in the absence of EPTC+cycloate. Best redroot pigweed control was from desmedipham in combination with clopyralid or triflusulfuron. Clopyralid, endothall, and triflusulfuron used alone gave less control of common lambsquarters than other treatments. None of the treatments gave over 80% control of common mallow but treatments including triflusulfuron gave better control than other treatments. Treatments including desmedipham gave excellent control of wild mustard. In the absence of EPTC+cycloate, desmedipham+endothall+ammonium sulfate gave less control of redroot pigweed and common lambsquarters, and more control of common mallow than desmedipham+endothall.

Triflusulfuron over soil-applied herbicides, Fargo, 1993. Preplant incorporated herbicides were applied in 17 gpa water at 40 psi through 8002 nozzles to the center four rows of six row plots 4:00 pm May 6 when the air temperature was 75F, wind velocity was 20 mph, and soil moisture was fair. Incorporation was with a rototiller set four inches deep for cycloate and two inches deep for ethofumesate. 'Beta 2988' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 6. The first half of split applied postemergence treatments was applied 8:30 pm June 11 when the air temperature was 81F, soil temperature at six inches was 68F, relative humidity was 48%, wind velocity was 10 mph, soil moisture was good, sugarbeet and redroot pigweed were in the cotyledon to 2 leaf stage and yellow foxtail was 1 to 2 inches tall. The second half of split treatments was applied 9:00 pm June 18 when the air temperature was 65F, soil temperature at six inches was 67F, relative humidity was 80%, wind velocity was 0 mph, soil moisture was good, sugarbeet was in the 2 to 4 leaf stage, redroot pigweed was in the 2 to 6 leaf stage, and yellow foxtail was 1 to 3 inches tall. Postemergence herbicides were applied in 8.5 qpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sethoxydim+Dash at 0.3 lb ai/A+1 qt/A was applied to all plots June 14. Redroot pigweed and yellow foxtail control and sugarbeet injury were evaluated July 9. Plots were hand weeded July 22. Sugarbeet was harvested and counted in the center two rows of 34 foot long plots September 24.

			Redroot	Yellow
		Sugarbeet	Pigweed	Foxtail
Treatment*	Rate	injury	control	control
	lb/A	90	00	00
Ethofumesate-SC (PPI)	3.5	0	60	55
Etho-SC(PPI)/Tfsu+De&Ph/same	3.5/0.0156+0.33	16	99	94
Etho-SC(PPI)/Tfsu+De&Ph/same	3.5/0.031+0.33	25	100	93
Etho-SC(PPI)/Tfsu+X-77/same	3.5/0.0156+0.25%	11	95	76
Etho-SC(PPI)/Tfsu+X-77/same	3.5/0.031+0.25%	9	96	79
Cycloate (PPI)	4	0	0	96
Cycl (PPI)/Tfsu+De&Ph/same	4/0.0156+0.33	16	99	97
Cycl (PPI)/Tfsu+De&Ph/same	4/0.031+0.33	26	100	95
Cycl (PPI)/Tfsu+X-77/same	4/0.0156+0.25%	11	91	89
Cycl (PPI)/Tfsu+X-77/same	4/0.031+0.25%	13	92	94
Untreated Check	0	0	0	0
Triflusulfuron+Des&Phen/same	0.0156+0.33	6	96	79
Triflusulfuron+Des&Phen/same	0.031+0.33	9	97	91
Triflusulfuron+X-77/same	0.0156+0.25%	3	79	63
Triflusulfuron+X-77/same	0.031+0.25%	3	85	66
C.V. %		59	5	12
LSD 5%		. 8	5	14
LSD 1%		11	7	18
# OF REPS		4	4	4

* X-77=non-ionic surfactant from Valent

Postemergence herbicides used over soil-applied ethofumesate or cycloate gave greater sugarbeet injury than soil-applied herbicides alone or postemergence herbicides alone. Redroot pigweed and yellow foxtail control also was or tended to be better with soil-applied plus postemergence herbicides.

Experiment continued on next page.

	Triflusulfuron over	soil-applied	herbicides,	Fargo, 1993.	((
--	---------------------	--------------	-------------	--------------	-----

(continued)

		Harvest		Loss			
		Sgbt		to		Impur	Extr
Treatment*	Rate	Popl	Sucr	Mol	Yield	Index	Sucr
	lb/A	#/68ft	010	010	ton/A		lb/A
Ethofumesate-SC (PPI)	3.5	60	16.5	1.8	13.9	801	4029
Etho-SC(PPI)/Tfsu+De&Ph/same3.5/0.	0156+0.33	57	15.9	1.8	12.8	833	3610
Etho-SC(PPI)/Tfsu+De&Ph/same 3.5/0	.031+0.33	53	15.9	2.0	12.1	905	3298
Etho-SC(PPI)/Tfsu+X-77/same3.5/0.0	156+0.25%	63	15.5	1.8	14.4	870	3871
Etho-SC(PPI)/Tfsu+X-77/same 3.5/0,	031+0.25%	63	16.2	1.8	14.2	797	4052
Cycloate (PPI)	4	66	16.0	1.8	14.9	804	4176
Cycl (PPI)/Tfsu+De&Ph/same 4/0.	0156+0.33	65	15.9	1.7	14.7	781	4132
Cycl (PPI)/Tfsu+De&Ph/same 4/0	.031+0.33	64	14.9	2.0	13.5	1003	3424
Cycl (PPI)/Tfsu+X-77/same 4/0.0	156+0.25%	63	16.5	1.7	13.7	746	4012
Cycl (PPI)/Tfsu+X-77/same 4/0.	031+0.25%	62	16.0	1.8	13.6	846	3863
Untreated Check	0	52	16.6	1.8	13.1	812	3828
Triflusulfuron+Des&Phen/same 0.	0156+0.33	61	16.8	1.7	15.4	761	4573
Triflusulfuron+Des&Phen/same 0	0.031+0.33	67	16.4	1.8	15.6	795	4506
Triflusulfuron+X-77/same 0.0)156+0.25%	61	16.6	1.8	17.0	779	5005
Triflusulfuron+X-77/same 0.	031+0.25%	63	16.5	1.8	16.5	795	4801
EXP MEAN		61	16.1	1.8	14.4	822	4079
C.V. %		11	4.0	9.2	14.7	11	15
LSD 5%		NS	0.9	NS	NS	130	871
LSD 1%		NS	NS	NS	NS	NS	NS
# OF REPS		4	4	4	4	4	4

* X-77=non-ionic surfactant from Valent

Summary

Sugarbeet yield in extractable sucrose per acre from plots treated with soil-applied plus postemergence herbicides was or tended to be less than from postemergence herbicides alone even though weed control was superior with soil-applied plus postemergence. This suggests that sugarbeet injury was sufficient to cause yield loss. The two treatments with the highest injury evaluations had the lowest yields. <u>Preplant incorporated herbicides, Renville, 1993.</u> Preplant incorporated herbicides were applied in 17 gpa water at 40 psi through 8002 nozzles to the center four rows of six row plots 1:00 pm May 14 when the air temperature was 76F, soil temperature at six inches was 64F, relative humidity was 29%, wind velocity was 15 mph, and soil moisture was good. Incorporation was with a rototiller set four inches deep for treatments containg EPTC or cycloate and two inches deep for dimethenamid. 'ACH 198' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 14. Eastern black nightshade, redroot pigweed, velvetleaf, and green foxtail control and sugarbeet injury were evaluated.

		Sgbt	Ebns	Rrpw	Vele	Grft
Treatment	Rate	inj	cntl	cntl	cntl	cntl
	lb/A	00	· · · · ·	00	00	00
EPTC	2	5	60	60	63	92
Cycloate	4	3	50	60	60	89
EPTC+Cycloate	1+2.5	3	55	45	65	89
EPTC+Cycloate	1.5+2.5	6	55	75	87	96
EPTC+Cycloate	1.5+2	3	63	70	83	97
EPTC+Cycloate	2+2	5	60	61	83	97
EPTC+Cycloate	1+3	3	50	81	77	95
EPTC+Cycl+Ethofu		5	90	83	82	94
EPTC+Cycl+Ethofu	mesate-SC 1+2+3	11	94	92	92	96
Dimethenamid	1.5	20	99	96	80	96
EXP MEAN		6	68	72	77	94
C.V. %		77	18	13	13	5
LSD 5%		7	27	14	17	NS
LSD 1%		9	NS	19	NS	NS
# OF REPS		4	2	4	3	4

Summary

Only EPTC+cycloate+ethofumesate at 1+2+3 lb/A and dimethenamid caused significant sugarbeet injury. Injury reported in this table at Renville was less than with the same treatments applied at Crookston on a lighter soil. EPTC+cycloate+ethofumesate and dimethenamid gave better control of eastern black nightshade than the other treatments. Only EPTC+cycloate+ethofumesate at 1+2+3 lb/A and dimethenamid gave over 90% control of redroot pigweed. Treatments with 1.5 lb/A or more of EPTC and treatments with ethofumesate gave over 80% control of velvetleaf. All treatments gave similar control of green foxtail. Postemergence herbicides on sugarbeet, Benson, 1993. Plots 40 feet long and six rows wide were established in a commercial sugarbeet field. The first half of split treatments was applied 1:00 pm May 12 when the air temperature was 80F, wind velocity was 10-15 mph, soil moisture was good, sugarbeet was in the cotyledon stage, and common sunflower and velvetleaf were in the cotyledon to 1 leaf stage. The second half of split treatments and single application treatments were applied 12:00 pm May 19 when the air temperature was 65F, wind velocity was 0-5 mph, soil moisture was good, sugarbeet was in the 2 leaf stage, and common sunflower and velvetleaf were in the cotyledon to 2 leaf stage. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sugarbeet injury and common sunflower and velvetleaf June 21.

		Cosf	Vele	Sgbt
Treatment*	Rate	cntl	cntl	<u>inj</u>
	lb/A	00	00	010
Desmedipham/Desmedipham	0.16/0.25	0	0	0
Desmedipham/Desmedipham	0.25/0.33	8	6	13
NA-307/NA-307	0.16/0.25	10	19	9
NA-307/NA-307	0.25/0.33	20	3	14
Clopyralid/Clopyralid	0.09/0.09	100	36	0
Desm+Clopyralid/Desm+Clpy	0.25+0.09/0.33+0.09	98	74	5
Des+Clpy+Tfsu/same 0.16+0.09+0.	0156/0.25+0.09+0.0156	100	87	20
Des+Triflusulfuron/Des+Tfsu 0.	25+0.0156/0.33+0.0156	63	69	14
Des+Endothall/Des+Endothall	0.25+0.25/0.33+0.33	25	25	11
	.25+2.5/0.33+0.33+2.5	33	62	23
/Endothall	/0.75	18	14	8
/Endothall+AMS	/0.75+2.5	31	35	4
Des+Tfsu+Endo/same 0.25+0.0156+	0.25/0.33+0.0156+0.33	76	73	28
NA-307+Tfsu/same 0.	16+0.0156/0.25+0.0156	77	70	11
Triflusulfuron+X-77/same 0.01	56+0.25%/0.0156+0.25%	70	77	6
EXP MEAN		48	43	11
C.V. %		28	34	104
LSD 5%		20	21	16
LSD 1%		26	28	NS
# OF REPS		4	4	4

* X-77=non-ionic surfactant from Valent; AMS=ammonium sulfate; NA-307=desmedipham+phenmedipham+ethofumesate, 1:1:1 ratio

Summary

Treatments including clopyralid gave better control of common sunflower than other treatments. Treatments including triflusulfuron and desmedipham + clopyralid gave or tended to give better velvetleaf control than the other treatments. Only desmedipham+clopyralid+triflusulfuron, desmedipham+endothall + ammonium sulfate, and desmedipham+triflusulfuron+endothall gave over 20% sugarbeet injury.

Postemergence grass control, Fargo, 1993. 'Starter' oats at 20 lb/A and 'Siberian' foxtail millet at 10 lb/A were seeded in 9 foot strips across herbicide plots April 26. Twelve rows of 'KW 1119' sugarbeet was seeded 1.25 inches deep in 22 inch rows across herbicide plots April 26. Counter 15G at 12 pounds product per acre was applied in a 2-inch band and drag chain incorporated at planting. The first half of split applications and the early single application treatments were applied 2:00 pm June 2 when the air temperature was 68F, soil temperature at six inches was 62F, relative humidity was 55%, wind velocity was 15 mph, soil moisture was good, sugarbeet was in the 4 leaf stage, foxtail millet was 2 to 3 inches tall, oats was in the 3 to 5 leaf stage (4 to 10 inches tall), and common mallow was in the 2 leaf stage to 2 inches in diameter. The second half of split applications and late single applications were applied 6:00 pm June 10 when the air temperature was 84F, soil temperature at six inches was 68F, relative humidity was 32%, wind velocity was 4 mph, soil moisture was good, sugarbeet was in the 6 to 8 leaf stage, foxtail millet was 1 to 6 inches tall, oats was 12 to 18 inches tall, and common mallow was 2 to 4 inches in diameter. The number of days in parenthesis indicates the days between the first and second herbicide application for these treatments. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Foxtail millet, oats, and common mallow control and sugarbeet injury were evaluated June 26.

	Fomi	Oats	Sgbt	Coma
Treatment* Rate	cntl	cntl	inj	cntl
lb/A	90 00	010	00	0/0
Sethoxydim+Scoil 0.2+0.19G	100	100	0	0
Quizalofop+Scoil 0.125+0.19G	89	100	4	3
Triflusulfuron+Desmed&Phenmed 0.0156+0.33	10	0	0	41
Triflusulfuron+Sethoxydim+Scoil 0.0156+0.2+0.19G	99	100	18	51
Tfsu+Des&Phen+Seth+Scoil 0.0156+0.33+0.2+0.19G	96	96	8	53
Tfsu+De&Ph/(1 day)/Seth+Scoil 0.0156+0.33/0.2+0.19G	100	99	3	33
Tfsu+De&Ph/(3 day)/Seth+Scoil 0.0156+0.33/0.2+0.19G	100	100	3	46
Tfsu+De&Ph/(5 day)/Seth+Scoil 0.0156+0.33/0.2+0.19G	100	100	0	43
Tfsu+De&Ph/(8 day)/Seth+Scoil 0.0156+0.33/0.2+0.19G	100	100	0	38
Tfsu-66037+Quizalofop+Scoil 0.0156+0.125+0.19G	58	100	0	60
Tfsu+De&Ph+Qufp+Scoil 0.0156+0.33+0.125+0.19G	58	99	6	46
Tfsu+De&Ph/(1 day)/Qufp+Scoil 0.0156+0.33/0.125+0.19G	80	100	3	55
Tfsu+De&Ph/(3 day)/Qufp+Scoil 0.0156+0.33/0.125+0.19G	92	100	0	36
Tfsu+De&Ph/(5 day)/Qufp+Scoil 0.0156+0.33/0.125+0.19G	92	100	0	38
Tfsu+De&Ph/(8 day)/Qufp+Scoil 0.0156+0.33/0.125+0.19G	100	100	0	36
Sethoxydim+Lorsban 0.1+1	96	80	0	3
Sethoxydim+DashHC 0.1+0.62%	93	99	0	0
Sethoxydim+DashHC 0.2+0.62%	99	100	0	0
Seth+Des&Phen/Seth+Des&Phen 0.1+0.33/0.1+0.33	76	66	0	14
Seth+Des&Phen+Mor-Act/same 0.1+0.33+1.25%/same	97	98	0	6
Seth+Des&Phen+DashHC/same 0.1+0.33+0.62%/same	97	96	0	10
Seth+De&Ph+Clpy+MorAct/same 0.1+0.33+0.09+1.25%/same	97	97	0	26
/Sethoxydim+Des&Phen/0.2+0.75	79	60	0	18
/Sethoxydim+Des&Phen/0.3+0.75	72	61	0	8
/Sethoxydim+Des&Phen+Mor-Act/0.2+0.75+1.25%	96	71	0	14
/Sethoxydim+Des&Phen+DashHC/0.2+0.75+0.62%	85	65	3	5
/Seth+Des&Phen+BAS119-45+MorAct/0.2+0.75+2+1.25%	79	60	0	10

Table continued on next page.

Postemergence grass control, Fargo, 1993. (continued)

		Fomi	Oats	Sgbt	Coma
Treatment*	Rate	cntl	cntl	inj	cntl
	lb/A	00	8	8	00
Des&Phen/Seth+DashHC	0.75/0.2+0.62%	100	99	0	3
Tfsu+Des&Phen+Seth/same	0.0156+0.33+0.1/same	78	69	8	53
Tfsu+Des&Phen+Seth/same	0.0156+0.33+0.2/same	96	96	8	42
Seth+Des&Phen/Seth+Des&Phen	0.2+0.33/0.2+0.33	100	94	0	4
Seth+Des&Phen/Seth+Des&Phen	0.3+0.33/0.3+0.33	100	100	0	3
Seth+Des&Phen+Mor-Act/same	0.2+0.33+1.25%/same	100	100	0	8
Seth+Des&Phen+Mor-Act/same	0.3+0.33+1.25%/same	100	100	0	17
Seth+De&Ph+DashHC/same	0.2+0.33+0.62%/same	100	100	0	9
Seth+Des&Phen+DashHC/same	0.3+0.33+0.62%/same	100	100	0	4
EXP MEAN		89	89	2	23
C.V. %		8	4	225	33
LSD 5%		10	5	5	11
LSD 1%		13	7	7	14
# OF REPS		4	4	4	4

* Dash HC=adjuvant from BASF; Mor-Act=petroleum oil concentrate from Wilbur-Ellis; Scoil=methylated seed oil from Agsco; BAS119-45=pyrazon.

Summary

Sethoxydim+Lorsban insecticide at 0.1+1 lb/A gave less oats control than sethoxydim+Dash HC at 0.1 lb/A+0.62% but better control of foxtail millet and oats than sethoxydim+desmedipham+phenmedipham with no oil additive. This suggests that Lorsban acted as an adjuvant with sethoxydim but was not as effective as the better oil adjuvants. Neither triflusulfuron nor triflusulfuron+desmedipham+phenmedipham antagonized grass control from sethoxydim but both herbicide treatments reduced foxtail millet control from quizalofop when used in tank-mix combination. A three day delay between the broadleaf herbicide application and the quizalofop+Scoil gave foxtail millet control similar to quizalofop+Scoil alone. Sethoxydim + desmedipham + phenmedipham applied once or twice gave less grass control than when Mor-Act or Dash HC was added to the treatment. Sethoxydim + desmedipham + phenmedipham + Mor-Act or Dash HC gave better grass control as a split application rather than a single dose. Addition of BAS119-45 had no effect on grass control. Desmedipham+phenmedipham+sethoxydim applied twice at 0.33+0.1 1b/A gave grass control similar to triflusulfuron + desmedipham + phenmedipham + sethoxydim applied twice at 0.0156+0.33+0.1 lb/A. Treatments where sethoxydim at 0.2 lb/A or more was applied twice resulted in nearly total grass control regardless of the presence of a broadleaf herbicide or the absence of an oil adjuvant.

Postemergence herbicides, St. Thomas, 1993. 'Beta 2988' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 4. Counter 15G at 12 pounds product per acre was applied in a 2-inch band and drag chain incorporated at planting. The first half of split application herbicide treatments was applied 12:15 pm May 25 when the air temperature was 62F, soil temperature at six inches was 58F, relative humidity was 50%, wind velocity was 13 mph, soil moisture was good, sugarbeet was in the cotyledon to early 2 leaf stage, and redroot pigweed was in the cotyledon to 2 leaf stage. The second half of split applications was applied 12:30 pm June 1 when the air temperature was 65F, soil temperature at six inches was 66F, relative humidity was 40%, wind velocity was 3 mph, soil moisture was good, sugarbeet was in the 2 to 4 leaf stage, and redroot pigweed was in the 4 to 6 leaf stage. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sugarbeet injury and redroot pigweed control were evaluated June 12 and June 28.

	June 12		Jun	e 28
	Sgbt	Rrpw	Sgbt	Rrpw
Treatment* Rate	inj	ratg	inj	ratq
lb/A	00	010	olo	0/0
Desmedipham&Phenmedipham/Desmed&Phenmed 0.25/0.33				
	8	74	0	66
지수는 것은	8	85	0	83
NA-305/NA-305 0.375/0.5	23	85	13	76
NA-307/NA-307 0.25/0.33	10	68	4	61
NA-307/NA-307 0.375/0.5	25	83	8	78
NA-308/NA-308 0.25/0.33	9	74	0	68
NA-308/NA-308 0.375/0.5	16	81	5	71
CQ-1451/CQ-1451 0.375/0.5	13	84	5	70
Desmed&Phenmed+Clopyralid/same 0.25+0.09/0.33+0.09	18	84	10	77
Des&Phen+Clpy+Tfsu/same 0.16+0.09+0.0156/0.25+same	24	99	6	95
Des&Phen+Tfsu/Des&Phen+Tfsu 0.25+0.0156/0.33+0.0156	11	96	3	95
Desmed&Phenmed+Endothall/same 0.25+0.25/0.33+0.33	10	79	6	75
De&Ph+Tfsu+Endo/same0.25+0.0156+0.25/0.33+0.0156+0.33	11	95	0	96
EXP MEAN	14	83	5	78
C.V. %	38	6	149	10
LSD 5%	8	7	NS	11
LSD 1%	10	9	NS	15
# OF REPS	4	4	4	4

* NA-305, NA-307, NA-308, and CQ-1451=desmedipham+phenmedipham+ethofumesate, 1:1:1 ratio

Summary

Some treatments were deleted from this experiment because some of the plastic spray bottles were contaminated with an ALS inhibiting herbicide. Desmedipham applied twice at 0.25 and 0.33 lb/A gave redroot pigweed control superior to NA307 at 0.25 plus 0.33 lb/A, NA308 at both rates, and CQ1451 at 0.375 plus 0.5 lb/A on June 28. Treatments including desmedipham, phenmedipham and triflusulfuron gave the best control of redroot pigweed. Sugarbeet injury was minor by June 28. Plots treated with NA305, NA307 or desmedipham&phenmedipham + clopyralid + triflusulfuron had more injury than other plots on June 12.

Redroot piqweed control with postemergence herbicides, Mooreton, 1993. 'Seedex Monohikari' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 13. Counter 15G at 12 pounds product per acre was applied in a 2-inch band and drag chain incorporated at planting. The first half of split treatments was applied 12:20 pm June 11 when the air temperature was 80F, soil temperature at six inches was 66F, relative humidity was 61%, wind velocity was 9 mph, soil moisture was good, sugarbeet and redroot pigweed were in the cotyledon to 2 leaf stage. The second half of split treatments and single application treatments were applied 10:00 am June 21 when the air temperature was 79F, soil temperature at six inches was 66F, relative humidity was 72%, wind velocity was 8 mph, soil moisture was good, and sugarbeet and redroot pigweed were in the 2 to 4 leaf stage. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sugarbeet injury and redroot pigweed control were evaluated July 2.

			Redroot
		Sugarbeet	Pigweed
Treatment*	Rate	injury	<u>control</u>
	lb/A	%	
Desmedipham/Desmedipham	0.16/0.25	8	91
Desmedipham/Desmedipham	0.25/0.33	13	97
NA-307/NA-307	0.16/0.25	10	88
NA-307/NA-307	0.25/0.33	5	87
Clopyralid/Clopyralid	0.09/0.09	0	3
Desmed+Clpy/Desmed+Clpy	0.25+0.09/0.33+0.09	0	99
Des+Clpy+Tfsu/same 0.16+0.09+0	.0156/0.25+0.09+0.0156	9	100
Des+Triflusulfuron/Des+Tfsu 0	.25+0.0156/0.33+0.0156	8	99
Desmed+Endothall/Desmed+Endo	0.25+0.25/0.33+0.33	40	95
Desmed+Endo+AMS/same 0.25	5+0.25+2.5/.33+.33+2.5	55	86
/Endothall	/0.75	28	4
/Endothall+AMS	/0.75+2.5	40	33
Des+Tfsu+Endo/same 0.25+0.0156-	+0.25/0.33+0.0156+0.33	38	98
NA-307+Triflusulfuron/same 0	.16+0.0156/0.25+0.0156	13	97
Triflusulfuron+X-77/same 0.03	156+0.25%/0.0156+0.25%	6	75
C.V. %		36	10
LSD 5%		9	11
LSD 1%		13	15
# OF REPS		4	4

* X-77=non-ionic surfactant from Valent; AMS=ammonium sulfate; NA-307=desmedipham+phenmedipham+ethofumesate, 1:1:1 ratio

Summary

Treatments including endothall gave more sugarbeet injury than other treatments and endothall+ammonium sulfate gave more injury than endothall alone. Treatments that included desmedipham gave better control of redroot pigweed than other treatments. NA-307 tended to give less control of redroot pigweed than desmedipham. Kochia control with postemergence sugarbeet herbicides, Ortonville, 1993. 'ACH 198' sugarbeet was seeded in 22 inch rows April 29. The first half of split treatments was applied 2:00 pm May 11 when the air temperature was 75F, soil temperature at six inches was 67F, wind velocity was 10-15 mph, soil moisture was good, sugarbeet was in the cotyledon stage, and kochia was in the cotyledon to small rosette stage. The second half of split treatments and single application treatments were applied 1:00 pm May 18 when the air temperature was 60F, soil temperature at six inches was 67F, wind velocity was 0-10 mph, soil moisture was good, sugarbeet was in the 2 to 4 leaf stage, and kochia was in the cotyledon stage to 1 inch rosette diameter. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sugarbeet injury and kochia control were evaluated June 21.

		Kochia	Sugarbeet
Treatment*	Rate	control	injury
	lb/A	00	00
	16/0.25	22	8
	25/0.33	19	3
	16/0.25	65	6
NA-307/NA-307 0.	25/0.33	53	11
Clopyralid/Clopyralid 0.	09/0.09	4	3
Desm+Clpy/Desm+Clpy 0.25+0.09/0.	33+0.09	23	5
Des+Clpy+Tfsu/same 0.16+0.09+0.0156/0.25+0.09	+0.0156	93	11
Des+Triflusulfuron/Des+Tfsu 0.25+0.0156/0.33	+0.0156	98	13
Des+Endothall/Des+Endothall 0.25+0.25/0.	33+0.33	55	9
Des+Endo+AMS/same 0.25+0.25+2.5/0.33+0	.33+2.5	36	19
/Endothall	/0.75	0	3
/Endothall+AMS/C	.75+2.5	0	3
Des+Tfsu+Endo/same 0.25+0.0156+0.25/0.33+0.01	.56+0.33	89	9
NA-307+Triflusulfuron/same 0.16+0.0156/0.25		95	13
Triflusulfuron+X-77/same 0.0156+0.25%/0.015		88	8
EXP MEAN		49	8
C.V. %		26	61
LSD 5%		18	7
LSD 1%		25	9
# OF REPS		4	4

* X-77=non-ionic surfactant from Valent; AMS=ammonium sulfate; NA-307=desmedipham+phenmedipham+ethofumesate, 1:1:1 ratio

Summary

Treatments that included triflusulfuron gave kochia control superior to other treatments. NA-307 gave kochia control superior to desmedipham.
Kochia control with postemergence herbicides, Oslo, 1993. 'Beta 2988' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 4. Counter 15G at 12 pounds product per acre was applied in a 2-inch band and drag chain incorporated at planting. The first half of split treatments was applied 4:15 pm May 25 when the air temperature was 60F, soil temperature at six inches was 58F, relative humidity was 68%, wind velocity was 20 mph, soil moisture was good, sugarbeet was in the cotyledon to 2 leaf stage and kochia was 0.25 to 0.5 inch rosette diameter. The second half of split treatments and single application treatments were applied 4:00 pm June 1 when the air temperature was 77F, soil temperature at six inches was 61F, relative humidity was 21%, wind velocity was 10 mph, soil moisture was good, sugarbeet was in the 2 leaf stage and kochia was 0.5 to 1.5 inch rosette diameter. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sethoxydim+Scoil at 0.3 lb ai/A+1 qt/A was applied to the entire plot area June 14. Sugarbeet injury and kochia control were evaluated June 24.

Treatment* Rate		Kochia
	injury	control
lb/A	8	
Desmedipham/Desmedipham 0.16/0.2	25 0	28
Desmedipham/Desmedipham 0.25/0.3		56
NA-307/NA-307 0.16/0.1		64
NA-307/NA-307 0.25/0.3		65
Clopyralid/Clopyralid 0.09/0.0		0
Desmed+Clpy/Desmed+Clpy 0.25+0.09/0.33+0.0		45
Des+Clpy+Tfsu/same 0.16+0.09+0.0156/0.25+0.09+0.01	56 10	96
Des+Triflusulfuron/Des+Tfsu 0.25+0.0156/0.33+0.01		98
Desmed+Endothall/Desmed+Endo 0.25+0.25/0.33+0.3		34
Desmed+Endothall+AMS/same 0.25+0.25+2.5/.33+.33+2	.5 33	36
/Endothall/0.	75 0	0
/Endothall+AMS/0.75+2	.5 3	0
Des+Tfsu+Endo/same 0.25+0.0156+0.25/0.33+0.0156+0.3	33 11	98
NA-307+Triflusulfuron/same 0.16+0.0156/0.25+0.01	56 5	96
Triflusulfuron+X-77/same 0.0156+0.25%/0.0156+0.2	5% 0	90
C.V. %	59	16
LSD 5%	6	12
LSD 1%	8	16
# OF REPS	4	4

* X-77=non-ionic surfactant from Valent; AMS=ammonium sulfate; NA-307=desmedipham+phenmedipham+ethofumesate, 1:1:1 ratio

Summary

Desmedipham+endothall+ammonium sulfate gave more sugarbeet injury than other treatments. Treatments including triflusulfuron gave better kochia control than other treatments. NA-307 at 0.16/0.25 lb/A gave better kochia control than desmedipham at 0.16/0.25 lb/A.

Lanceleaf sage control with postemergence herbicides, Wolverton, 1993. 'Seedex Monohikari' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 12. Counter 155 at 12 pounds product per acre was applied in a 2-inch band and drag chain incorporated at planting. The first half of split treatments was applied 10:00 am June 10 when the air temperature was 71F, soil temperature at six inches was 64F, relative humidity was 82%, wind velocity was 5 mph, soil moisture was good, sugarbeet was in the cotyledon to 4 leaf stage and lanceleaf sage and common lambsquarters were in the cotyledon to 2 leaf stage. The second half of split treatments and single application treatments were applied 11:30 am June 21 when the air temperature was 82F, soil temperature at six inches was 66F, relative humidity was 69%, wind velocity was 6 mph, soil moisture was good, sugarbeet was in the 4 to 6 leaf stage, lancelead sage was in the 2 leaf stage to 3 inches tall, and common lambsquarters was in the 2 leaf stage to 2 inches tall. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sugarbeet injury and common lambsquarters control were evaluated June 25. Lanceleaf sage control was evaluated June 25, July 3, and July 12.

			June 2	5	7-3	7-12
		Sgbt	Lasa	Colq	Lasa	Lasa
Treatment*	Rate	inj	cntl	cntl	cntl	cntl
	lb/A			% -		
	0.16/0.25	0	21	89	35	25
	0.25/0.33	0	27	100	48	51
	0.16/0.25	0	45	95	48	45
NA-307/NA-307	0.25/0.33	3	65	100	49	54
Clopyralid/Clopyralid	0.09/0.09	0	50	29	71	64
Desmed+Clpy/Desmed+Clpy 0.25+0.09/	0.33+0.09	0	33	100	84	79
Des+Clpy+Tfsu/same 0.16+0.09+0.0156/.25+	.09+.0156	5	80	100	86	85
Des+Tfsu/Des+Tfsu 0.25+0.0156/0.	33+0.0156	8	34	98	60	44
Des+Endo/Des+Endo 0.25+0.25/	0.33+0.33	40	74	100	59	44
Des+Endo+AMS/same 0.25+0.25+2.5/.3	3+.33+2.5	72	88	98	91	79
/Endothall	/0.75	36	38	5	16	25
/Endothall+AMS	/0.75+2.5	49	41	8	18	38
Des+Tfsu+Endo/same 0.25+0.0156+0.25/.33+	.0156+.33	45	74	100	69	64
NA-307+Tfsu/same 0.16+0.0156/0.	25+0.0156	0	55	100	66	61
Tfsu+X-77/same 0.0156+0.25%/0.0	156+0.25%	0	51	16	74	66
C.V. %		28	19	8	17	17
LSD 5%		7	15	9	14	13
LSD 1%		9	20	12	19	18
# OF REPS		4	4	4	4	4

* X-77=non-ionic surfactant from Valent; AMS=ammonium sulfate; NA-307=desmedipham+phenmedipham+ethofumesate, 1:1:1 ratio

Summary

All treatments that included endothall gave severe sugarbeet injury. Clopyralid, endothall, and triflusulfuron used alone gave less control of common lambsquarters than other treatments. Desmedipham+clopyralid, desmedipham+clopyralid+triflusulfuron, and desmedipham+endothall+ammonium sulfate gave lanceleaf sage control superior to other treatments. NA-307 at 0.16/0.25 lb/A gave or tended to give better weed control than desmedipham at 0.16/0.25 lb/A. Multispecies evaluation of postemergence sugarbeet herbicides, Renville, 1993. 'ACH 198' sugarbeet was seeded in 22 inch rows May 14. The first half of split treatments was applied 2:00 pm May 20 when the air temperature was 67F, wind velocity was 0-5 mph, soil moisture was good, and sugarbeet was in the cotyledon stage. The second half of split treatments and single application treatments were applied 10:00 am May 26 when the air temperature was 62F, wind velocity was 0-5 mph, soil moisture was good, and sugarbeet was in the cotyledon stage. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sugarbeet injury and common lambsquarters, velvetleaf, redroot pigweed, eastern black nightshade, and green and yellow foxtail control were evaluated June 21.

Treatment* Rate inj cntl cntl								G&Y
lb/A %			Sgbt	Colq	Vele	Rrpw	Ebns	Fxtl
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Treatment*	Rate	inj	cntl	cntl	cntl	cntl	cntl
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		lb/A	00	00	8	00	00	%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Desmedipham/Desmedipham		0	73	5	58	33	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Desmedipham/Desmedipham		0	78	8	65	18	58
Clopyralid/Clopyralid 0.09/0.09 0 10 0 0 81 0 Desm+Clpy/Desm+Clpy 0.25+0.09/0.33+0.09 3 86 20 71 78 56 Des+Clpy+Tfsu/same 0.16+.09+.0156/.25+.09+.0156 13 93 55 86 96 58 Des+Tfsu/Des+Tfsu 0.25+0.0156/0.33+0.0156 8 83 41 76 51 61 Des+Endo/Des+Endo 0.25+0.25/0.33+0.33 3 76 17 65 50 60 Des+Endo+AMS/same 0.25+0.25/0.33+0.33 3 76 17 65 50 60 Des+Endo+AMS/same 0.25+0.25+2.5/.33+.33+2.5 5 80 30 61 38 66 /Endothall /0.75 0 0 5 0 8 8 Des+Tfsu+Endo/same 0.25+.0156+.25/.33+.0156+.33 8 91 53 85 70 68	NA-307/NA-307	0.16/0.25	0	76	18	69	30	59
Desm+Clpy/Desm+Clpy0.25+0.09/0.33+0.0938620717856Des+Clpy+Tfsu/same0.16+.09+.0156/.25+.09+.0156139355869658Des+Tfsu/Des+Tfsu0.25+0.0156/0.33+0.015688341765161Des+Endo/Des+Endo0.25+0.25/0.33+0.3337617655060Des+Endo+AMS/same0.25+0.25+2.5/.33+.33+2.558030613866/Endothall/0.7500508/Endothall+AMS/0.75+2.53013305Des+Tfsu+Endo/same0.25+.0156+.25/.33+.0156+.3389153857068	NA-307/NA-307	0.25/0.33	0	84	18	70	53	70
Des+Clpy+Tfsu/same0.16+.09+.0156/.25+.09+.0156139355869658Des+Tfsu/Des+Tfsu0.25+0.0156/0.33+0.015688341765161Des+Endo/Des+Endo0.25+0.25/0.33+0.3337617655060Des+Endo+AMS/same0.25+0.25+2.5/.33+.33+2.558030613866/Endothal1/0.7500508/Endothal1+AMS/0.75+2.53013305Des+Tfsu+Endo/same0.25+.0156+.25/.33+.0156+.3389153857068	Clopyralid/Clopyralid	0.09/0.09	0	10	0	0	81	0
Des+Tfsu/Des+Tfsu 0.25+0.0156/0.33+0.0156 8 83 41 76 51 61 Des+Endo/Des+Endo 0.25+0.25/0.33+0.33 3 76 17 65 50 60 Des+Endo+AMS/same 0.25+0.25+2.5/.33+.33+2.5 5 80 30 61 38 66 /Endothall /0.75 0 0 5 0 8 Des+Tfsu+Endo/same 0.25+.0156+.25/.33+.0156+.33 8 91 53 85 70 68	Desm+Clpy/Desm+Clpy 0.25	5+0.09/0.33+0.09	3	86	20	71	78	56
Des+Endo/Des+Endo0.25+0.25/0.33+0.3337617655060Des+Endo+AMS/same0.25+0.25+2.5/.33+.33+2.558030613866/Endothall/0.75005008/Endothall+AMS/0.75+2.53013305Des+Tfsu+Endo/same0.25+.0156+.25/.33+.0156+.3389153857068	Des+Clpy+Tfsu/same 0.16+.09+.015	56/.25+.09+.0156	13	93	55	86	96	58
Des+Endo+AMS/same0.25+0.25+2.5/.33+.33+2.558030613866/Endothall/0.75005008/Endothall+AMS/0.75+2.53013305Des+Tfsu+Endo/same0.25+.0156+.25/.33+.0156+.3389153857068	Des+Tfsu/Des+Tfsu 0.25+0.0	0156/0.33+0.0156	8	83	41	76	51	61
/Endothall /0.75 0 0 5 0 8 /Endothall+AMS /0.75+2.5 3 0 13 3 0 5 Des+Tfsu+Endo/same 0.25+.0156+.25/.33+.0156+.33 8 91 53 85 70 68	Des+Endo/Des+Endo 0.25	5+0.25/0.33+0.33	3	76	17	65	50	60
/Endothall+AMS/0.75+2.5 3 0 13 3 0 5 Des+Tfsu+Endo/same 0.25+.0156+.25/.33+.0156+.33 8 91 53 85 70 68	Des+Endo+AMS/same 0.25+0.25+	+2.5/.33+.33+2.5	5	80	30	61	38	66
Des+Tfsu+Endo/same 0.25+.0156+.25/.33+.0156+.33 8 91 53 85 70 68	/Endothall		0	0	5	0	0	8
	/Endothall+AMS	/0.75+2.5	3	0	13	3	0	5
	Des+Tfsu+Endo/same 0.25+.0156+.2	25/.33+.0156+.33	8	91	53	85	70	68
NA-307+Tfsu/same 0.16+0.0156/0.25+0.0156 5 /9 35 65 60 55	NA-307+Tfsu/same 0.16+0.0	0156/0.25+0.0156	5	79	35	65	60	55
Tfsu+X-77/same 0.0156+0.25%/0.0156+0.25% 0 8 33 15 15 10	Tfsu+X-77/same 0.0156+0.2	25%/0.0156+0.25%	0	8	33	15	15	10
EXP MEAN 3 61 23 53 45 45	EXP MEAN		3	61	23	53	45	45
C.V. % 143 19 66 25 42 30	C.V. %		143	19	66	25	42	30
LSD 5% 6 17 22 19 27 19	LSD 5%		6	17	22	19	27	19
LSD 1% 8 22 29 25 36 26	LSD 1%		8	22	29	25	36	26
# OF REPS 4 4 4 4 4 4	# OF REPS		4	4	4	4	4	4

* X-77=non-ionic surfactant from Valent; AMS=ammonium sulfate; NA-307=desmedipham+phenmedipham+ethofumesate, 1:1:1 ratio

Summary

Clopyralid, endothall, and triflusulfuron used alone gave less control of common lambsquarters than the other treatments. Velvetleaf control was less than 60% with all treatments. Only desmedipham+clopyralid+triflusulfuron and desmedipham+triflusulfuron+endothall gave over 80% control of redroot pigweed. Only desmedipham+clopyralid+triflusulfuron gave over 90% control of eastern black nightshade. NA-307 gave weed control similar to desmedipham.

Multiple postemergence applications, Crookston, 1993. 'Beta 2988' sugarbeet was seeded 1.25 inches deep in 22 inch rows April 30. Counter 15G at 12 pounds product per acre was applied in a 2-inch band and drag chain incorporated at planting. Herbicide applications were made on three different days separated by the "/" in each treatment. The "--" indicates no application on that date. The first application was 3:00 pm May 21 when the air temperature was 72F, soil temperature at six inches was 64F, relative humidity was 22%, wind velocity was 12 mph, soil moisture was fair, sugarbeet was in the 2 leaf stage, common mallow was in the cotyledon to 3 leaf stage, green foxtail was 0.5 to 1 inch tall, commom lambsquarters was in the cotyledon to 6 leaf stage, and marshelder was in the cotyledon to 2 leaf stage. The second application was 3:00 pm May 28 when the air temperature was 68F, soil temperature at six inches was 56F, relative humidity was 47%, wind velocity was 10 mph, soil moisture was good, sugarbeet was in the 4 leaf stage, common mallow was in the 3 to 6 leaf stage, green foxtail was 1 to 2 inches tall, commom lambsquarters was in the 4 leaf stage to 1.5 inches tall, and marshelder was in the 2 to 4 leaf stage. The third application was 11:15 am June 4 when the air temperature was 68F, soil temperature at six inches was 61F, relative humidity was 59%, wind velocity was 4 mph, soil moisture was good, sugarbeet was in the 4 to 6 leaf stage, common mallow was in the cotyledon to 8 leaf stage, green foxtail was emerging to 3 inches tall, commom lambsquarters was 2 to 3.5 inches tall, and marshelder was in the 4 to 6 leaf stage. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sethoxydim+crop oil at 0.2 lb ai/A + 1 qt/A was applied to the entire plot area June 15. Green foxtail, common lambsquarters, and marshelder control and sugarbeet injury were evaluated June 19. Common mallow control was evaluated June 19 and July 3.

				Tuno	10		
		Sabt		June :	Colq	Maal	<u>7-3</u>
Treatment*	Rate						
<u></u>	lb/A		<u> </u>		cntl		
	LD/A				6		
Desmed&Phenmed/De	esmed&Phenmed/ 0.25/0.33	3	19	54	100	95	13
Desmed&Phenmed/De		3	39	58	100	95	35
Des&Phen/Des&Pher		5	45	89	100	100	40
Desmedipham/Desme		0	25	48	98	89	40 18
Desmedipham/Desme		0	25	54	100	95	20
	ne/ 0.25+0.0156/0.33+0.0156	3	78	68	100	99	79
	ne/25+.0156/0.33+0.0156/same	5	90	93	100	100	86
	ne .25+.0156/0.33+same/0.5+same	3	94	93	100	100	90
	0.0156+0.25%/0.0156+0.25%	0	89	38	20	98	76
Tfsu+Scoil/same/-		3	91	40	28	93	80
Tfsu+X-77/same/sa		13	94	59	24	100	83
NA-305/NA-305/	0.25/0.33	5	53	43	100	89	48
NA-305/NA-305/	0.375/0.5	5	51	64	99	94	45
NA-307/NA-307/	0.25/0.33	0	39	53	100	84	40
NA-307/NA-307/	0.375/0.5	9	63	56	100	93	53
NA-308/NA-308/	0.25/0.33	10	48	58	99	94	35
NA-308/NA-308/	0.375/0.5	8	50	59	95	86	51
CQ-1451/CQ-1451/-		6	48	61	99	75	44
CQ-1451/CQ-1451/-		8	64		100	81	55
D&P+Etho-SC/D&P+E		5	55		100	86	38
	tho-SC/ 0.25+0.125/0.33+0.17	8	50		100	94	53
NA-308/NA-308/NA-		8	69	89	100	98	43
,	0.15, 0.25, 0.25	0	05	05	100	90	40

Table continued cn next page.

<u>Multiple postemergence</u>	applications,	Crookston,	1993.	(continued)

		June 19				_7-3	
		Sgbt	Coma	Grft	Colq	Mael	Coma
Treatment*	Rate	inj	cntl	cntl	cntl	cntl	cntl
	lb/A			!	8		
//Desmed&Phenmed	//0.75	0	23	60	69	35	15
//Desmedipham	//0.75	3	30	51	61	38	9
//Des&Phen+Ethofumesate-SC		5	29	54	77	46	16
Tfsu+Clpy/Tfsu+Clpy/ 0.0156+0	0.09/0.0156+0.09	0	88	18	53	100	85
Tfsu+Clpy+X-77/same/ 0.0156-	+0.09+0.25%/same	0	95	18	69	100	90
D&P+Tfsu+Clpy/same/0.25+0.0156	5+0.09/0.33+same	0	88	63	100	100	85
Tfsu+Clpy+Scoil/same/ 0.03	L56+0.09+1%/same	0	97	41	89	100	94
De&Ph+Clpy/De&Ph+Clpy/ 0.25	5+0.09/0.33+0.09	0	50	45	100	100	59
D&P+Tfsu+Clpy+X77/same/25+.015	56+.09+.25%/same	10	93	73	100	100	88
/NA-308/NA-308	/0.375/0.5	0	40	91	100	91	38
/Desmedipham/Desmedipham	/0.375/0.5	0	38	69	100	90	31
/Des&Phen/Des&Phen	/0.375/0.5	3	41	91	100	83	30
C.V. %		116	17	21	10	11	26
LSD 5%		6	14	17	12	14	19
LSD 1%		8	18	23	17	19	25
# OF REPS		4	4	4	4	4	4

* X-77=non-ionic surfactant from Valent; Scoil=methylated seed oil from Agsco; NA-305, NA-307, NA-308, and CQ-1451=desmedipham+phenmedipham+ethofumesate, 1:1:1 ratio

Summary

Treatments that included triflusulfuron gave better control of common mallow than other treatments. The July 3 evaluation of mallow control was slightly lower but agreed well with the June 19 evaluation. Treatments where desmedipham+phenmedipham was applied three times or twice late at 0.375/0.5 lb/A gave better green foxtail control than other treatments. Triflusulfuron alone, late single application of herbicides, and triflusulfuron+clopyralid gave less control of common lambsquarters than other treatments. Triflusulfuron+clopyralid+Scoil gave better control of common lambsquarters than triflusulfuron+clopyralid alone or with X-77. All treatments gave very good control of marshelder except late applications of desmedipham, desmedipham+phenmedipham or desmedipham+phenmedipham+ethofumesate. Multiple postemergence applications, Fargo (NW Secton 22), 1993. 'Beta 2988' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 10. Counter 15G at 12 pounds product per acre was applied in a 2-inch band and drag chain incorporated at planting. Herbicide applications were made on three different days separated by the "/" in each treatment. The "--" indicates no application on that date. The first application was 11:30 am June 3 when the air temperature was 62F, soil temperature at six inches was 54F, relative humidity was 50%, wind velocity was 11 mph, soil moisture was good, sugarbeet was in the cotyledon stage, kochia was in the cotyledon stage to 0.25 inch rosette diameter, wild mustard was in the cotyledon to 2 leaf stage, and common cocklebur was in the cotyledon stage. The second application was 5:15 pm June 11 when the air temperature was 89F, soil temperature at six inches was 67F, relative humidity was 36%, wind velocity was 19 mph, soil moisture was good, sugarbeet was in the cotyledon to 2 leaf stage, kochia was 0.25 to 1 inch rosette diameter, wild mustard was in the cotyledon to 4 leaf stage, and common cocklebur was in the cotyledon to 2 leaf stage. The third application was 5:30 pm June 18 when the air temperature was 69F, soil temperature at six inches was 66F, relative humidity was 64%, wind velocity was 4 mph, soil moisture was good, sugarbeet was in the 2 to 4 leaf stage, kochia was 0.5 to 1.5 inch rosette diameter, wild mustard was 1 to 3 inches tall, and common cocklebur was in the 2 to 4 leaf stage. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Kochia, wild mustard, and common cocklebur control were evaluated June 26.

		Wild	Common
	Kochia	Mustard	Cocklebur
Treatment* Rate	control	control	control_
lb/A		%	
Desmed&Phenmed/Desmed&Phenmed/ 0.25/0.33	53	96	6
Desmed&Phenmed/Desmed&Phenmed/ 0.375/0.5	68	100	10
Des&Phen/Des&Phen 0.25/0.33/0.33	73	100	51
Desmedipham/Desmedipham/ 0.25/0.33	35	100	6
Desmedipham/Desmedipham/ 0.375/0.5	60	100	21
Des&Phen+Tfsu/same/ 0.25+0.0156/0.33+0.0156	97	100	36
D&P+Tfsu/same/same 0.25+0.0156/0.33+0.0156/same	99	100	84
D&P+Tfsu/same/same 0.25+0.0156/.33+same/.5+same	100	100	86
Tfsu+X-77/same/ 0.0156+0.25%/0.0156+0.25%	89	100	28
Tfsu+Scoil/same/ 0.0156+1%/0.0156+1%	96	100	45
Tfsu+X-77/same/same 0.0156+0.25%/same/same	94	100	60
NA-305/NA-305/ 0.25/0.33	51	95	19
NA-305/NA-305/ 0.375/0.5	74	100	33
NA-307/NA-307/ 0.25/0.33	56	95	16
NA-307/NA-307/ 0.375/0.5	76	100	25
NA-308/NA-308/ 0.25/0.33	50	95	23
NA-308/NA-308/ 0.375/0.5	85	100	29
CQ-1451/CQ-1451/ 0.25/0.33	54	93	21
CQ-1451/CQ-1451/ 0.375/0.5	. 69	98	16
De&Ph+Etho-SC/D&P+Etho-SC/ 0.17+0.08/0.22+0.11	48	96	16
De&Ph+Etho-SC/D&P+Etho-SC/0.25+0.125/0.33+0.17	63	100	20
NA-308/NA-308/NA-308 0.19/0.19/0.19	54	98	33
NA-308/NA-308/NA-308 0.29/0.29/0.29	74	100	48

Table continued on next page.

Multiple postemergence	applications,	Farqo (NW	Secton 2	2), 1993.	(continued)

			Wild	Common
		Kochia	Mustard	Cocklebur
Treatment*	Rate	control	control	control
	lb/A		%	
//Desmed&Phenmed	0.75	30	91	20
//Desmedipham	0.75	20	85	18
//Des&Phen+Ethofumesate-SC	0.5+0.25	33	95	36
Tfsu+Clpy/Tfsu+Clpy/ 0.0156+	-0.09/0.0156+0.09	69	99	100
Tfsu+Clpy+X-77/same/ 0.0156		87	100	99
D&P+Tfsu+Clpy/same/ 0.25+0.015		95	100	100
Tfsu+Clpy+Scoil/same/ 0.0		98	100	100
D&P+Tfsu+Clpy+X77/same/25+.01		99	100	100
/NA-308/NA-308	0.375/0.5	68	100	56
/Desmedipham/Desmedipham	0.375/0.5	45	98	33
/Des&Phen/Des&Phen	0.375/0.5	48	96	41
, , , , , , , , , , , , , , , , , , , ,				
C.V. %		14	3	24
LSD 5%		13	4	14
LSD 1%		18	5	19
# OF REPS		4	4	4
# OF REED				

* X-77=non-ionic surfactant from Valent; Scoil=methylated seed oil from Agsco; NA-305, NA-307, NA-308, and CQ-1451=desmedipham+phenmedipham+ethofumesate, 1:1:1 ratio

Summary

Treatments that included triflusulfuron generally gave better kochia control than other treatments. Triflusulfuron+clopyralid gave less kochia control than other triflusulfuron treatments indicating antagonism from clopyralid. Addition of X-77 to triflusulfuron+clopyralid improved kochia control but addition of Scoil gave a greater increase. Desmedipham + phenmedipham + triflusulfuron + clopyralid gave kochia control similar to desmedipham + phenmedipham + triflusulfuron and better than triflusulfuron + clopyralid. The various formulations of desmedipham + phenmedipham + phenmedipham. Treatments that included clopyralid gave better control of common cocklebur than other treatments.

Adjuvant comparison with triflusulfuron, Crookston, 1993. 'Beta 2988' sugarbeet was seeded 1.25 inches deep in 22 inch rows April 30. Counter 15G at 12 pounds product per acre was applied in a 2-inch band and drag chain incorporated at planting. The first half of split treatments was applied 3:00 pm May 21 when the air temperature was 72F, soil temperature at six inches was 60F, relative humidity was 22%, wind velocity was 12 mph, soil moisture was fair, sugarbeet, common lambsquarters, and prostrate pigweed were in the cotyledon to 2 leaf stage, kochia was 0.25 to 1 inch rosette diameter, and volunteer wheat was 3 inches tall. The second half of split treatments was applied 3:15 pm May 28 when the air temperature was 68F, soil temperature at six inches was 56F, relative humidity was 47%, wind velocity was 10 mph, soil moisture was good, sugarbeet was in the 2 leaf stage, common lambsquarters was in the 4 to 6 leaf stage, prostrate pigweed was in the cotyledon to 2 leaf stage, kochia was 0.5 to 1.5 inch rosette diameter, and volunteer wheat was 5 inches tall. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sethoxydim + crop oil at 0.2 lb ai/A + 1 qt/A was applied to the entire plot area June 15. Sugarbeet injury and volunteer wheat were evaluated June 19; sugarbeet injury and control of prostrate pigweed, common lambsquarters and kochia were evaluated July 1; and kochia control was evaluated July 20.

			e 19	<u> </u>		ly 1		7-20
				Sgbt			Kocz	KOCZ
Treatment*	Rate	ini	cnt.]	inj	cnt1	cnt1	cn+1	ant1
	lb/A				% -		CIICI	
		•1						
Tfsu+X-77/same	0.0078+0.25%/0.0078+0.25%	6	6	3	54	10	84	49
Tfsu+X-77/same	0.0156+0.25%/0.0156+0.25%	5	23	3	53	15	99	81
Tfsu+Scoil/same	0.0078+1%/0.0078+1%	0	31	0	50	15	95	64
Tfsu+Scoil/same	0.0156+1%/0.0156+1%	10	60	0	60	10	99	86
Tfsu+Scoil/same	0.023+1%/0.023+1%	15	43	5	73	21	99	91
Tfsu+Scoil/same	0.031+1%/0.031+1%	.11	70	9	74	16	98	85
Tfsu+De&Ph+X77/s	ame 0.0078+0.16+0.12%/same	5	48	0	74	88	94	78
Tfsu+De&Ph+X77/s	ame 0.0078+0.16+0.25%/same	6	48	0	84	94	99	96
Tfsu+De&Ph+X77/s	ame 0.0156+0.16+0.12%/same	13	53	3	85	95	91	76
Tfsu+De&Ph+X77/s	ame 0.0156+0.16+0.25%/same	18	56	6	75	94	95	81
Tfsu+De&Ph+Scoil	/same 0.0078+0.16+1%/same	14	74	5	68	89	95	84
Tfsu+De&Ph+Scoil	/same 0.0156+0.16+1%/same	13	78	3	88	96	99	89
Tfsu+De&Ph/same	0.0156+0.33/0.0156+0.33	11.	68	6	86	96	96	79
Des&Phen/Des&Pher	0.33/0.33	3	54	0	66	90	43	34
Tfsu+De&Ph+28%N/		16	66	6	71	88		78
Tfsu+De&Ph+28%N/	same 0.0156+0.33+4%/same	15	68	5	85	97	96	89
Tfsu+X-77+28%N/sa		3	29	0	30	10	91	85
Tfsu+X-77+28%N/sa		9	49	8	46	10	96	85
	· · · · · · · · · · · · · · · · · · ·	-		U	10	10	90	65
C.V. %		75	25	189	20	16	8	23
LSD 5%		10	18	NS	19	13	11	25
LSD 1%		NS	25	NS	26	17	14	25 34
<u># OF REPS</u>		4	4	4	4	4	4	
* X-77-non-ionic	u gurfagtant from Valent g						<u>+</u>	4

* X-77=non-ionic surfactant from Valent; Scoil=methylated seed oil from Agsco; 28%N=28% nitrogen solution containing urea and NH₄NO₃

SUMMARY: Triflusulfuron+Scoil gave better control of volunteer wheat and kochia (àt low rate) than triflusulfuron+X-77. Weed control and sugarbeet injury were similar with 0.12% and 0.25% X-77. Triflusulfuron + desmedipham + phenmedipham + Scoil gave better control of volunteer wheat than the same herbicides + X-77. Triflusulfuron+X-77+28% N gave less control of prostrate pigweed but increased control of kochia on 7-20 as compared to triflusulfuron + X-77. Triflusulfuron+desmedipham+phenmedipham+28% N at 0.0078+0.16 lb/A gave more sugarbeet injury and increased control of volunteer wheat compared to the same herbicides plus X-77.

Comparison of Terra and Nor-Am desmedipham and desmedipham&phenmedipham, Farqo, 1993. 'Van Der Have 66156' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 19. The first half of split treatments was applied 8:30 pm June 11 when the air temperature was 81F, soil temperature at six inches was 68F, relative humidity was 48%, wind velocity was 10 mph, soil moisture was good, and sugarbeet and redroot pigweed were in the cotyledon to 2 leaf stage. The second half of split treatments was applied 9:00 pm June 18 when the air temperature was 65F, soil temperature at six inches was 67F, relative humidity was 80%, wind velocity was 0 mph, soil moisture was good, sugarbeet was in the 2 to 4 leaf stage and redroot pigweed was in the 2 to 6 leaf stage. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sugarbeet injury and redroot pigweed control were evaluated July 9.

Twostmont	Company Formulation	Rate	Sugarbeet injury	Redroot Pigweed control
Treatment	FOIMUIACION	lb/A	211) <u>611 /</u> %	00
Desmedipham/Desmed	(Terra)	0.25/0.33	4	93
Desmedipham/Desmed	(Terra)	0.33/0.5	4	98
Desmedipham/Desmed	(Terra)	0.5/0.75	18	99
Desmedipham/Desmed	(Nor-Am)	0.25/0.33	3	95
Desmedipham/Desmed	(Nor-Am)	0.33/0.5	11	97
Desmedipham/Desmed	(Nor-Am)	0.5/0.75	19	99
Des&Phen/Des&Phen	(Terra)	0,25/0.33	3	85
Des&Phen/Des&Phen	(Terra)	0.33/0.5	15	91
Des&Phen/Des&Phen	(Terra)	0.5/0.75	20	97
Des&Phen/Des&Phen	(Nor-Am)	0.25/0.33	5	87
Des&Phen/Des&Phen	(Nor-Am)	0.33/0.5	20	93
Des&Phen/Des&Phen	(Nor-Am)	0.5/0.75	24	97
EXP MEAN			12	94
C.V. %			39	3
LSD 5%			7	4
LSD 1%			9	6
# OF REPS			4	4

Summary

Desmedipham and desmedipham&phenmedipham from Terra and Nor-Am gave very similar sugarbeet injury and redroot pigweed control.

<u>Comparison of Terra and Nor-Am desmedipham and desmedipham&phenmedipham,</u> <u>Mooreton, 1993.</u> 'Seedex Monohikari' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 13. Counter 15G at 12 pounds product per acre was applied in a 2-inch band and drag chain incorporated at planting. The first half of split treatments was applied 12:20 pm June 11 when the air temperature was 80F, soil temperature at six inches was 66F, relative humidity was 61%, wind velocity was 9 mph, soil moisture was good, and sugarbeet and redroot pigweed were in the cotyledon to 2 leaf stage. The second half of split treatments was applied 10:00 am June 21 when the air temperature was 79F, soil temperature at six inches was 66F, relative humidity was 72%, wind velocity was 8 mph, soil moisture was good, and sugarbeet and redroot pigweed were in the 2 to 4 leaf stage. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sugarbeet injury and redroot pigweed control were evaluated July 2.

	Company		Sugarbeet	Redroot Pigweed
Treatment	Formulation	Rate	injury	control
		lb/A	%	<u> </u>
Desmedipham/Desmed	d (Terra)	0.25/0.33	11	96
Desmedipham/Desmed	d (Terra)	0.33/0.5	20	99
Desmedipham/Desmed	d (Terra)	0.5/0.75	24	100
Desmedipham/Desmed	d (Nor-Am)	0.25/0.33	8	97
Desmedipham/Desmed	d (Nor-Am)	0.33/0.5	18	98
Desmedipham/Desmed	d (Nor-Am)	0.5/0.75	29	100
Des&Phen/Des&Phen	(Terra)	0.25/0.33	13	87
Des&Phen/Des&Phen	(Terra)	0.33/0.5	13	96
Des&Phen/Des&Phen	(Terra)	0.5/0.75	30	99
Des&Phen/Des&Phen	(Nor-Am)	0.25/0.33	11	87
Des&Phen/Des&Phen	(Nor-Am)	0.33/0.5	21	94
Des&Phen/Des&Phen	(Nor-Am)	0.5/0.75	28	97
EXP MEAN			10	
C.V. %			19	96
LSD 5%			34	4
LSD 1%			9	5
# OF REPS			12	7
			4	4

Summary

Desmedipham and desmedipham&phenmedipham from Terra and Nor-Am gave very similar sugarbeet: injury and redroot pigweed control.

Triflusulfuron tank-mixed with insecticides, Fargo, 1993. Diethatyl+cycloate at 3+3 lb ai per acre was broadcast applied in 17 gpa water at 40 psi through 11002 nozzles to the entire plot area and incorporated twice with a 'Kongskilde Triple K' field cultivator operated three inches deep April 26. 'KW 1119' sugarbeet was seeded 1.25 inches deep in 22 inch rows April 26. Counter 15G at 12 pounds product per acre was applied modified in-furrow at planting. Treatments were applied 9:45 pm June 1 when the air temperature was 58F, soil temperature at six inches was 64F, relative humidity was 62%, wind velocity was 5 mph, soil moisture was good, and sugarbeet was in the 4 leaf stage. All herbicide treatments were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sethoxydim + Scoil at 0.3 lb ai/A+1 qt/A was applied to the entire plot area June 14. All plots were hand weeded May 15 and maintained weed free throughout the growing season by hand weeding and row-crop cultivation May 20, June 22, and August 9. Sugarbeet was hand thinned to an eight inch spacing June 1. Sugarbeet injury was evaluated June 15. Sugarbeet from the center two rows of 30 foot plots was harvested September 30.

			Loss			
	Sgbt		to	Root	Impur	Extr
Treatment* Rate	inj	Sucrose	Mol	Yield	Index	Sucr
lb/A	olo	olo	90 00	ton/A		lb/A
Triflusulfuron+X-77 0.0156+0.25%	0	18.0	1.5	19.3	609	6278
Triflusulfuron+X-77 0.031+0.25%	0	18.2	1.4	15.8	566	5290
Triflusulfuron+Diazinon 0.0156+2	1	18.1	1.5	18.8	618	6176
Triflusulfuron+Diazinon 0.031+2	10	18.1	1.6	17.5	638	5732
Triflusulfuron+Lorsban 0.0156+2	5	17.8	1.5	17.0	639	5439
Triflusulfuron+Lorsban 0.031+2	5	18.0	1.4	15.3	575	5011
Triflusulfuron+Lannate 0.0156+1	1	18.5	1.4	15.9	574	5370
Triflusulfuron+Lannate 0.031+1	4	18.5	1.5	17.3	588	5806
Triflusulfuron+Asana 0.0156+0.05	0	18.4	1.4	17.3	575	5795
Triflusulfuron+Asana 0.031+0.05	0	18.3	1.4	16.4	552	5542
Untreated Check 0	0	18.2	1.5	17.2	601	5734
EXP MEAN	2	18.2	1.5	17.1	594	5652
C.V. %	148	2.3	7.1	13.0	9	13
LSD 5%	5	NS	NS	NS	NS	NS
LSD 1%	7	NS	NS	NS	NS	NS
# OF REPS	4	4	4	4	4	4

* X-77 = non-ionic surfactant from Valent

Summary

Combinations of triflusulfuron plus insecticide had no significant effect on sugarbeet yield. Triflusulfuron at 0.031 lb/A plus diazinon caused more sugarbeet injury than the other treatments.

Soil applied herbicides and Counter 15G insecticide, Crookston, 1993. Preplant incorporated herbicides were applied in 17 gpa water at 40 psi through 8002 nozzles to the center four rows of six row plots 1:00 pm April 28 when the air temperature was 65F, soil temperature at six inches was 46F, relative humidity was 44%, wind velocity was 14 mph, and soil moisture was good. Incorporation was with a rototiller set four inches deep for EPTC and cycloate and two inches deep for ethofumesate-SC. 'Beta 2988' sugarbeet was seeded 1.25 inches deep in 22 inch rows April 30. Counter 15G at 12 pounds product per acre was applied in a two inch band and drag-chain incorporated at planting to plots with insecticide. Sethoxydim+Oil at 0.2 lb ai/A+1 qt/A was applied to the entire plot area June 15. Sugarbeet injury was evaluated June 12. Sugarbeet stand in the center two rows of each plot was counted June 17 before thinning. Sugarbeet was hand thinned to an eight inch spacing and hand weeded June 17. Plots were maintained weed free throughout the growing season by hand weeding. Row-crop cultivation was June 18. Sugarbeet from the center two rows of 34 foot plots was harvested September 28.

					June 1	.7	Loss			
		Insec-	Sgbt	Grft	Sgbt		to	Root	Impur	Extract
Herbicide	Rate	ticide	inj	cntl	Popul	Sucrose	Mol	Yield	Index	Sucrose
	lb/A		00	00	#/68ft	010	olo	ton/A		lb/A
								,		ID/A
Etho-SC	3	Counter	0	93	206	16.3	1.9	18.5	861	5243
Etho-SC	5	Counter	0	97	206	15.8	2.0	18.2	914	4963
EPTC	2	Counter	0	45	168	16.0	2.0	17.9	924	4904
EPTC	4	Counter	14	68	159	15.6	2.1	18.5	986	4926
Cycloate	4	Counter	0	55	172	16.0	1.9	16.1	854	4520
Cycloate	6	Counter	0	88	192	16.0	2.0	19.5	904	5398
Etho-SC	3	None	0	93	208	16.2	1.8	15.9	817	4509
Etho-SC	5	None	0	97	202	16.2	1.8	16.9	791	4828
EPTC	2	None	0	61	189	16.8	1.7	17.4	742	5194
EPTC	4	None	13	68	162	16.2	1.8	15.6	802	4431
Cycloate	4	None	. 0	66	183	16.2	1.8	17.6	818	4962
Cycloate	6	None	0	88	181	16.2	1.8	16.9	794	4766
							1.0	10.5	194	4/00
EXP MEAN			2	76	185	16.1	1.9	17.4	850	4887
C.V. %			137	13	10	2.8	8.4	10.2	10	4007
LSD 5%			4	15	27	NS	0.2	NS	128	
LSD 1%			6	20	37	NS	NS	NS	128 NS	NS
# OF REPS			4	4	4	4	4	4		NS
					-	T	4	4	4	4

EPTC alone or over Counter gave similar sugarbeet injury.

Experiment continued on next page.

						Loss			
		Sgbt	Grft	Sgbt		to	Root	Impur	Extract
Herbicide	Rate	inj	cntl	Popul	Sucrose	Mol	Yield	Index	Sucrose
	lb/A	%	%	#/68ft	06	00	ton/A		lb/A
Ethofumesate-SC	3	0	93	207	16.3	1.9	17.2	839	4876
Ethofumesate-SC	5	0	97	204	16.0	1.9	17.6	853	4895
EPTC	2	0	53	178	16.4	1.9	17.7	833	5049
EPTC	4	13	68	160	15.9	1.9	17.0	894	4678
Cycloate	4	0	61	177	16.1	1.8	16.8	836	4741
Cycloate	6	0	88	187	16.1	1.9	18.2	849	5082
EXP MEAN		2	76	185	16.1	1.9	17.4	850	4887
C.V. %		131	11	10	2.4	9.9	13.9	11	13
LSD 5%		3	8	19	NS	NS	NS	NS	NS
LSD 1%		4	11	26	NS	NS	NS	NS	NS
# OF REPS		8	8	8	8	8	8	8	8

Herbicide treatment averaged over insecticide and no insecticide.

Ethofumesate gave better control of green foxtail than EPTC or cycloate. Sugarbeet plant populations were greater with ethofumesate than with EPTC or cycloate.

Insecticide over all herbicide treatments.

					Loss			
	Sgbt	Grft	Sgbt		to	Root	Impur	Extract
Insecticide	inj	cntl	Popul	Sucrose	Mol	Yield	Index	Sucrose
	0/0	00	#/68ft	2	00	ton/A		lb/A
Counter 15G	2	74	184	16.0	2.0	18.1	907	4992
None	2	79	187	16.3	1.8	16.7	794	4782
EXP MEAN	2	76	185	16.1	1.9	17.4	850	4887
C.V. %	75	12	10	2.9	11.8	12.3	14	11
LSD 5%	NS	NS	NS	0.3	0.1	1.3	71	NS
LSD 1%	NS	NS	NS	NS	0.2	NS	96	NS
# OF REPS	24	24	24	24	24	24	24	24

Summary

Sugarbeet root maggot injury was not severe at this location since Counter-treated sugarbeet had extractable sucrose similar to non-insecticidetreated sugarbeet.

Postemergence Lorsban plus desmedipham, Fargo, 1993. Diethatyl+cycloate at 3+3 lb ai per acre was broadcast applied in 17 gpa water at 40 psi through 11002 nozzles to the entire plot area and incorporated twice with a 'Kongskilde Triple K' field cultivator operated three inches deep April 26. 'KW 1119' sugarbeet was seeded 1.25 inches deep in 22 inch rows April 26. Counter 15G at 12 pounds product per acre was applied modified in-furrow at planting. The first half of split treatments was applied 11:20 am May 26 when the air temperature was 56F, soil temperature at six inches was 54F, relative humidity was 50%, wind velocity was 7 mph, soil moisture was good, and sugarbeet was in the 2 to 4 leaf stage. The second half of split treatments and single application treatments were applied 9:45 pm June 1 when the air temperature was 58F, soil temperature at six inches was 64F, relative humidity was 62%, wind velocity was 5 mph, soil moisture was good, and sugarbeet was in the 4 leaf stage. All herbicide treatments were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sethoxydim+Scoil at 0.3 lb ai/A+1 qt/A was applied to the entire plot area June 14. All plots were hand weeded May 15 and maintained weed free throughout the growing season by hand weeding and row-crop cultivation May 20, June 22, and August 9. Sugarbeet was hand thinned to an eight inch spacing June 1. Sugarbeet injury was evaluated June 15. Sugarbeet from the center two rows of 30 foot plots was harvested September 30.

				Loss			
		Sgbt		to	Root	Impur	Extr
Treatment	Rate	inj	Sucrose	Mol	Yield	Index	Sucr
	lb/A	010	00	00	ton/A		lb/A
XRM-5318	1	1	17.8	1.5	11.9	610	3885
XRM-5318	2	0	18.2	1.3	12.5	533	4196
XRM-5318	3	6	18.2	1.3	12.7	540	4289
XRM-5318	4.5	14	18.0	1.4	10.1	557	3342
Desm/Desm+XRM-5318	0.33/0.5+1	15	17.6	1.5	12.8	611	4160
Desm/Desm+XRM-5318	0.33/0.5+2	16	17.5	1.4	10.6	594	3404
Desm/Desm+XRM-5318	0.33/0.5+3	20	17.7	1.4	10.1	592	3258
Desmedipham/Desmediph	nam 0.33/0.5	5	17.8	1.5	13.4	627	4304
EXP MEAN		10	17.8	1.4	11.8	583	3855
C.V. %		54	2.2	6.8	22.1	8	23
LSD 5%		8	NS	NS	NS	NS	NS
LSD 1%		10	NS	NS	NS	NS	NS
# OF REPS		4	4	4	4	4	4

Summary

None of the treatments significantly affected sugarbeet yield. However, yield tended to be less from XRM-5318 at 4.5 lb/A and desmedipham in combination with XRM-5318 at 2 or 3 lb/A. Desmedipham plus XRM-5318 caused more sugarbeet injury than desmedipham alone.

Triflusulfuron and insecticide interaction, St. Thomas, 1993. 'Hilleshog 5135' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 5. Counter 15G, Counter 20CR, and Lorsban 15G at 12, 8.9, and 13.5 pounds product per acre respectively was applied modified in-furrow or in a five inch band and drag chain incorporated at planting. The first half of split applied postemergence herbicide treatments was applied 12:15 pm May 25 when the air temperature was 62F, soil temperature at six inches was 58F, relative humidity was 50%, wind velocity was 13 mph, soil moisture was good, sugarbeet and redroot pigweed were in the cotyledon to 2 leaf stage and green foxtail was 1 inch tall. The second half of split treatments was applied 12:30 pm June 1 when the air temperature was 65F, soil temperature at six inches was 66F, relative humidity was 40%, wind velocity was 3 mph, soil moisture was good, sugarbeet was in the 2 to 4 leaf stage, redroot pigweed was in the 4 to 6 leaf stage, and green foxtail was 1 to 2 inches tall. All postemergence herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sethoxydim+Scoil at 0.3 lb ai/A+1 qt/A was applied to the entire plot area June 14. Redroot pigweed and green foxtail control were evaluated June 12. Sugarbeet injury was evaluated June 12 and July 20. Sugarbeet in the center two rows of each plot was counted June 14. Sugarbeet in the center four rows of each plot was hand thinned to an eight inch spacing and hand weeded June 15. All plots were cultivated June 21 and hand weeded a second time on July 1. Ten sugarbeet from each plot were rated August 2 for root maggot damage using the following scale: 0=no damage, 1=1 to 4 small scars, 2=5 to 10 small scars or up to 3 larger scars, 3=more than 3 larger scars, 4=50 to 75% of root blackened by scars, 5=more than 75% blackened or dead beet. The mean of these ten ratings is the sugarbeet root maggot damage rating. Sugarbeet was harvested and counted from the center two rows of 30 foot long plots September 27.

Experiment continued on next page.

illiusuiluron and insecticide	interaction	St Thomas	- 1000	
	uccruccron,	DC. IIIOIIId	5, 1993.	(continued)

					10 100 100		
	Method			June 12	July 20		
Insect-	of	Herbicide		Sgbt	Sgbt	Grft	Rrpw
<u>icide</u>	Appl	Treatment*	Rate	inj	inj	cntl	cntl
			lb/A	00	00	00	%
Count15G	MIF	Tfsu+X-77/same	0.0156+0.25%	15	26	49	71
Count15G	Band	Tfsu+X-77/same	0.0156+0.25%	3	11	53	71 74
Count15G	MIF	None		4	33	0	0
Count15G	Band	None		0	15	0	
Count15G	MIF	Tfsu+X-77/same	0.031+0.25%	28	36	55	0 76
Count15G	Band	Tfsu+X-77/same	0.031+0.25%	15	13	63	76 81
Count15G	MIF	Tfsu+De&Ph/same	0.0156+0.33	33	18	83	81 95
Count15G	Band	Tfsu+De&Ph/same	0.0156+0.33	15	4	83	
Coun20CR	MIF	Tfsu+X-77/same	0.0156+0.25%	10	14	83 49	95
Coun20CR	Band	Tfsu+X-77/same	0.0156+0.25%	4	11	53	74
Coun20CR	MIF	None		0	20	0	75
Coun20CR	Band	None		0	19	0	0
Coun20CR	MIF	Tfsu+X-77/same	0.031+0.25%	5	23	61	0
Coun20CR	Band	Tfsu+X-77/same	0.031+0.25%	9	11	58	79
Coun20CR		Tfsu+De&Ph/same	0.0156+0.33	21	5		79
Coun20CR		Tfsu+De&Ph/same	0.0156+0.33	15	13	81	96
Lorsb15G		Tfsu+X-77/same	0.0156+0.25%	. 30	19	81 50	96
Lorsb15G		Tfsu+X-77/same	0.0156+0.25%	9	20		71
Lorsb15G		None		18	20	51	73
Lorsb15G	Band	None		0	23	0	0
Lorsb15G	MIF	Tfsu+X-77/same	0.031+0.25%	21	19	0 55	0
Lorsb15G		Tfsu+X-77/same	0.031+0.25%	10	21	55	75 80
Lorsb15G		Tfsu+De&Ph/same	0.0156+0.33	31	18	85	
Lorsb15G		Tfsu+De&Ph/same	0.0156+0.33	16	9	85	96
None			0.0156+0.25%	3	43	65 44	96
None		Tfsu+X-77/same	0.031+0.25%	5	43 54	44 50	71
None		Ifsu+De&Ph/same	0.0156+0.33	18	39	83	78
None		None		0	41		95
				0	41	0	0
C.V. %				46	46	11	5
LSD 5%				8	±0 14	7	5
LSD 1%				10	18	9	5
# OF REPS				4	4	4	6 4
					T	4	4

Sugarbeet injury on June 12 from herbicides was or tended to be greater when herbicides were applied over modified-in-furrow insecticides rather than band-applied insecticides. The injury on June 12 was primarily from herbicides since the non-herbicide-treated plots had little injury. The injury on July 20 was from a combination of injury from insecticide and injury from sugarbeet root maggot. The non-herbicide-treated plots had injury similar to herbicide-treated plots on July 20. Plots treated with MIF Counter 15G had more injury than plots treated with banded Counter 15G even though maggot injury was similar. This suggests that MIF Counter 15G caused injury directly to the sugarbeet. Weed control was similar regardless of insecticide application method. Triflusulfuron+desmedipham+phenmedipham gave better control of redroot pigweed and green foxtail than triflusulfuron+X-77.

Experiment continued on next page.

									Root
Method			9-27	L	OSS		_		lagg
Insect- of Herbicide			Sgbt			Root	and the second		
icide Appl Treatment*	Rate			Sucr			Ind	Sucr	
	lb/A	sgbt,	/60ft	00	00	T/A		lb/A	0-5
	156.0 05%	115	53	16.9	1.6	9.1	693	2772	3 1
Count15G MIF Tfsu+X-77/same 0.0		113	53 64			13.3		4147	
Count15G Band Tfsu+X-77/same 0.0	156+0.255	102	48		1.7	7.7		2335	
Count15G MIF None		102	40 56	16.7		9.3		2791	
Count15G Band None				16.9					3.5
Count15G MIF Tfsu+X-77/same 0.		79	38			10.3			3.3
courses and a	031+0.25%	120	54	16.7		13.4		3934	
Count15G MIF Tfsu+De&Ph/same 0.		83	47			14.5		4474	
Count15G Band Tfsu+De&Ph/same 0.		124	65 62			14.5		3732	
Coun20CR MIF Tfsu+X-77/same 0.0		118	62 61			12.7			
Coun20CR Band Tfsu+X-77/same 0.0	156+0.25%	120				9.7		2935	
Coun20CR MIF None		123		16.9		8.2		2512	
Coun20CR Band None		118		17.1					
Coun20CR MIF Tfsu+X-77/same 0.		112		16.7				2281	
countro one Donne The Provide A	031+0.25%	123		17.0		11.6		3516	
Coun20CR MIF Tfsu+De&Ph/same 0.		129				16.5		5121	
Coun20CR Band Tfsu+De&Ph/same 0.		121				13.2		3932	
Lorsb15G MIF Tfsu+X-77/same 0.0						10.5		3275	
Lorsb15G Band Tfsu+X-77/same 0.0)156+0.25%				1.6	9.9	698	3034	
Lorsb15G MIF None		111		17.0	1.6	9.7		2920	
Lorsb15G Band None		119		16.7				2286	
HOIDDIGG THE ILDUCT (.031+0.25%					11.0		3324	
	.031+0.25%					10.8		3283	
Lorsb15G MIF Tfsu+De&Ph/same 0				17.3					
Lorsb15G Band Tfsu+De&Ph/same 0				17.2		13.4		4129	
None Tfsu+X-77/same 0.0)156+0.25%			16.2				1904	
Home ,	.031+0.25%			15.6	1.9			1605	
None Tfsu+De&Ph/same 0	.0156+0.33	109	9 42	16.7				2813	
None None		112	2 49	16.4	1.7	8.8	774	2569	9 3.6
C.V. %		15	5 16	3.2	9.9	20.8	13	21	
LSD 5%		24	12	0.8	NS	3.1	NS	955	5 0.3
LSD 1%		32	2 16	NS	NS	4.1	. NS	1266	
# OF REPS		4	<u>1</u> 4	4	4	4	4	4	¥ 4

* X-77=non-ionic surfactant from Valent

Summary

Sugarbeet treated with Counter 15G, modified-in-furrow, yielded less or tended to yield less extractable sucrose per acre than sugarbeet treated in a band. Sugarbeet treated with triflusulfuron+desmedipham+phenmedipham yielded more extractable sucrose per acre than other herbicide treated sugarbeet regardless of insecticide treatment. This suggests that desmedipham + phenmedipham was improving root maggot control in some manner and this is supported by the trend for lower maggot injury ratings in plots treated with desmedipham+phenmedipham plus an insecticide. Lower sugarbeet yields tended to be associated with lower sugarbeet populations at harvest.

Sugarbeet in rye cover crop, Fargo, 1992-1993. Cover crop 'Rymin' winter rye at 7.5, 15, or 22.5 lb/A was seeded in 21 inch rows diagonal or parallel to sugarbeet rows in cover crop blocks 44 feet (24 rows) wide and 40 feet long September 11, 1992. Glyphosate+AMS+X-77 at 0.75 lb/A+17 lb/100 gal+0.5% was applied April 27, 1993 in a 10 inch band where sugarbeet rows would be seeded in diagonally seeded rye cover crop blocks. Plots were rotary hoed twice before seeding 'Maribo 862' sugarbeet 1.25 inches deep in 22 inch rows April Counter 15G insecticide at 12 pounds product per acre was applied 30. modified in-furrow at planting. Sethoxydim+Scoil at 0.3 lb ai/A+1 qt/A was broadcast applied to all plots May 13 when rye was 8 to 10 inches tall. First row-crop cultivation was May 20, June 2, June 14 or June 21 when rye was 8 to 10, 12 to 14, 15 to 18 or 18 to 20 inches tall respectively. All plots were cultivated a second time June 28. Sugarbeet was counted in the center two rows of each plot June 26. Sugarbeet was thinned by hand to an eight inch spacing July 8. The plot area was kept weed free by hand weeding throughout the growing season. Sugarbeet from the center two rows of each 40 foot long plot was harvested and counted September 23, 1993. The soil on September 23, 1993 was very hard causing dirt clods to go through the machine harvester with the sugarbeet. These dirt clods from each plot were weighed at harvest. Table. Influence of rye seeding rate, seeding direction and time of

	Rye	Rye Heigh			Harv	est	Dirt d	clods		
Seeding	seeding	at first	Sugar	beet	sugar	beet		ough	LO	ss to
<u>direction</u>	rate	cultiv.	popul	ation	popula	tion	harve			lasses
	lb/A	inches	plt/80'	mean	plt/80'		lb/plot		<u>MO.</u> %	mean
Straight										
SLIAIGIIL	7.5	8-10	135		68		16		2.0	
		12-14	141		78		9		1.8	
		16-18	144		77		7		1.8	
Diagonal	7 -	18-20	154	143	80	75	9	8	2.0	1.9
Diagonal	7.5	8-10	130		62		11		2.2	
		12-14	125		65		8		2.0	
		16-18	139		77		13		1.9	
		18-20	138	133	70	68	6	8	2.1	2.1
Straight	15	8-10	164		81		15		1.9	
		12-14	154		83		9		1.9	
		16-18	184		84		12		1.7	
		18-20	168	167	80	82	13	12	1.9	1.8
Diagonal	15	8-10	176		84	01	5	12	1.9	1.8
		12-14	199		82		3		1.9	
		16-18	190		83		11		2.0	
		18-20	192	189	84	83	8	7	1.8	1.9
Straight	22.5	8-10	110		56					
Ĵ		12-14	146		83		15		1.9	
		16-18	156		80		10		1.9	
		18-20	158	142	86	77	13		1.8	
Diagonal :	22.5	8-10	171	144	86 74	77	13	13	1.9	1.9
		12-14	189		88		4		2.0	
		16-18	192				7		1.8	
		18-20	195	187	81	0.0	10		1.8	
		10 20		10/	86	82	4	6	1.8	1.8
No Rye		8-10	135		76		10		1.7	
		12-14	160		76		10		1.8	
		16-18	157		75		12		1.8	
		18-20	149	150		77	13	11	1.7	1.8
LSD ((0.05)		33	33	12	10	6	NS	0.0	0.2

Experiment continued on next page.

Rye Rye height Extractable Seeding seeding at first Impurity Sucrose directionratecultiv.IndexSucroselb/Ainchesmean%mean Root Yield Sucrose mean lb/A mean T/A lb/A 16.4 19.5 5530 Straight 7.5 8-10 910 16.9 17.3 18.3 20.5 5450 12-14 770 16-18 790 6250 18-20 950 850 15.8 16.6 20.8 19.8 5640 5720 5220 8-10 1040 15.7 19.7 Diagonal 7.5 16.6 18.0 5190 12-14 890 21.8 16-18 840 16.8 6410 18-20 930 930 16.5 16.4 21.9 20.3 6190 5750 17.1 21.4 6410 8-10 820 Straight 15 12-1481017.216-1868018.1 6590 21.8 20.5 6680 18-20 800 780 17.1 17.4 20.1 21.0 6090 6440 17.4 22.1 6760 8-10 790 Diagonal 15 17.1 17.2 6550 12-14 800 21.8 21.7 6530 16-18 850 18-20 750 800 17.5 17.3 20.9 21.6 6500 6580 8-10 830 17.0 19.4 5790 Straight 22.5 6590 22.6 12-14 840 16.7
 12-14
 840
 16.7

 16-18
 770
 17.3
 21.2 6480 18-20 830 820 17.1 17.0 21.4 21.1 6360 6300 20.6 8-10 830 17.2 6200 Diagonal 22.5 17.6 22.5 20.7 730 7070 12-14 6350 780 17.4 16-18 18-20 730 770 17.9 17.5 21.0 21.2 6690 6580 8-1074017.312-1476017.616-1880016.7 21.0 6490 No Rye ----17.6 21.0 16.7 19.8 6530 5780 18-20 730 760 17.1 17.2 19.6 20.4 5990 6200 120 120 0.8 0.7 2.5 NS 830 580 LSD (0.05) 8-1085016.920.512-1480017.120.9 6060 mean 6280 16-1879017.320.9635018-2082017.020.86210 6350 18-20 820 50 0.3 NS NS

LSD (0.05) 50 0.3 NS NS Summary: Sugarbeet populations on June 26 tended to be higher with diagonally seeded rye rather than with rows parallel to the sugarbeet rows at rye seeding rates of 15 and 22.5 lb/A. Harvested populations were similar with both rye seeding arrangements. Sugar content and extractable sucrose per acre were or tended to be less in sugarbeet grown with 7.5 lb/A of rye than from sugarbeet grown with other rye seeding rates or with no rye. The rye height at first cultivation had no consistent effect on sugarbeet yield.

Table (cont.). Influence of rye seeding rate, seeding direction and time of cultivation.

Barley cover crop seeding rate and stage of control with cultivation, Fargo, 1993. 'Excel' barley at 0, 12, 24, and 48 lb/A was solid seeded in 7 inch rows across the 32 foot long by 11 feet wide cultivation plots April 28. 'KW 1119' sugarbeet was seeded 1.25 inches deep in 22 inch rows across barley blocks April 30. The whole experiment was band sprayed with sethoxydim+Scoil at 0.3 lb ai/A+1.5 pt/A June 2. Row-crop cultivation to control barley between sugarbeet rows was done May 21, May 26, June 2, June 14, June 21 and June 28 when sugarbeet was in the cotyledon, cotyledon to 2 leaf, 2 to 4 leaf, 4 to 6 leaf, 6 to 8 leaf and 8 to 10 leaf stage respectively. Sugarbeet was counted in the center two rows of each 32 foot plot July 9. All plots were cultivated July 12. Sugarbeet was thinned by hand to an eight inch spacing July 14. Sugarbeet from the center two rows of 32 foot plots was harvested and counted September 24. Some plots were lost during the year and sufficient data for reporting was collected only from the no barley and 24 lb/A seeding rate plots.

Barley leaves	Barley	July 9	Harvest		
at first	seeding	Suga	arbeet	Loss to	Impurity
<u>cultivation</u>	rate		lation	Molasses	<u>index</u>
	lb/A		s/64 ft	%	
2	0	128	54	1.8	760
	24	145	54	1.8	770
3	0	124	.59	2.1	910
	24	136	58	1.9	830
4	0	120	52	2.0	820
	24	124	55	1.9	770
6	0	112	54	2.0	880
	24	155	52	1.9	790
7	0	133	59	1.8	740
	24	151	58	1.7	720
8	0	146	56	1.9	790
	24	140	46	1.8	732
LSD (0.05)		20	8	0.2	108
mean	0	127	56	2.0	820
	24	142	54	1.8	770
LSD (0.05)		13	NS	NS	NS
		the second s			

Table. Influence of time of cultivation and barley cover crop when sethoxycim was band sprayed at four leaf stage of barley.

Table continued on next page.

Barley leaves at first	Barley seeding	Sugar	Root Yield	Extractable Sucrose
<u>cultivation</u>	rate	suyar %	ton/A	lb/A
	lb/A	6	COII/A	10/11
2	0	17.6	19.4	6080
4	24	17.7	18.3	5680
	21			
3	0	17.0	20.7	6070
	24	17.2	18.4	5540
4	0	17.6	20.6	6370
	24	17.7	19.4	6083
6	0	17.2	19.3	5710
Ŭ	24	17.3	18.1	5440
7	0	18.0	20.7	6620
·	24	17.9	18.8	5990
8	0	18.0	17.5	5510
, and the second se	24	18.4	16.1	5210
LSD (0.05)		0.8	2.5	850
mean	0	17.6	19.7	6060
	24	17.7	18.1	5660
LSD (0.05)		NS	1.2	NS

Table (cont.). Influence of time of cultivation and barley cover crop when sethoxydim was band sprayed at four leaf stage of barley.

Summary

Sugarbeet populations prior to thinning generally were higher with barley cover crop than without cover crop but harvested populations were similar except when cultivation was delayed until the eight-leaf stage of barley. Sugarbeet grown without cover crop tended to yield more than sugarbeet grown with cover crop.

Effect of tillage on sugarbeet, Fargo, 1992-1993. Tillage blocks 22 feet (12 rows) wide and 70 feet long were established in the fall of 1992. Early fall tillage was September 4, 1992 with a moldboard plow, chisel plow, or tandem disc and conventional tillage was chisel plow twice followed by a field cultivator and spring-tooth harrow. Late fall tillage was October 19, 1992 with a chisel plow or tandem disc and conventional tillage was chisel plow twice followed by a field cultivator and spring-tooth harrow. One block had no tillage. Half of each 70 foot long block received sping tillage April 23, 1993 with an 'Alloway Seedbetter' field cultivator. 'Van Der Have 66110' sugarbeet was seeded at a 4 inch spacing and 1.25 inches deep in 22 inch rows April 23. Counter 15G insecticide at 12 pounds product per acre was applied modified in-furrow at planting. Percent plant residue on the soil surface of each plot was measured May 10 using a beaded string. Each tillage block had six rows of sugarbeet that received no row-crop cultivation and six rows that were cultivated June 15 and June 21. Sugarbeet from the center two rows of each 33 foot long plot was harvested and counted September 23, 1993. The soil on September 23, 1993 was very hard causing dirt clods to go through the machine harvester with the sugarbeet. These dirt clods from each plot were weighed at harvest.

Table. Influence of fall and spring tillage averaged over row-crop and no row-crop cultivation.

		Plant	residue	Dirt c	clods	Harv	rest		
Primary fall	Spring		on	thro	ough	Sugar	beet	Los	s to
tillage	Tillage	soil	surface	Harve	stor	Popula	tion		asses
		00	mean	lb/plot	mean	plt/66'	mean	010	mean
Chisel, early	yes	41		12		37		2.2	
	no	59	50	38	25	31	34	2.2	2.2
Chisel, late	yes	38		9		43		2.1	
	no	48	43	28	18	34	39	2.2	2.2
Conventional,	yes	43		5		36		2.2	
early	no	44	43	12	8	31	34	2.3	2.3
Conventional,	yes	32		7		37		2.2	
late	no	42	37	20	14	39	38	2.1	2.1
Disc, early	yes	49		4		29		2.2	
	no	52	50	8	6	43	36	2.2	2.2
Disc, late	yes	36	· · · · ·	7		33		2.2	
	no	49	42	22	15	41	37	2.1	2.1
Plow	yes	13		14		40		2.1	
	no	6	9	16	15	44	42	2.1	2.1
None	yes	62		5		34		2.3	
	no	86	74	17	11	24	29	2.4	2.3
LSD (0.05)		10	6	9	5	10	5	0.1	0.1
Field cult+rollin	g								
baskets in spr	ing		39		8		36		2.2
No spring tillage			48		20		36		2.2
LSD (0.05) (averaged over al	1 fall +÷1	1200)	*		*		NS		NS
Experiment contin									

Experiment continued on next page.

Table (cont.). Influence of fall and spring tillage averaged over row-crop and no row-crop cultivation.

Primary fall	<u>and no row</u> Spring	-crop c	<u>uicivaci</u>	<u>. 011 .</u>		Tmpu	rity	Extrac	table
tillage	Tillage	Su	crose	Root	Yield		dex	Sucr	
		8	mean	T/A	mean		mean	lb/A	
Chisel, early	yes	14.1		15.5		1170		3620	
	no	13.8	13.9	14.1	14.8	1150	1160	3250	3430
Chisel, late	yes	15.2		19.6		1020		5030	
	no	14.4	14.8	14.9	17.2	1110	1070	3590	4310
Conventional,	yes	14.1		18.8		1170		4370	
			14.0		17.2	1170	1170	3780	4070
early	no	14.3	14.2	15.7	11.2	11/0	11/0	3760	4070
Conventional,	yes	14.8		19.1		1100		4750	
late	no	15.0	14.9	17.8	18.5	1010	1060	4560	4660
		1.4 7		16.6		1110		4080	
Disc, early	yes	14.7			10 0		1100		4370
	no	14.8	14.7	18.7	17.7	1090	1100	4670	4370
Disc, late	yes	14.9		17.1		1060		4300	
	no	15.0	15.0	18.6	17.8	1030	1050	4780	4540
Plow	yes	14.8		19.7		1060		4960	
FIOW	no	15.6	15.2	18.6	19.2	970	1020	4990	4980
None	yes	14.2		14.4		1200		3390	
	no	13.7	13.9	12.8	13.6	1280	1240	2860	3130
LSD (0.05)		0.6	0.3	3.3	1.3	100	40	970	350
Field cult+roll baskets in s			14.6		17.6		1110		4310
No spring tilla			14.6		16.4		1100		4060
NO SPITING CITIC	La companya da		11.0		10.1				
LSD (0.05))		NS		*		NS		*

(averaged over all fall tillage)

SUMMARY: The least plant residue on the soil surface was after plowing and the greatest residue was after no spring or fall tillage. Plots with no spring tillage had more residue than those without spring tillage except for early conventional tillage, early disc, and plow. More dirt clods went through the harvester in plots without spring tillage than with spring tillage except for early conventional, early disc, and plow. On average, the most clods were collected from early chisel. Sugarbeet populations did not respond uniformly to spring tillage across fall tillage treatments. Spring tillage increased sugarbeet populations with fall no-tillage, reduced sugarbeet populations with early disc and had no significant effect with other fall tillage treatments. Sugarbeet from plots with no fall tillage had higher loss to molasses than with other fall tillage. Spring tillage increased sucrose content with late fall chisel and reduced sucrose with plow. Plots with early chisel and no fall tillage had less sucrose, lower root yield, and less extractable sucrose than other plots. Fall plowed plots yielded more extractable sucrose per acre than other plots and late-tilled plots yielded more than early-tilled plots. Averaged over fall tillage, plots with spring tillage yielded more tons and extractable sucrose per acre.

Herbicide soil residual, Fargo (NW section 22), 1989-1993. 'Evans' soybeans were solid seeded at 59 lb/A June 2, 1989 to the entire plot area. Herbicides were applied 10:00 am July 7, 1989 when the air temperature was 79F, soil temperature at six inches was 74F, relative humidity was 47%, wind was 8 mph, soil moisture was poor, and soybean was in the one trifoliolate stage (2 inches tall) to the four trifoliolate stage (6 inches tall). Plots were 14 feet wide and 45 feet long with the center 10 feet treated with herbicides in 8.5 gpa water at 38 psi through 8001 nozzles. The entire experiment was treated with sethoxydim+Dash at 0.2 lb/A + 1 qt/A June 26, 1989 and acifluorfen+sethoxydim+Dash at 0.25+0.2 lb/A + 1 qt/A July 10, 1989. Clopyralid at 0.2 lb/A was spot sprayed to control thistles July 10, 1989. Fall tillage of the plot area was with a chisel plow operated six inches deep and spring tillage was with a field cultivator operated three inches deep. All tillage was done at a slow speed moving parallel with the herbicide plots. Bioassay strips of sugarbeet, corn, wheat, and oats were seeded across herbicide plots for evaluation in 1990. 'Van Der Have Puressa II' sugarbeet was seeded in two directions over entire plot area May 24, 1991. Sugarbeet injury was evaluated June 24, 1991. 'Seedex Monohikari' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 19, 1992. Seeding was done parallel and perpendicular to plots to ensure a dense sugarbeet population. Desmedipham&Phermedipham + sethoxydim + clopyralid at 0.33 + 0.3 + 0.09 lb ai/A broadcast applied to all plots June 12, was 1992. Desmedipham&Phermedipham + sethoxydim + clopyralid at 0.9 + 0.3 + 0.09 lb ai/A was broadcast applied to all plots June 29, 1992. Sugarbeet injury was evaluated June 29 and July 10, 1992. 'Hilleshog 8277' sugarbeet was seeded 1.25 inches deep in 22 inch rows going two directions across plot area May 18, 1993. Sugarbeet injury was evaluated July 9, 1993.

<u> 1989 * Rate 1991 1992 1992 (lb/A) percent sugarbeet inj</u>	<u>1993</u> ury
(lb/A) percent sugarbeet inj	ury
Imazethapyr+X-77 0.12+0.25% 85 3 5	0
Imazethapyr+X-77 0.06+0.25% 58 3 0	0
Imazethapyr+X-77 0.03+0.25% 14 3 8	0
Imazethapyr+X-77 0.015+0.25% 0 0 0	0
Imazamethabenz 0.6 0 0 0	0
Imazamethabenz 0.3 3 0 0	0
Imazamethabenz 0.15 0 0 0	0
Metribuzin-DF 1 0 0 0	0
Metribuzin-DF 0.5 0 0 3	0
Metribuzin-DF 0.25 0 0 0	0
Nicosulfuron 0.125 3 0 0	0
Nicosulfuron 0.06 5 0 3	0
Nicosulfuron 0.03 5 0 3	0
Rimsulfuron+Nicosulfuron 0.062+0.062 4 0 0	0
Rimsulfuron+Nicosulfuron 0.03+0.03 3 0 0	0
Rimsulfuron+Nicosulfuron 0.015+0.015 0 0 3	0
Primisulfuron 0.06 91 45 40	76
Primisulfuron 0.03 59 36 25	35
Primisulfuron 0.015 24 8 3	19
C.V. % 31 106 207	87
LSD 5% 8 14	8
LSD 1% 11 10 19	11
<u># OF REPS 4 4 4</u>	4

* X-77 = non-ionic surfactant from Valent

<u>SUMMARY:</u> Sugarbeet seeded in 1991 were significantly injured by imazethapyr at 0.12, 0.06, and 0.03 lb/A and by primisulfuron at 0.06, 0.03, and 0.015 lb/A applied in 1989. Sugarbeet seeded in 1992 were significantly injured by primisulfuron at 0.06 and 0.03 lb/A applied in 1989. Sugarbeet injury in 1993 was greater than in 1992 and all three rates of primisulfuron caused significant sugarbeet injury. Carryover of soybean herbicides, Fargo (NW section 22), 1990-1993. 'McCall' soybean was seeded May 24, 1990. The entire plot area was treated with acifluorfen+sethoxydim at 0.25+0.2 lb ai/A plus Dash at 1 qt/A June 26, 1990. Herbicide treatments were applied in 8.5 gpa water at 38 psi through 8001 nozzles to the center 10 feet of 14 foot wide plots 9:15 am June 29, 1990 when the air temperature was 75F, soil temperature at six inches was 69F, relative humidity was 78%, wind velocity was 2 to 4 mph, soil moisture was good, and soybean was in the 2 to 3 trifoliolate stage. Spring and fall tillage was with a field cultivator or chisel plow operated the same direction as the herbicide plots. A six foot strip of 'Butte' wheat at 88 lb/A, a six foot strip of 'Valley' oats at 60 lb/A, a four row strip of 'Interstate 3001' sunflower at 25,000 seeds per acre, and twelve 11 inch rows of 'Van Der Have Puressa II' sugarbeet were seeded across herbicide plots May 24, 1991. Sugarbeet, wheat, oats, and sunflower injury were evaluated June 24, 1991 and July 8, 1991. Kochia control was evaluated June 24, 1991. 'Seedex Monohikari' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 19, 1992. Seeding was done parallel and perpendicular to plots to ensure a dense sugarbeet population. Desmedipham&Phenmedipham + sethoxydim + clopyralid at 0.33 + 0.3 + 0.09 lb ai/A was broadcast applied to all plots June 12, 1992. Desmedipham&Phenmedipham + sethoxydim + clopyralid at 0.9 + 0.3 + 0.09 lb ai/A was broadcast applied to all plots June 29, 1992. Sugarbeet injury was evaluated June 29 and July 10, 1992. 'Hilleshog 8277' was seeded 1.25 inches deep in 22 inch rows going two directions across the plot area May 18, 1993. Sugarbeet injury was evaluated July 9, 1993.

											19	992	<u>1993</u>
1990			June	24	, 1993	L	J1	uly 8	, 19	91	6-29	7-10	<u> </u>
Treatment	Rate	Sgbt	Wht	Oat	Sufl	Kocz	Sqbt	Wht	Oat	Sufl	Sqbt	Sgbt	Sqbt
	lb/A						%	injur	у				
Chlorimuron	0.004	94	30	31	54	98	91	30	19	48	70	53	83
Chlorimuron	0.008	98	33	18	69	97	98	46	15	74	90	76	100
Nicosulfuron	0.125	63	10	23	31	80	59	21	20	19	0	3	0
Nicosulfuron	0.06	30	10	3	10	40	33	18	8	8	0	0	0
Nicosulfuron	0.03	14	0	0	3	20	18	10	3	8	3	5	0
Rimsulfuron+N	ico												
0.062	+0.062	39	5	20	38	65	38	23	15	20	0	3	0
Primisulfuron	0.06	100	84	84	98	99	100	97	73	99	96	86	100
EXP MEAN		62	24	25	43	71	62	35	22	39	37	32	40
C.V. %		23	61	92	30	16	25	36	49	34	17	33	12
LSD 5%		22	22	35	19	17	24	18	16	20	9	16	7
LSD 1%		29	30	48	26	24	32	25	21	27	13	22	10
# OF REPS		4	4	4	4	4	4	4	4	4	4	4	4

Summary

Sugarbeet was significantly injured in 1991 by all treatments applied in 1990 except nicosulfuron at 0.03 lb/A. Wheat was significantly injured in 1991 by chlorimuron and primisulfuron applied in 1990. Oats was significantly injured only by primisulfuron. Sunflower was significantly injured in 1991 by all treatments applied in 1990 except nicosulfuron at 0.06 and 0.03 lb/A. Sugarbeet was significantly injured in 1992 and 1993 by both rates of chlorimuron and primisulfuron applied in 1990. Sugarbeet injury from all three treatments was greater in 1993 than in 1992.

Multispecies evaluation of soybean herbicide soil residual, Fargo (NW section 22), 1992-1993. 'McCall' soybean at 45 lb/A was solid seeded May 19, 1992 to the entire plot area. Preemergence herbicide treatments were applied in 17 gpa water at 40 psi through 8002 nozzles to the center 13 feet of 18 foot wide by 60 foot long plots 2:00 pm May 20, 1992 when the air temperature was 88F, soil temperature at six inches was 61F, relative humidity was 38%, wind velocity was 34 mph, and soil moisture was good. Postemergence herbicide treatments were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center 13 feet of 18 foot wide plots 3:45 pm June 29, 1992 when the air temperature was 70F, soil temperature at six inches was 58F, relative humidity was 48%, wind velocity was 4 mph, soil moisture was good, and soybean was in the one to two trifoliolate stage. The entire experiment was treated with sethoxydim+Scoil at 0.3 lb ai/A + 1 qt/A July 20, 1992. The soybean crop was mowed and tillage was with a chisel plow moving parallel with the herbicide plots in October of 1992. Spring tillage was one pass with a field cultivator. Six 22 inch rows of 'Hilleshog 8277' sugarbeet, four 30 inch rows of 'Interstate IS353' corn, and 'Interstate IS3311' sunflower, and a ten foot strip of 'NewDak' oats and 'Marshall' wheat were seeded across herbicide plots as bioassay strips May 19, 1993. A natural stand of wild mustard and kochia was in the plot area. Wild mustard, kochia, sugarbeet, sunflower, and corn control were evaluated July 5, 1993. Wheat and oats control were evaluated July 5 and July 26, 1993.

	Method				Jul	y 5, 1	.993			7-26	-93
1992	of		Wimu	Kocz	Sgbt	Wheat	Oats	Sufl	Corn	Wheat	Oats
Treatment	<u>Applic</u>	. Rate	cntl	cntl	cntl	cntl	cntl	cntl	cntl	cntl	cntl
		lb/A	0,0	00	00	010	olo	olo	00	olo	010
Chlorimuror	ı post	0.004	100	60	100	5	3	55	10	4	4
Chlorimuror	T	0.008	100	74	100	16	10	74	13	29	8
Chlorimuror	n post	0.01	100	74	100	29	20	78	25	40	6
MON 12000	post	0.03	100	75	100	3	6	83	3	6	3
MON 12000	post	0.09	100	79	100	19	34	100	17	12	20
Triasulfurc	on post	0.03	100	69	100	3	30	100	16	9	25
Thiazopyr	pre	0.25	0	0	0	26	26	0	5	19	18
Thiazopyr	pre	0.5	25	10	15	75	65	0	58	68	56
Flumetsulam	n+ (0.064+									
Metolachlo	or pre	2.34	0	60	0	0	0	0	0	13	13
Flumetsulam	1+ C	0.128+									
Metolachlo	or pre	4.67	29	74	10	0	0	0	0	0	0
EXP MEAN			65	57	63	18	19	49	15	20	15
C.V. %			16	22	12	41	50	19	78	61	89
LSD 5%			15	18	11	10	14	13	16	18	20
LSD 1%			21	24	14	14	19	18	22	24	26
# OF REPS			4	4	4	4	4	4	4	24 4	26 4
				in the second	Sugar a						T

Summary

Chlorimuron at 0.004 lb/A applied in 1992 significantly injured all species in 1993 except wheat, oats, and corn. Chlorimuron at 0.01 lb/A injured all species but oats recovered by 7/26. MON 12000 at 0.03 lb/A injured all species except wheat, oats, and corn but 0.09 lb/A injured all species. Triasulfuron injured all species except wheat. Thiazopyr at 0.25 lb/A injured wheat and oats while 0.5 lb/A injured wild mustard, wheat, oats, and corn. Flumetsulam+metolachlor only injured wild mustard and kochia even at the high rate. <u>Fertilizer Effect on Sugarbeet Stand, Fargo, 1992-1993.</u> A soil test of the plot area indicated 100 pounds per acre of nitrogen was the recommended rate of fertilizer for a sugarbeet crop. Ammonium nitrate and urea fertilizer at 50, 100, 200, and 300 pounds nitrogen per acre was applied September 4 and October 20, 1992 and April 23, 1993. Fall applied fertilizer was incorporated with a rototiller set two inches deep. Spring applied fertilizer was incorporated with an 'Alloway Seedbetter' set two inches deep. 'Van Der Have 66110' sugarbeet was seeded 1.25 inches deep in 22 inch rows April 23, 1993. Counter 15G at 12 pounds product per acre was applied modified in-furrow at planting. Sugarbeet was hand thinned to an eight inch spacing June 3. All plots were row-crop cultivated June 14 and maintained weed free by hand weeding throughout the growing season. Sugarbeet was harvested and counted from the center two rows of six row plots September 21, 1993.

			6-2	Harves	st	Loss			
		Date of	Sgbt	Sgbt		to	Root	Impur	Extr
<u>Fertilizer</u>	Rate	Application	Popl		Sucr		Yield	Index	Sucr
	lb N/A		#/70ft			00	ton/A	Index	lb/A
							,		ID/A
Ammon. Nit.	50	Sept. 4, 1992	76	60	16.3	1.9	20.5	847	5828
Ammon. Nit.	100	Sept. 4, 1992	112	64	16.0	1.9	22.3	897	6175
Ammon. Nit.	200	Sept. 4, 1992	94	59	15.3	2.3	21.5	1115	5461
Ammon. Nit.	300	Sept. 4, 1992	110	57	15.0	2.4	20.1	1180	4946
Ammon. Nit.	50	Oct. 20, 1992	117	69	16.0	1.9	21.1	883	5890
Ammon. Nit.	100	Oct. 20, 1992	109	65	16.4	2.0	21.3	889	6053
Ammon. Nit.	200	Oct. 20, 1992	100	66	15.7	2.2	22.0	1036	5830
Ammon. Nit.	300	Oct. 20, 1992	104	61	15.2	2.3	21.6	1087	5503
Ammon. Nit.	50	April 23, 1993	112	66	16.6	1.8	21.5	810	6250
Ammon. Nit.	100	April 23, 1993	99	67	16.7	1.9	20.9	844	6092
Ammon. Nit.	200	April 23, 1993	86	62	16.0	2.1	20.8	972	5689
Ammon. Nit.	300	April 23, 1993	81	62	15.5	2.4	21.8	1118	5647
Urea	50	Sept. 4, 1992	106	65	16.1	1.8	21.7	846	6099
Urea	100	Sept. 4, 1992	116		16.0	2.0	22.1	901	6087
Urea	200	Sept. 4, 1992	110	58	16.1	2.1	20.4	937	5647
Urea	300	Sept. 4, 1992	112		15.6	2.2	21.2	1045	5598
Urea	50	Oct. 20, 1992	123		16.4	1.7	20.5	767	5913
Urea	100	Oct. 20, 1992	115		16.6	1.8	20.7	799	6066
Urea	200	Oct. 20, 1992	91		15.7	2.2	20.5	1016	5453
Urea	300	Oct. 20, 1992	65	49	15.5	2.3	18.4	1074	4776
Urea	50	April 23, 1993	93	63	16.2	1.8	21.3	819	6084
Urea	100	April 23, 1993	100	66	16.1	1.9	22.6	860	6327
Urea	200	April 23, 1993	71	54	16.2	2.0	20.5	924	5758
Urea	300	April 23, 1993	59	44	15.3	2.3	19.5	1095	4963
Untreated Che	eck		111	69	16.9	1.7	19.9	749	5953
									5555
EXP MEAN			99	62	16.0	2.0	21.0	940	5763
C.V. %			23	12	3.5	7.4	8.5	10	10
LSD 5%			32	10	0.8	0.2	NS	133	812
LSD 1%			42	14	1.0	0.3	NS	176	NS
<u># OF REPS</u>			4	4	4	4	4	4	4

Summary

Plots treated with ammonium nitrate on Sept. 4, urea on Oct. 20 and urea on April 23 all at 300 lb/A of N had less extractable sucrose per acre and lower harvested populations than the untreated check. Plots treated with ammonium nitrate on Sept. 4 or urea on Sept.4, Oct. 20 and April 23 all at 200 lb/A of N also had lower harvested populations than the untreated check. Time of sugarbeet thinning, Fargo, 1993. Diethatyl+cycloate at 3+3 lb ai per acre was broadcast applied in 17 gpa water at 40 psi through 11002 nozzles to the entire plot area and incorporated twice with a 'Kongskilde Triple K' field cultivator operated three inches deep April 26. 'KW 1119' sugarbeet was seeded 1.25 inches deep in 22 inch rows April 26. Counter 15G at 12 pounds product per acre was applied modified in-furrow at planting. Sethoxydim+Scoil at 0.3 lb ai/A+1 qt/A was applied to the entire plot area June 14. All plots were hand weeded May 15 and maintained weed free throughout the growing season by hand weeding and row-crop cultivation May 20, June 22, and August 9. Sugarbeet was hand thinned to an eight inch spacing May 21, May 26, June 3, June 10, June 18, or June 25. Sugarbeet was harvested from the center two rows of 30 foot plots September 30.

	Sugarbeet		Loss			
Date of	Growth		to	Root	Impurity	Extract
Thinning	Stage	Sucrose	Mol	Yield	Index	Sucrose
Street Lotercare		8	00	ton/A		lb/A
		10.0	1 6	17.6	625	5787
May 21	2 leaf	18.2	1.5			
May 26	2-4 leaf	18.0	1.6	19.0	635	6195
June 3	6 leaf	18.1	1.5	17.8	616	5857
June 10	8 leaf	18.3	1.5	17.7	624	5850
June 18	10 leaf	18.2	1.5	18.0	610	5935
June 25	12 leaf	18.2	1.5	17.0	597	5615
EXP MEAN		18.2	1.5	17.9	618	5873
C.V. %		2.4	6.0	12.7	8	14
LSD 5%		NS	NS	NS	NS	NS
LSD 1%		NS	NS	NS	NS	NS
# OF REPS		6	6	6	6	6

Summary

Time of sugarbeet thinning had no significant effect on sugarbeet yield.

Late season new leaf removal effect on sugarbeet, Fargo, 1993. Diethatyl + cycloate at 3+3 lb ai per acre was broadcast applied in 17 gpa water at 40 psi through 11002 nozzles to the entire plot area and incorporated twice with a 'Kongskilde Triple K' field cultivator operated three inches deep April 26. 'KW 1119' sugarbeet was seeded 1.25 inches deep in 22 inch rows April 26. Counter 15G at 12 pounds product per acre was applied modified in-furrow at planting. Sethoxydim+Scoil at 0.3 lb ai/A+1 qt/A was applied to the entire plot area June 14. All plots were hand weeded May 15 and maintained weed free throughout the growing season by hand weeding and row-crop cultivation May 20, June 22, and August 9. Sugarbeet was hand thinned to an eight inch spacing Initial removal of the four newest leaves from each plant in the June 3. center four rows of six row plots was July 21 for the two months before harvest treatments and August 18 for the one month before harvest treatments. Following initial leaf removal, new growth was removed each week until harvest. Sugarbeet from the center two rows of 30 foot plots was harvested September 30.

		Loss			
Leaf		to	Root	Impurity	Extract
Removal	Sucrose	Mol	Yield	Index	Sucrose
	90	8	ton/A		lb/A
No Leaf Removal	17.5	1.7	20.3	731	6327
August 18 and weekly until harvest	17.1	1.7	19.5	744	5922
July 21 and weekly until harvest	16.9	1.9	18.3	827	5429
EXP MEAN C.V. % LSD 5% LSD 1% # OF REPS	17.2 1.7 NS NS 4	1.8 5.7 NS NS 4	19.4 6.6 NS NS 4	767 7 NS NS 4	5892 8 NS NS 4

Summary

Leaf removal had no significant effect on sugarbeet yield.

Methanol on sugarbeet, Farqo (airport), 1993. 'KW 1119' sugarbeet was seeded 1.25 inches deep in 22 inch rows April 30. Counter 15G at 12 pounds product per acre was applied modified in-furrow at planting. All treatments were applied three times. The first application was 10:00 am August 6 when the air temperature was 65F, soil temperature at six inches was 69F, relative humidity was 80%, and wind velocity was 5 mph. The second application was 11:25 am August 9 when the air temperature was 82F, soil temperature at six inches was 70F, relative humidity was 65%, and wind velocity was 2 mph. The third application was 10:00 am August 11 when the air temperature was 78F, soil temperature at six inches was 72F, relative humidity was 67%, and wind velocity was 7 mph. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots when the soil moisture was good and the sugarbeet canopy was full. Sugarbeet from the center two rows of 26 foot long plots was harvested and counted September 21.

							Loss			
		Iron			Sgbt		to	Root	Impur	Extrac
Methanol	28%N	chelate	T-x-100	Glycine	Popl	Sucr	Mol	Yield	Index	Sucros
					#/52ft	010	00	ton/A		lb/A
0	0	0	0	0	61	16.9	1.8	18.7	780	5602
Ŭ										
0	0.4%	C.008%	0.25%	0.1%	60	18.0	1.6	18.9	655	6147
Ű	0.10									
20%	0	0	0.25%	0	71	17.3	1.8	18.7	756	5752
208	Ŭ				T.					
20%	0.4%	0.008%	0.25%	0.1%	77	17.1	1.7	20.4	742	6209
20%	0.70	0.0000	0.100							
30%	0	0	0.25%	0	71	17.3	1.7	21.1	740	6479
20%	U	Ŭ	0.100							
30%	0.4%	0.008%	0.25%	0.1%	60	17.5	1.7	17.5	699	5449
20%	0.10	0.0000	0.200							
					67	17.3	1.7	19.2	729	5940
EXP MEAN					11	5.5	8.2	7.5	13	9
C.V. %					11	NS	NS	2.2	NS	NS
LSD 5%					NS	NS	NS	NS	NS	NS
LSD 1%	0				4	4	4	4	4	4
# OF REP	5									

28%N = 28% N solution containing urea and $\rm NH_4NO_3$ T-x-100 = Triton x-100 surfactant from Sigma Chemical Co.

Summary

None of the treatments significantly affected extractable sucrose per acre. However, plots treated with 30% methanol plus T-x-100 at 0.25% yielded more tons per acre than the untreated check.

<u>Wild oat control in wheat, Fargo 1993.</u> 'Marshall' hard red spring wheat was seeded on May 3. Treatments were applied to 2- to 2.5-leaf wheat, 2- to 3-leaf wild oats, 2- to 4-leaf wild mustard, and 2-leaf common lambsquarters on May 26, with 48 F, 70% RH, clear sky, and 5 to 7 mph wind. Treatments were applied with a bicycle wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Harvest for yield was on August 25.

				/26			8/7		8/25
<u>Treatment^a</u>	Rate	Wheat inj		Wimu	Colq	√heat inj	Wioa	Wibw	and the second se
Diclofop+SUN-ITII	oz/A 12+.18G	0	90	0	- % -		01		bu/A
Diclofop+Brox Imazamethabenz-LC+SUN-ITII	12+.18G 12+4 5+.18G	0 0	90 77 85	0 66 87	0 99	0 0	91 83	. 0 86	10.8 12.7
Imazamethabenz-LC+X-77 Immb-LC+Dife+X-77	5+.25% 2.5+6+.25%	0 0	85 31 34	87 82 64	5 0 0	0 0 0	82 50 50	36 51 48	11.2 5.2 5.2
Immb-LC+Dife+X-77 Immb-LC+Thif&Trib+SUN-ITII	3.7+8+.25% 5+.25+.18G	0 0 0	40 88	56 99	0 99	0 0 0	50 67 92	46 65 90	5.2 7.3 14.0
Difenzoquat Dife+Thif&Trib+X-77	12 12+.25+.25	0	66 67	0 99	0 99	0 0	65 74	90 0 98	7.0
Tiller Tiller+Thif&Trib+Dica-dma	9.4 9.4+.22+1	0 0	91 15	95 99	99 99	0	93 39	9 88	14.3
Tiller+Trib+Dica-dma Cheyenne	9.4+.125+1 8.52	0 5	8	99 96	99 99	0	11 88	99 94	2.5 14.0
Untreated	0	Ő	0	0	0	0	0	0	0
C.V. % LSD 5%		411 2	12 9	19 18	5 4	0 NS	19 17	27 21	35.2 4.3
# OF REPS		4	4	4	4	4	4	4	4

^aTiller=Fenoxaprop:2,4-D:MCPA (1:2:6.3); Cheyenne=Fenoxaprop:MCPA:thifensulfuron& tribenuron (1:6.3:0.22)

Summary

Wild oat densities were high at about 300 plants per square yard so wheat emergence was poor. The reduced wheat stand plus flooding and diseases account for the low yield. However, wheat yield generally related to control of wild oats, wild buckwheat, and wild mustard. Wild mustard was at about 5 and wild buckwheat 10 plants per square yard. Only diclofop, imazamethabenz + thifensulfuron & tribenuron + Sun-it II and Tiller gave more than 90% late season wild oat control. Sun-it II enhanced wild oat control from imazamethabenz to 85% early and 80% late compared to 31% early and 60% late respectively when applied with X-77. The inclusion of dicamba with Tiller greatly reduced wild oats control. Wild oat control was similar from imazamethabenz alone + X-77 at 5 oz/A to when at 3.7 with difenzoquat at 8 oz/A + X-77. Wild buckwheat control exceeded 85% when bromoxynil, thifensulfuron & tribenuron, or dicamba were part of the treatment. <u>Wild oat control in wheat, Hettinger 1993.</u> 'Grandin' hard red spring wheat was seeded April 14. Treatments were applied to 6 leaf wheat and 4 leaf wild oats on May 31 with 60 F, cloudy sky, and 5 mph wind. Harmony extra at 0.33 oz/A was applied to entire plot on May 13. Treatments were applied with a tractor mounted type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 5 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Wild oat density was 300 plants/yd².

			22		7/07		8	/17
<u>Treatment^a</u>	Rate	Wheat inj	Wioa	Wheat inj	Wioa	Fibw	Plant height	Wheat yield
	oz/A	%			CM	bu/A	ł	
Diclofop+Sun-itII Diclofop+Bromoxynil Imazamethabenz-LC+Sun-i Imazamethabenz-LC+Sun-i Imazamethabenz-LC+Dife+ Imazamethabenz-LC+Dife+ Immb-LC+Thif&Trib+Sun-i Difenzoquat Dife+Thif&Trib+X-77 Tiller Tiller+Thif&Trib+Dicamb Tiller+Tribenuron+Dicam Cheyenne Untreated	5+0.25% X-77 2.5+6+0.25% X-77 3.7+8+0.25% t II 5+0.25+0.18G 12 12+0.25+0.25% 9.4 a-dma 9.4+.22+1	0 2 0 2 0 2 0 0 2 0 0 0 0 0 0 0 0 0	64 48 49 36 32 39 43 27 25 82 68 72 89 0	0 5 0 3 0 6 0 3 0 5 1 3 0	66 51 76 52 55 47 82 40 44 71 83 59 77 0	11 10 54 33 11 36 24 31 55 79 59 70 0	56 54 52 52 52 44 50 50 52 53 54 54 53 49	$\begin{array}{c} 9.0\\ 10.5\\ 9.3\\ 9.5\\ 8.3\\ 6.9\\ 7.6\\ 7.0\\ 7.5\\ 11.6\\ 9.9\\ 9.7\\ 8.9\\ 9.1 \end{array}$
C.V. % LSD 5% # OF REPS		378 NS NS	58 28 37	151 4 4	32 26 4	62 33 4	14 NS NS	33.0 NS NS

^aTiller=Fenoxaprop:2,4-D:MCPA (1:2:6.3); Cheyenne=Fenoxaprop:MCPA:thifensulfuron& tribenuron (1:6.3:0.2 2);

Summary

Imazamethabenz control of wild oats was greater when applied with Sun-it II than X-77. Wild oats control from difenzoquat was low, probably because application was early for difenzoquat. Difenzoquat phytotoxicity to wild oats was not influenced by thifensulfuron & tribenuron. Tiller control of wild oats was antagonized when with dicamba and tribenuron, but not when dicamba and thifensulfuron & tribenuron were part of the treatment.

<u>Wild oat control in wheat, Minot 1993.</u> 'Stoa' hard red spring wheat was seeded May 11. Treatments were applied to 3.5- to 4-leaf wheat on June 4 with 50 F, 34% RH, partly cloudy sky and 3.5 mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Evaluation was on July 8 and harvest for yield was on September 9.

<u>Treatment</u> ^a	Rate	Wheat inj	Wioa	Plant height	Test weigh	Wheat t yield
Diclofop+Sun-itII Diclofop+Bromoxynil Imazamethabenz-LC+Sun-itII Imazamethabenz-LC+X-77 Imazamethabenz-LC+Dife+X-77 Imazamethabenz-LC+Dife+X-77 Immb-LC+Thif&Trib+Sun-itII Difenzoquat Dife+Thif&Trib+X-77 1 Tiller Tiller	Rate oz/A 12+0.18G 12+4 5+0.18G 5+0.25% 2.5+6+0.25% 3.7+8+0.25% 5+0.25+0.18G 12 2+0.25+0.25% 9.4 9.4+.22+1 9.4+0.125+1 7.5 0		Wioa 99 99 93 97 97 97 93 92 99 71 54 99 0		weigh 1b/bu 59.2 59.5 59.9 59.2 59.8 59.2 59.8 59.2 59.5 59.1 58.8 59.4 59.4 59.4 59.4 59.4	t yield bu/A 41.1 37.7 40.1 36.4 36.6 36.8 38.6 37.5 33.4 39.0 33.2 34.2 38.9
C.V. % LSD 5% # OF REPS	U	83 4 4	8 10 4	3 4 4	59.3 .8 NS 4	30.2 10.0 5.3 4

^aTiller=Fenoxaprop:2,4-D:MCPA (1:2:6.3); Cheyenne=Fenoxaprop:MCPA: thifensulfuron&tribenuron (1:6.3:0.22).

Summary

Wild oat density was sprase at about 5 plants per square yard. Wild oats control exceeded 90% with all treatments, except tiller treatments containing dicamba. Most herbicide treatments increased wheat grain yield, but did not influence grain test weight. <u>Wild oat control in wheat, Williston 1993.</u> 'Amidon' hard red spring wheat was seeded May 4. Treatments were applied to 4-leaf wheat and 3.5- to 4-leaf wild oats on June 2 with 61 F, 55% RH, partly cloudy sky, 7 mph wind, and soil temperature of 58 F at a 4 inch depth with dry soil and plant surfaces. Treatments were applied with a tractor mounted plot sprayer delivering 8.5 gpa at 32 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates. Evaluation was July 8 and harvest for yield was on September 22.

Treatment ^a	Rate oz/A	<u>July 8</u> Wheat inj Wic	Wheat a inj Wio	Wheat a yield
Diclofop+Sun-itlI Diclofop+Bromoxynil Imazamethabenz-LC+Sun-itII Imazamethabenz-LC+X-77 Imazamethabenz-LC+Dife+X-77 Imazamethabenz-LC+Dife+X-77 Immb-LC+Thif&Trib+Sun-itII Difenzoquat Dife+Thif&Trib+X-77 Tiller Tiller+Thif&Trib+Dica-dma Tiller+Tribenuron+Dica-dma Cheyenne Untreated	12+0.18G $12+4$ $5+0.18G$ $5+0.25%$ $2.5+6+0.25%$ $3.7+8+0.25%$ $5+0.25+0.18G$ 12 $12+0.25+0.25%$ 9.4 $9.4+.22+1$ $9.4+0.125+1$ 7.5 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 34.0 3 27.6 4 31.0 4 32.6 5 30.4 1 29.7 6 30.7 4 28.6 3 26.0 1 26.7 5 28.5
C.V. % LSD 5% # OF REPS		89 13 5 13 4 4	3 23 1	7 13.2 7 NS 4 4

^aTiller=Fenoxaprop:2,4-D:MCPA (1:2:6.3); Cheyenne=Fenoxaprop:MCPA: thifensulfuron& tribenuron (1:6.3:0.22);

Summary

Wild oats density was at about 8 plants per square yard. Wild oats control exceeded 85% at both evaluations for diclofop alone or with bromoxynil, imazamethabenz alone or with thifensulfuron & tribenuron plus Sunit II. Tiller applied alone and imazamethabenz + Sunit II appeared to injure wheat at the late evaluation. Wheat yield was not influenced by any herbicide treatments.

<u>Difenzoquat for wild oat control in barley, Fargo 1993.</u> 'Excel' barley was seeded May 3. Treatments were applied to 5-leaf barley, 4-leaf wild oats, 6-leaf wild mustard, and 2- to 4-leaf wild buckwheat on June 1 with 58 F, 45 RH, clear sky, and 5 mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with 4 replicates. Evaluations were on June 26 and August 7. Harvest for yield was on August 17.

<u>Treatment</u> ^a	Rate	6 Barley	/26 Wioa	Wimu	8/7 Wiga	<u>8/17</u> Yield
	oz/A		%			bu/A
Difenzoquat Difenzoquat-SG+X-77 Difenzoquat-SG+Sun-itII Imazamethabenz-LC+Dife-SG+X-77 Imazamethabenz-LC+Dife-SG+Sun-itII Imazamethabenz-LC+Dife-SG+Scoil Immb-LC+Dife-SG+Thif&Trib+MCPA+X-77 Difenzoquat-SG+MCPA-dma+X-77 Difenzoquat-SG+Brox&MCPA+X-77 Difenzoquat-SG+24-Ddma+X-77 Difenzoquat-SG+C1py&24D+X-77 Difenzoquat-SG+Trib+MCPA-ioe+X-77 Dife-SG+Thif&Trib+MCPA-ioe+X-77 Imazamethabenz-LC+Dife+X-77 Untreated	$\begin{array}{c} 16\\ 16+.5\%\\ 16+.25G\\ 3.7+8+.5\%\\ 3.7+8+.25G\\ 3.7+8+.5+4+.5\%\\ 16+8+.5\%\\ 16+8+.5\%\\ 16+8+.5\%\\ 16+9.5+.5\%\\ 16+.25+4+.5\%\\ 16+.5+4+.5\%\\ 16+.5+4+.5\%\\ 3.7+8+.5\%\\ 0\end{array}$	1 0 1 3 5 6 3 4 3 1 3 0	88 91 89 81 76 86 81 83 82 83 81 0	0 99 99 99 99 99 99 99 99 99 99 99	83 95 81 77 70 82 52 74 84 73 63 73 75 93 0	30.1 28.4 28.9 30.6 29.4 30.2 22.7 26.4 29.9 26.5 29.8 29.3 27.6 30.7 12.5
C.V. % LSD 5% # OF REPS		146 NS 4	11 12 4	0 NS 4	18 19 4	16.1 6.3 4

^aTiller=Fenoxaprop:2,4-D:MCPA (1:2:6.3); Cheyenne=Fenoxaprop:MCPA:thifensulfuron& tribenuron (1:6.3:0.22)

Summary

Difenzoquat gave similar wild oat control regardless of formulation or adjuvant. However, wild oat control from difenzoquat-SG + clopyralid & 2,4-D was less then for difenzoquat liquid alone, at the late evaluation. Wild oat control from imazamethabenz + difenzoquat was reduced with thifensulfuron & tribenuron + MCPA were included in the spray mixture. Barley yield was increased for all wild oat control treatments, except imazamethabenz + difenzoquat + thifensulfuron & tribenuron + MCPA.

5

Difenzoquat plus adjuvants for wild oat control in barley, Fargo 1993. 'Excel' barley was seeded May 3. Treatments were applied to 5-leaf barley, 4-leaf wild oat, 6-leaf wild mustard, 2- to 4-leaf wild buckwheat, and 5- to 6-leaf common lambsquarters on June 1 with 58 F, 45% RH, clear sky, and 5 mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiments was a randomized complete block design with four replicates. Harvest for yield was on August 17.

		6/26				8/7	8/17	
Treatment	Rate oz/A	Barley inj	<u>Wioa</u>		<u>Wibu</u> %	Colq	<u>Wioa</u>	<u>Yield</u> bu/A
Difenzoquat Difenzoquat-SG+X-77 Difenzaquat-SG+Scoil Difenzoquat+28N Difenzoquat-SG+X-77+28N Difenzoquat-SG+Scoil+28N Difenzoquat-SG+E-93-N Untreated	10 10+.5% 10+.25G 10+2% 10+.5%+2% 10+.25G+2% 10+1% 0	$\begin{array}{c} 4 \\ 3 \\ 0 \\ 0 \\ 0 \\ 11 \\ 0 \\ 0 \end{array}$	88 77 90 76 86 96 80 0	16 3 14 5 0 97 1 0	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 23 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 0 0 8 0 0	87 87 94 88 88 96 90 0	21.5 20.2 23.7 22.5 22.6 29.4 22.0 10.7
C.V. % LSD 5% # OF REPS		187 6 4	10 11 4	27 7 4	566 NS 4	566 NS 4	5 6 4	15.3 4.9 4

Summary

Wild oat density was about 300 plants per square yard. Barley yield was increased from weed control with all herbicides, but yields were low because of flooding and disease. Late season wild oat control exceeded 85% for all treatments, but evaluation did not include wild oats beneath the barley canopy. At the June 26 evaluation, difenzoquat as the liquid formulation gave greater wild oat control than as the SG formulation with X-77. However, when difenzoquat SG was applied with Scoil, wild oat control equalled that from the commercial liquid formulation. Twenty-eight percent liquid nitrogen fertilizer applied with difenzoquat as the commercial liquid formulation reduced wild oat control. However, 28% liquid nitrogen fertilizer tended to enhance wild oat control from difenzoquat SG.
<u>Control of wild oats plus other weeds, Fargo 1993.</u> 'Marshall' hard red spring wheat was seeded May 3. Treatments were applied to 2- to 2.5-leaf wheat, 2-to 3-leaf wild oats, 2- to 4-leaf wild mustard, 2-leaf wild buckwheat, and 2-leaf common lambsquarters on May 26 with 70 F. 35% RH, partly cloudy sky, and 5- to 10-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with 4 replicates. Evaluation was on June 26 Weed complete block design with 4 replicates. Evaluation was on June 26. Weed densities were wild oats 30 plants/ft², wild mustard 3 plants/ft², wild buckwheat 2 plants/ft², common lambsquarter and kochia 0.1 plant/ft² and a second flush of wild oats.

		1.11.1			6/26				8/7
<u>Treatment^a</u>	Rate	Wht	Wioa	Wimu	Wibu	Cola	KOCZ	Liter	
	oz/A				%			<u>WI0d</u>	Wibu
Tiller Tiller Tiller+Bromoxynil-gel Tiller+Bromoxynil-gel Tiller+Bromoxynil Tiller+Thif&Trib Tiller+Thif&Trib+Brox-gel Tiller+Tribenuron Tiller+Trib+Brox-gel Cheyenne Immb+Thif&Trib+Scoil Diclofop+Brox+Scoil Difenzoquat+Thif&Trib Untreated	6.6 9.3 9.3+3 9.3+3 9.3+4 9.3+.22 9.3+.22+2 9.3+.13 9.3+.06+2 6.82 4+.22+.18G 12+4+.18G 10+.22 0	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 5 \\ 3 \\ 0 \\ $	89 90 89 89 83 49 63 69 85 80 85 80 84 25 0	76 71 80 81 98 99 99 97 99 97 48 99 0	13 85 91 93 99 99 93 99 98 99 98 92 99 0	99 99 99 99 99 99 99 99 99 99 99 99	20 23 98 99 99 99 99 99 99 99 99 99 99	91 95 95 91 76 64 70 71 87 87 88 19 0	26 13 89 94 98 69 67 76 94 90 99 0
C.V. % LSD 5% # OF REPS		239 3 4	11 11 4	15 17 4	10 10 4	0 NS 4	9 12 3	8 9 4	37 32 4

^aTiller=Fenoxaprop:2,4-D:MCPA (1:2:6.3); Cheyenne=Fenoxaprop:MCPA: thifensulfuron&tribenuron (1:6.3:0.22);

Summary

Wheat was not harvested for yield because of water and disease damage. Wild oat control from Tiller was antagonized when the spray contained thifensulfuron & tribenuron + bromoxynil-gel, tribenuron, or tribenuron + bromoxynil-gel. Difenzoquat did not adequately control wild oats, possibly because of the early stage of wild oats at treatment. All hericide treatments controlled common lambsquarters. Diclofop + bromoxynil gave only 48% wild mustard control. All treatments, except Tiller applied alone, gave 85% or more wild buckwheat and kochia control.

Barban plus thifensulfuron and tribenuron for wild oat control, Fargo 1993. <u>'Excel' barley was seeded May 3.</u> Treatments were applied to 1-leaf barley, 1-to 2-leaf wild oats, cotyledon-to 2-leaf wild mustard, cotyledon- to 2-leaf wild buckwheat, cotyledon- to 1-leaf common lambsquarters, and less than 1-inch tall kochia on May 20 with 50 F, 80% RH, mostly cloudy sky, and 2 mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four by 30 ft plots. The experiment was a randomized complete block design with four replicates. Evaluations were on June 26 and August 7. Wild oat density was 30 plants/yd2

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				6/26		8/7		
Intercention oz/A intercention % intercention Barban(2E) 4 0 29 0 65 59 Barban(2E) 6 0 43 0 66 71 Barban(2E)+Scoil 4+0.18G 0 61 0 70 70 Barban(2E)+Act-90 4+0.25% 0 39 0 60 48 Barban(2E)+Thif&Trib+Scoil 4+0.33+0.18G 0 46 99 78 95 Barban(2E)+Thif&Trib+Scoil 4+0.33+0.25% 3 41 97 86 95 Barban(2E)+Thif&Trib+Scoil 6+0.33+0.25% 3 41 97 86 92 Barban(2E)+Thif&Trib+Scoil 6+0.33+0.25% 0 41 97 84 97 Barban+Thif&Trib+Act-90 6+0.33+0.25% 0 0 0 0 2 Untreated 0 0 0 0 2 2 28 5 10 19 LSD 5% 5 17 3 9 20 4 4 4 <td>Treastmont</td> <td>Rate</td> <td>Barley</td> <td>Wioa</td> <td></td> <td>Wioa</td> <td>Wibu</td>	Treastmont	Rate	Barley	Wioa		Wioa	Wibu	
Barban(2E) 6 0 43 0 66 71 Barban(2E) 6 0 43 0 66 71 Barban(2E)+Scoil 4+0.18G 0 61 0 70 70 Barban(2E)+Act-90 4+0.25% 0 39 0 60 48 Barban(2E)+Act-90 4+0.33+0.18G 0 46 99 78 95 Barban(2E)+Thif&Trib+Scoil 4+0.33+0.25% 3 41 97 86 95 Barban(2E)+Thif&Trib+Act-90 4+0.33+0.25% 3 41 97 86 92 Barban(2E)+Thif&Trib+Act-90 6+0.33+0.25% 0 41 97 84 97 Barban+Thif&Trib+Act-90 6+0.33+0.25% 0 41 97 84 97 Untreated 0 0 0 0 0 2 2 2 10 19 LSD 5% 5 10 19 13 4 4 4	Tredullient			% -				
	Barban(2E) Barban(2E)+Scoil Barban(2E)+Act-90 Barban(2E)+Thif&Trib+Scoil Barban+Thif&Trib+Act-90 Barban(2E)+Thif&Trib+Scoil Barban+Thif&Trib+Act-90 Untreated C.V. % LSD 5%	6 4+0.18G 4+0.25% 4+0.33+0.18G 4+0.33+0.25% 6+0.33+0.18G	3 5 0 0 294 NS	43 61 39 46 41 70 41 0 28 17	0 0 99 97 99 97 0 5 3	66 70 60 78 86 86 84 0 10 9	71 70 48 95 95 92 97 2 19 20	

Summary

Thifensulfuron & tribenuron in tank mixture generally enhanced barban phytotoxicity to wild oats and at the early evaluation was most pronounced when with Scoil. These results are of interest because barban phytotoxicity generally was antagonized by other herbicides for broadleaf weed in past research.

<u>Broadleaf weed control in wheat, Fargo campus 1993.</u> 'Amidon' hard red spring wheat was seeded May 3. Treatments were applied to 3- to 4-leaf wheat, 3 leaf wild buckwheat. 1- to 3-inch kochia, 4-leaf common lambsquarters, and 4- to 6-leaf wild mustard on May 26 with 48 F, 70% RH, clear sky, and 5- to 10-mph wind. Treatments were applied with a bicycle-wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to an 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Evaluation was on June 18 and August 16. Harvest for yield was on August 26. Wild buckwheat and kochia at 10 plants/yd² in three of the four replications. Other weeds at a lower density.

Wht Wht Wht Treatment Rate inj Wibu Kocz Wimu Colq Grft Wibu Colq KOCZ Grft yie oz/A	26
TreatmentRateinj Wibu Kocz Wimu Colq Grft Wibu Colq KOCZ Grft yieoz/A	
0Z/A	ld
MCPA-dma 6 0 68 48 99 99 0 19 99 43 0 26.1 MCPA-dma 6 0 23 28 99 99 0 0 99 35 0 22.2 2.4-Dbee 4 3 66 58 99 99 0 8 99 48 0 28.3 MCPA-ioe 4 0 28 30 99 99 0 10 99 40 0 20.5 Dicamba-dma 2 0 91 89 73 96 95 99 99 0 27.5 Bromoxyni1&MCPA(4EC) 8 0 97 98 99 90 88 99 99 0 27.5 Bromoxyni1 4 0 98 91 84 91 0 95 99 90 27.4 Dicamba-dma+MCPA-dma 1.5+4 0 74 91 99 90 94 99 90 29.7 Clopyralid&24	
MCPA-dma 6 0 68 48 99 99 0 19 99 43 0 26.1 MCPA-dma 6 0 23 28 99 99 0 0 99 35 0 22.2 2.4-Dbee 4 3 66 58 99 99 0 8 99 48 0 28.3 MCPA-ioe 4 0 28 30 99 99 0 10 99 40 0 20.5 Dicamba-dma 2 0 91 89 73 96 95 99 99 0 27.5 Bromoxyni1&MCPA(4EC) 8 0 97 98 99 90 88 99 99 0 27.5 Bromoxyni1 4 0 98 91 84 91 0 95 99 90 27.4 Dicamba-dma+MCPA-dma 1.5+4 0 74 91 99 90 94 99 90 29.7 Clopyralid&24	
2.4-Dbee 4 3 66 58 99 99 0 0 99 35 0 22.5 MCPA-ioe 4 3 66 58 99 99 0 8 99 48 0 28.5 Dicamba-dma 2 0 91 89 73 96 0 95 99 99 0 27.5 Bromoxyni1&MCPA(4EC) 8 0 97 98 99 90 0 88 99 99 0 27.5 Bromoxyni1 4 0 98 91 84 91 0 95 99 99 0 27.4 Dicamba-dma+MCPA-dma 1.5+4 0 74 91 99 90 94 99 90 29.7 Clopyralid&24-D 9.5 0 90 51 99 99 99 99 90 29.7 Thif&Trib+2, 4-Dbee+Dicadma+X-77 0.225+4+1+0.125% 0 99 99 99 99 99 99 99 99 99<	1
2.4-Dbee 4 3 66 58 99 99 0 8 99 48 0 28 99 99 0 8 99 48 0 28 99 99 0 10 99 40 0 20 20 91 89 73 96 0 95 99 99 15 28 8 Bromoxynil&MCPA(4EC) 8 0 97 98 99 99 0 88 99 99 0 27 2 Bromoxynil 4 0 98 91 84 91 0 95 99 99 0 27 2 Dicamba -dma+MCPA-dma 1 .5+4 0 74 91 99 99 0 29 7 2 29 7 2 29 7 2 29 7 2 20 7 4 2 99 99 99 99 99 99 99 29 7 2 20 7 2 20 7	9
MCPA-10e40283099990109940020.2Dicamba-dma209189739609599991528.6Bromoxynil&MCPA(4EC)80979899990889999027.2Bromoxynil40989184910959999027.2Dicamba-dma+MCPA-dma1.5+40749199990949999029.7Clopyralid&24-D9.5090519999999958026.4Thif&Trib+2.4-Dbee+Dicadma+X-770.225+4+1+0.125%09999999999999999028.2Thif&Trib+MCPAioe+Dicadma+X-770.225+4+1+0.125%0989999999999028.2	
Dicamba-dma 2 0 91 89 73 96 0 95 99 99 15 28.8 Bromoxynil&MCPA(4EC) 8 0 97 98 99 90 0 88 99 99 0 27.2 Bromoxynil 4 0 98 91 84 91 0 95 99 99 0 27.2 Dicamba-dma+MCPA-dma 1.5+4 0 74 91 99 90 94 99 99 0 29.7 Clopyralid&24-D 9.5 0 90 51 99 99 99 99 90 29.7 Thif&Trib+2, 4-Dbee+Dicadma+X-77 0.225+4+1+0.125% 99	
Bromoxynil XMCPA(4EC) 8 0 97 98 99 99 0 88 99 99 0 27.3 Bromoxynil 4 0 98 91 84 91 0 95 99 99 0 27.3 Dicamba-dma+MCPA-dma 1.5+4 0 74 91 99 99 0 92.7 Clopyralid&24-D 9.5 0 90 51 99 99 0 92.7 Thif&Trib+2,4-Dbee+Dicadma+X-77 0.225+4+1+0.125% 0 90 91 99<	
Bromoxynil 4 0 98 91 84 91 0 95 99 99 0 27.4 Dicamba-dma+MCPA-dma 1.5+4 0 74 91 99 99 0 27.4 Clopyralid&24-D 9.5 0 90 51 99 99 0 29.7 Thif&Trib+2.4-Dbee+Dicadma+X-77 0.225+4+1+0.125% 0 99<	-
Dicamba-dma+MCPA-dma 1.5+4 0 74 91 99 90 94 99 99 0 29.7 Clopyralid&24-D 9.5 0 90 51 99 99 0 29.7 Thif&Trib+2.4-Dbee+Dicadma+X-77 0.225+4+1+0.125% 0 99	-
Clopyralid&24-D 9.5 0 90 51 99 99 99 98 0 25.7 Thif&Trib+2.4-Dbee+Dicadma+X-77 0.225+4+1+0.125% 0 99	
Thif&Trib+2,4-Dbee+Dicadma+X-77 0.225+4+1+0.125% 0 99	
Thif&Trib+MCPAioe+Dicadma+X-77 0.225+4+1+0.125% 0 98 99 99 99 0 99 99 99 0 24.0	
Trib+2 4-Dbee+Dica-dma+X-77 0 00275+4+1+0 125% 0 00 00 00 00 00	
Trib+MCPA-ioe+Dica-dma+Y-77 0.0027E+4410.125% 0.04 00 00 00 00 00 00 00 00 00 00 00 00 0	
Thif&Trib+X-77 0 225-0 125% 0 07 00 00 00 09 99 99 55 23.9	
Tribenuron+X-77 0.0027E+0.125% 1.40.00 00 00 00 00 00 00 00 00 00 00 00 00	
Thif&Trih+24_Dbee+Y_77 0.225+4+0.125% 0.05 00 00 00 00 00 00 00 00 00 00 00 00 0	
Thif&Trib+MCPA_ioo+Y 77 0 25:40.105% 0 27 20 27 20 27 29 99 99 15 24.6	;
Propanil_DE+MCDA_ioo+PO 12140.120% 0 77 37 37 39 0 94 99 99 35 25.6	5
Daketa	\$
Untropted 0.3 0 26 31 99 99 58 0 99 9 87 24.7	,
Untreated 0 0 0 0 0 0 0 0 0 0 18.6	;
C.V. % 440 10 12 0 2 122 22 0 14 14	
150 5%	
# OF DEDS	1
# UF REPS 4 4 4 4 4 4 3 4 2 4	

^aDakota=Fenoxaprop:MCPA (1:2.1);

Summary

Thifensulfruon & tribenuron treatments effectively controlled all broadleaf weeds. Tribenuron with 2.4-D or MCPA plus dicamba also controlled all broadleaf weed. Tribenuron alone did not adequately control wild buckwheat. Green foxtail plants were not competitive with the wheat which grew well with the cool moist conditions. Dakota gave adequate (84%) green foxtail control, August 16. Wheat yield was increased by most treatments and yield generally related to weed control.

<u>Broadleaf weed control in wheat, Carrington 1993</u>. 'Amidon' hard red spring wheat was seeded April 26. Treatments were applied to 3-leaf wheat. 4- to 6-leaf common lambsquarters. 2- to 3-inch Russian thistle. 1-inch kochia. and 2- to 4-leaf wild buckwheat on May 25 with 60 F. 54% RH, partly cloudy sky. and 17.5 mph wind. Treatments were applied with a shielded bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates. Evaluation was on July 9 and harvest for yield was on August 31.

				7	7/9		•	8/3	31
		Wht						Test	
Treatment	Rate	inj	Wimu	Colq	Ruth			weight	Yield
	oz/A					%			
2,4-D-dma	6	1	99	96	99	51	28	48.3	30.9
MCPA-dma	6	1	97	99	70	69	20	48.5	31.0
2,4-D-bee	4	1	99	98	99	89	59	47.8	31.3
MCPA-ioe	4	0	99	97	18	46	0	49.8	32.0
Dicamba-dma	2	0	99	99	90	99	88	48.3	32.4
Bromoxynil&MCPA(4EC)	4&4	1	99	99	99	97	92	49.3	31.8
Bromoxynil	4	0	99	80	98	93	91	50.0	31.1
Dicamba-dma+MCPA-dma	1.5+4	0	99	92	97	97	91	49.0	35.8
Clopyralid&2.4-D-bee	8&1.5	0	99	99	99	63	99	48.8	34.0
Thif&Trib+2,4-D-bee+Dica-dma+X-77	0.15&0.075+4+1+0.125%	1	99	99	99	99	84	48.5	32.7
Thif&Trib+MCPA-ioe+Dica-dma+X-77	0.15&0.075+4+1+0.125%	0	99	99	99	99	93	49.3	34.0
Tribenuron+2.4-D-bee+Dica-dma+X-77	0.09375+4+1+0.125%	0	99	99	99	99	81	48.3	32.5
Tribenuron+MCPA-ioe+Dica-dma+X-77	0.09375+4+1+0.125%	1	99	99	96	99	82	49.8	37.4
Thif&Trib+X-77	0.15&0.075+0.125%	0	99	89	95	81	71	50.8	34.8
Tribenuron+X-77	0.09375+0.125%	1	99	95	99	97	61	49.8	35.8
Thif&Trib+2,4-D-bee+X-77	0.15&0.075+4+0.125%	0	99	99	99	99	94	50.8	33.8
Thif&Trib+MCPA-ioe+X-77	0.15&0.075+4+0.125%	1	99	96	99	99	92	59.3	35.4
Propanil-DF+MCPA-ioe+PO	17+4+0.25G	0	99	99	50	94	84	49.5	34.3
Dakota	2.1&4.4	3	99	98	37	71	24	50.3	35.9
Untreated	0	0	0	0	0	0	0	49.0	33.0
									6 F
C.V. %		240	1	7	17	23	32	3.1	6.5
LSD 5%		NS	1	9	20	27	31	NS	NS
# OF REPS		4	4	4	4	4	4	4	4

^aDakota=Fenoxaprop:MCPA (1:2.1).

Summary

Weed densities were uniform at about three plants per square yard. Test weight was low because the disease injury. The wheat had a yield potential of more than 60 bu/A but was reduced because of disease. Wheat was extremely competitive with the cool and moist conditions so yields were not reduced by weeds. Further, most herbicide treatments were highly phytotoxic to weeds with the moist conditions. MCPA treatments gave less than 70% Russian thistle control. Kochia control was below 90% only with 2.4-D. MCPA, clopyralid & 2.4-D and thifensulfuron & tribenuron alone. <u>Broadleaf weed control in wheat, Dickinson 1993.</u> 'Stoa' hard red spring wheat was seeded May 5. Treatments were applied to 4.5-leaf wheat, 3-leaf green foxtail, 1.5 inch diameter redroot pigweed, and 4-leaf wild buckwheat on June 2 with 52 F, cloudy sky and no wind. Treatments were applied with a bicycle-wheel type plot sprayer delivering 35 gpa with 35 psi through 8001 flat fan nozzles to a 5 ft wide area the length of 7 by 28 ft plots. The experiment was a randomized complete block design with four replicates. Evaluation was on July 7. Weed density was variable.

				/07		9/		
Treatment	Rate	Whea inj		Rrpw %	Wibu	Test weight lb/bu	Wheat yield bu/A	<u>SD</u>
2,4-Ddma MCPA-dma 2,4-Dbee MCPA-ioe Dicamba-dma Bromoxynil&MCPA(4EC) Bromoxynil Dicamba-dma+MCPA-dma Clopyralid&24-D Mets+2,4-Dbee+Dicadma+X-77 Mets+MCPA-ioe+Dicadma+X-77 Trib+2,4-Dbee+Dicadma+X-77 Trib+MCPA-ioe+Dica-dma+X-77 Metsulfuron+X-77 Tribenuron+X-77 Metsulfuron+X-77 Metsulfuron+24-Dbee+X-77 Metsulfuron+MCPA-ioe+X-77 Propanil-DF+MCPA-ioe+P0 Dakota Untreated	$\begin{array}{c} 6\\ 6\\ 4\\ 4\\ 2\\ 8\\ 4\\ 1.5+4\\ 9.5\\ 0.062+4+1+.125\\ 0.09375+4+1+.125\\ 0.09375+4+1+.125\\ 0.09375+4+1+.125\\ 0.062+.125\\ 0.09375+.125\\ 0.062+4+.125\\ 0.062+4+.125\\ 0.062+4+.125\\ 17+4+.256\\ 6.5\\ 0\\ \end{array}$	23017343394853536250	$ 15 \\ 26 \\ 18 \\ 0 \\ 23 \\ 15 \\ 0 \\ 6 \\ 23 \\ 0 \\ 18 \\ 10 \\ 36 \\ 15 \\ 16 \\ 33 \\ 0 \\ 10 \\ 97 \\ 10 \\ $	45 50 51 49 86 95 90 92 70 98 92 87 98 92 87 98 85 99 97 35 36	27 56 29 37 54 79 80 71 86 92 98 81 90 47 62 92 80 44 0 0	57.8 58.5 57.8 58.3 57.4 58.3 57.4 58.3 58.1 58.6 57.9 58.1 57.9 58.1 57.9 58.1 57.6 58.1 57.6 58.1 58.1 58.5 58.1 57.6 58.1 58.5 57.9 57.5	44.4 + + + + + + + + + + + + + + + + + +	$\begin{array}{c} 6.2\\ 3.1\\ 5.3\\ 7.7\\ 4.6\\ 4.1\\ 3.6\\ 7.7\\ 0.7\\ 8.8\\ 7.7\\ 5.9\\ 8.8\\ 6.3\\ 10.4\\ 8.9\\ 14.3\\ \end{array}$
C.V. % LSD 5% # OF REPS		79 7 4	123 43 4	23 31 4	53 60 4	4	4	

^aDakota=Fenoxprop:MCPA (1:2.1).

Summary

Kochia control exceeded 85% with dicamba, bromoxynil, and metsulfuron treatments. Green foxtail was only controlled by fenoxaprop & MCPA. Wild buckwheat control was variable, but bromoxynil, dicamba, clopyralid, and tribenuron or metsulfuron in mixture with other herbicides were the most effective treatments. Wheat yield was generally increased by herbicide treatments. Variability in yield was from damage to plot area from vandalism. Area harvested differed for various plots because of the damage. Wheat grain test weight was not influenced by weed control treatment. <u>Broadleaf weed control in wheat, Williston 1993.</u> 'Amidon' hard red spring wheat was seeded on April 26. Treatments were applied to 5- to 6-leaf wheat, 1- to 3inch Russian thistle, and 2- to 4-leaf green foxtail on June 2 with 62 F, 46% RH, partly cloudy sky, 9 mph wind, soil temperature of 64 F at 4 inch depth, and dry plant and soil surfaces. Treatment were applied with a bicycle-wheeltype sprayer with a shield mounted on a G-Allis Chalmers tractor delivering 8.5 gpa at 32 psi through 8001 flat fan nozzles to an 8 ft wide area the length of 10 by 24 ft plots. The experiment was a randomized complete block design with four replicates. Evaluation dates were July 8 and July 23 and harvest for yield was on September 23.

The second s			ly 8		July 2	23	Sept 23
Treatment	Rate	Wht	Ruth	Wht	Ruth	Grft	Wht yield
	oz/A			- %			bu/A
2,4-D-dma MCPA-dma 2,4-D-bee MCPA-ioe Dicamba-dma Bromoxynil&MCPA(4EC) Bromoxynil Dicamba-dma+MCPA-dma Clopyralid&2,4-D-bee Mets+2,4-D-bee+Dica-dma+X-77 Mets+MCPA-ioe+Dica-dma+X-77 Trib+2,4-D-bee+Dica-dma+X-77 Trib+CPA-ioe+Dica-dma+X-77 Mets+X-77 Trib+X-77 Mets+2,4-D-bee+X-77 Mets+2,4-D-bee+X-77 Mets+2,4-D-bee+X-77 Mets+2,4-D-bee+X-77 Prop-DF+MCPA-ioe+P0 Dakota Untreated	$\begin{array}{c} 6\\ 6\\ 4\\ 4\\ 4\\ 2\\ 4\&4\\ 4\\ 1.5+4\\ 8\&1.5\\ 0.062+4+1+0.125\%\\ 0.09375+4+1+0.125\%\\ 0.09375+4+1+0.125\%\\ 0.09375+4+1+0.125\%\\ 0.062+0.125\%\\ 0.062+4+0.125\%\\ 0.062+4+0.125\%\\ 0.062+4+0.125\%\\ 17+4+0.256\\ 2.1\&4.4\\ 0\end{array}$	1 1 2 5 3 2 3 1 5 6 6 4 1 4 6 6 3 4 0	71 49 85 40 61 98 98 68 79 94 97 94 99 78 83 95 91 11 10 0	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 3 \\ 0 \\ 0 \\ 3 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	90 34 96 38 81 97 98 90 96 99 99 99 98 85 95 96 85 5 23 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c} 39.3\\ 38.3\\ 38.4\\ 34.5\\ 36.0\\ 37.8\\ 40.0\\ 34.3\\ 39.6\\ 37.0\\ 41.5\\ 39.3\\ 40.7\\ 36.3\\ 40.7\\ 36.3\\ 40.6\\ 35.4\\ 35.9\\ 31.7\\ 34.6\\ 31.8 \end{array}$
C.V. % LSD 5% # OF REPS		101 NS 4	14 14 4	228 NS 4	13 14 4	180 14 4	9.2 4.8 4

^dDakota=fenoxaprop:MCPA (1:2.1).

Summary

All herbicide treatments that gave 95% or more late season Russian thistle control and increased yield by 5 or more bu/A. 2,4-D either as the amine or ester tended to be more effective than MCPA or dicamba for Russian thistle control. Metsulfuron alone or with MCPA was or tended to be less effective than tribenuron alone or metsulfruon with 2,4-D for Russian thistle control. Metsulfruon tribenuron in mixture with dicamba and 2,4-D or MCPA effectively controlled Russian thistle.

<u>Sulfonylurea mixture for broadleaf weed control, Fargo 1993.</u> 'Marshall' hard red spring wheat was seeded May 3. Treatments were applied to 5-leaf wheat, 0.5- to 3-inch kochia, 1.5-inch common lambsquarters, and 2- to 3-leaf foxtail on June 10 with 80 F, 70% RH, clear sky, and 10 mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. Evaluations were take June 21, August 20 and harvest for yield was on September 2.

		6. Whea	/20	8/ Wheat	/20	<u>9/2</u> Wheat
Treatment	Rate					yield
	oz/A			% -		<u>yrcru</u>
Thifensulfuron&Tribenuron+NIS Thifensulfuron&Tribenuron+MCPA-ioe+ Thifensulfuron&Tribenuron+MCPA-ioe+ Thifensulfuron&Tribenuron+Brox+NIS Thifensulfuron&Tribenuron+Brox+NIS Thif&Trib+2,4-Dbee+Dica-dma+NIS Thif&Trib+Bromoxynil&MCPA+NIS Tribenuron+NIS Tribenuron+NIS Tribenuron+MCPA-ioe+NIS Tribenuron+Dicamba-dma+NIS Tribenuron+Bromoxynil+NIS Tribenuron+ACPA-ioe+Dicamba-dma+NIS Tribenuron+MCPA-ioe+Dicamba-dma+NIS Tribenuron+MCPA-ioe+Dicamba-dma+NIS Tribenuron+MCPA-ioe+Dicamba-dma+NIS Tribenuron+MCPA-ioe+Dicamba-dma+NIS Tribenuron+MCPA-ioe+Dicamba-dma+NIS Tribenuron+MCPA-ioe+Dicamba-dma+NIS Tribenuron+MCPA-ioe+Dicamba-dma+NIS Tribenuron+MCPA-ioe+Dicamba-dma+NIS Tribenuron+MCPA-ioe+Dicamba-dma+NIS Tribenuron+MCPA-ioe+Dicamba-dma+NIS Tribenuron+MCPA-ioe+Dicamba-dma+NIS Tribenuron+MCPA-ioe+Dicamba-dma+NIS Tribenuron+MCPA-ioe+Dicamba-dma+NIS Tribenuron+MCPA-ioe+Dicamba-dma MCPA-ioe Dicamba-dma MCPA-ioe+Dicamba-dma MCPA-ioe+Dicamba-dma MCPA-ioe+Dicamba-dma MCPA-ioe+Dicamba-dma	NIS 0.225+4.0+0.125% NIS 0.225+1.0+0.125% 0.225+2.0+0.125% 0.225+4.0+1.0+0.125% 0.225+4.0+1.0+0.125% 0.225+4.0+0.125% 0.09375+0.125% 0.09375+4.0+0.125% 0.09375+4.0+0.125% 0.09375+2.0+0.125% 0.09375+2.0+0.125% 0.09375+4.0+1.0+0.125%	3237104331559195110200610	99 99 99 99 99 99 99 99 99 99 99 99 99	$\begin{array}{c} 3\\ 1\\ 0\\ 2\\ 1\\ 4\\ 1\\ 0\\ 0\\ 2\\ 4\\ 3\\ 1\\ 0\\ 3\\ 2\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 3\\ 1\\ 0\end{array}$	99 99 99 99 99 99 99 99 99 99 99 99 99	$\begin{array}{c} 23.8\\ 27.8\\ 25.1\\ 25.4\\ 26.3\\ 26.5\\ 25.7\\ 27.8\\ 20.9\\ 22.8\\ 20.9\\ 22.8\\ 22.5\\ 26.0\\ 24.2\\ 24.7\\ 24.1\\ 24.1\\ 25.0\\ 23.7\\ 24.5\\ 26.1\\ 23.7\\ 24.6\end{array}$
C.V. % LSD 5% # OF REPS		41 3 4	11 13 4	279 15 4	10 12 4	13.1 NS 4

Summary

Sulfonylurea herbicides alone or in mixture with other broadleaf control herbicide completely controlled kochia. Tribenuron + MCPA + NIS treatment caused severe injury to wheat, which probably was from nicosulfuron residual in the spray bottle. Other tribenuron treatments did not cause important injury to wheat. Dicamba gave greater kochia control when applied with 2,4-D than MCPA.

Wild buckwheat control in wheat, Fargo 1993. 'Marshall' hard red spring wheat was seeded May 3. Treatments were applied to 3- to 4-leaf wheat, 1- to 3-leaf wild buckwheat, less than 2-inch kochia, 2- to 4-leaf wild mustard and common lambsquarters on May 12 with 55 F, 40% RH, clear sky, and 5 mph wind. Treatments were applied with a bicycle wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replications.

		6/18					8/	′16	8/25
Treatment	Rate oz/A	Wheat inj	Wibu	<u>KOCZ</u>	<u>Wimu</u> %	<u>Colq</u>	<u>Wibu</u>	KOCZ	<u>Yield</u> bu/A
Triasulfuron+E-93-N Triasulfuron+X-77 (C Triasulfuron+E-93-N (C) Triasulfuron+Dica-dma+X-77 (D) Triasulfuron+Dica-dma+X-77 (D) Triasulfuron+Dica-GA+X-77 (D) Triasulfuron+2,4-Ddma+X-77 (D) Triasulfuron+2,4-Ddma+E-93-N Triasulfuron+2,4-Ddma+E-93-G Triasulfuron+2,4-Ddma+X-77 (D)	$\begin{array}{c}22+0.25\%\\ 0.22+1\%\\).29+0.25\%\\).43+0.25\%\\ 22+1+0.25\%\\ 22+2+0.25\%\\ .22+1+0.25\%\\ .22+4+0.25\%\\ 0.22+4+1\%\\ 0.22+4+1\%\\ 0.22+4+1\%\\ .22+8+0.25\%\\ .06+8+0.25\%\\ .06+8+0.25\%\\ .6\\ 8\\ 1.5+4\\ 1.5+4\\ 1.5+4\\ .5+4\\ .2\\ .6\\ 8\\ 0\\ \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	99 99 99 99 99 98 99 99 99 99 99 99 61 75 78 75 49 43 0	99 99 99 99 99 99 99 99 99 99 99 99 85 87 91 90 73 73 0	99 99 99 99 99 87 99 99 99 99 99 99 99 99 99 99 99 99	67 67 70 99 99 87 98 99 97 99 99 99 99 99 99 99 99 99 99 99	97 99 99 99 99 99 99 97 99 97 60 56 80 78 58 75 0	99 99 99 99 99 99 99 99 99 99 99 99 99	$\begin{array}{c} 31.9\\ 33.0\\ 33.0\\ 33.4\\ 31.7\\ 33.2\\ 31.4\\ 33.2\\ 31.0\\ 30.1\\ 32.5\\ 30.2\\ 31.5\\ 30.2\\ 31.5\\ 31.6\\ 32.7\\ 32.0\\ 27.4\\ 28.6\\ 21.6\end{array}$
C.V. % LSD 5% # OF REPS		872 NS 4	11 13 4	6 7 4	6 8 4	17 21 4	11 13 4	1 1 4	9.2 4.0 4

Summary Triasulfuron alone or in mixture with 2,4-D or dicamba gave complete control of wild buckwheat and kochia. Triasulfuron alone did not adequately (<75%) control common lambsquarters, regardless of adjuvant. Bromoxynil & MCPA-dma or GA (glycolamine) gave less than 85% wild buckwheat control. These herbicides are normally more effective on wild buckwheat. All herbicide treatments increased wheat grain yield.

Phenoxy and alternatives in wheat, Fargo 1993. 'Marshall' hard red spring wheat was seeded May 3. Treatments (2 leaf) were applied to 3- to 4-leaf wheat, 3-leaf wild buckwheat, 1- to 3-inch kochia on May 26 with 48 F, 70% RH, clear sky, and 5- to 7-mph wind. Treatments (3 leaf) were applied to 4 leaf wheat, 6-inch to-cotyledon wild mustard, 1.5-inch kochia and common lambsquarters on June 2 with 58 F, 45% RH, clear sky, and 5 mph wind. Treatments (5 leaf) were applied to 5 leaf wheat, cotyledon- to 12-inch wild mustard, 1.5-inch kochia, and 2- to 4-inch common lambsquarters on June 7 with 60 F, 100% RH, cloudy sky, and 10- to 20-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. Evaluations were on June 18 and August 16. Harvest for yield was on

Treatment	Rate	<u> </u>	/ <u>18</u> KOCZ	<u>8</u> Wibu	/16 K0C7	<u>8/25</u> Yield
	oz/A		/	<u> </u>		bu/A
Dicamba+MCPA(21f) Dicamba+MCPA(31f) Dicamba+MCPA(31f) Bromoxynil&MCPA(21f) Bromoxynil&MCPA(31f) Bromoxynil&MCPA(41f) Bromoxynil(21f) Bromoxynil(31f) Bromoxynil(41f) 2,4-D(21f) 2,4-D(31f) ^a 2,4-D(31f) ^a MCPA(21f) ^a MCPA(31f) ^a Dicamba(21f) ^a Dicamba(31f) Dicamba(41f) Untreated	1.25+4 1.25+4 1.25+4 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8	93 95 86 98 88 99 88 51 92 99 98 90 96 97 88 58 71 48 0	95 97 78 98 89 88 98 86 89 84 91 63 73 84 63 73 84 91 70 0	68 86 55 91 79 86 94 71 81 33 55 50 16 10 26 90 96 89 0	95 96 97	27.7 28.2 23.8 32.7 25.9 23.9 29.6 26.3 26.2 23.4 25.3 25.0 26.0 22.1 21.4 21.2 23.9 21.4 11.1
C.V. % LSD 5% # OF REPS		8 9 4	12 14 4	23 20 4	12 13 4	21.6 7.5 4
d						

^a Treated with Curtail for canada thistle in replicate 3.

Summary

Weed stands were variable and certain areas of the experiment were infested with Canada thistle creating inconsistencies in the data. 2,4-D or MCPA did not give adequate wild buckwheat or kochia control, August 16. Dicamba or bromoxynil alone did not give adequate wild mustard control, but were effective when applied with MCPA. Thus, in order to control wild mustard, kochia, and wild buckwheat with one treatment MCPA and bromoxynil or dicamba were required. <u>F-8426 for weed control in wheat, Fargo 1993.</u> 'Marshall' hard red spring wheat was seeded on May 3. Treatments were applied to 5-leaf wheat, 0.5- to 3-inch kochia, 1- to 4-inch wild buckwheat. 1.5-inch common lambsquarters, and 2- to 3-leaf foxtail on June 9 with 80 F, 70% RH, and 10 mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Evaluations were on June 21 and August 19.

			ł	5/21	0.41.0
Treatment		Rate	Wheat inj	Kochia	<u>8/19</u> Kochia
	OZ/A				
F-8426(df) F-8426(df)+Sc F-8426(df)+2, F-8426(df)+2, F-8426(df)+2, F-8426(df)+bi F-8426(df)+Br F-8426(df)+2, F-8426(df)+2, F-8426(df)+2, 2,4-Ddma Bromoxynil 2,4-Ddma+Scoi	4-Ddma 4-Dbee camba-dma oomoxynil 4-Ddma+Scoil 4-Ddma+X-77	$\begin{array}{c} 0.37\\ 0.50\\ 0.25+0.12G\\ 0.37+4\\ 0.37+2\\ 0.37+1\\ 0.37+4\\ 0.25+2+0.12G\\ 0.25+2+0.25\%\\ 4\\ 4\\ 4+0.12G\\ 0\end{array}$	$ \begin{array}{c} 1 \\ 1 \\ 6 \\ 0 \\ 0 \\ 2 \\ 2 \\ 3 \\ 1 \\ 0 \\ 0 \\ 3 \\ 0 \end{array} $	99 99 99 99 99 99 99 99 51 98 82 0	99 90 99 99 99 99 99 94 99 20 99 60 20
Untreated C.V. % LSD 5% # OF REPS			126 3 4	12 15 4	14 25 2

Summary

F-8426 at all rates alone or in combination with other herbicides gave complete kochia control at the early evaluation. The second evaluation of kochia control was variable as only two replicates could be evaluated because of flooding. Wheat was not harvested for grain yield because of water damage. Scoil adjuvant increased 2,4-D amine control of kochia.

Foxtail control in wheat, Fargo 1993. 'Marshall' hard red spring wheat was seeded May 3. Treatments were applied to 5-leaf wheat, 0.5- to 3-inch was seeded May 3. Treatments were applied to 5-leaf wheat, 0.5- to 3-inch kochia, 1- to 4-inch wild buckwheat, 1.5-inch common lambsquarters, and 2- to 3-leaf foxtail on June 10 with 80 F, 70% RH, and 10 mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates.

		1/1-+	6/22		8	/19	9/8
<u>Treatment^a</u>	Rate	Wht inj	Fxt1	KOCZ	Fxt1	KOCZ	Wheat Yield
	oz/A			%			bu/A
Dakota Dakota Dakota+Dicamba-dma Dakota+Bromoxynil Dakota+Bromoxynil Dakota+Triasulfuron Dakota+Tribenuron Dakota+Tribenuron Dakota+Thif&Trib Tiller+Tribenuron Tiller+Thif&Trib Immb+Thif&Trib+Scoil Propanil-wdg+MCPA-ioe+Mor-act Propanil-wdg+24-Dbee+Mor-act Thif&Trib+Scoil Thif&Trib+E-93-N Untreated	5.9 8 5.9+1 5.9+4 8+4 8+0.21 8+0.13 8+0.22 6.6+0.13 6.6+0.22 5+.22+0.18G 17+4+0.18G 17+4+0.18G 0.22+0.18G 0.22+2% 0	$ \begin{array}{r} 6 \\ 4 \\ 10 \\ 6 \\ 0 \\ 5 \\ 5 \\ 5 \\ 2 \\ 6 \\ 11 \\ 5 \\ 0 \\ 0 \end{array} $	88 91 79 63 76 88 83 86 78 88 43 78 84 40 36 0	43 97 97 98 45 99 99 99 99 99 99 99 99 99 99 0	89 93 84 41 70 92 83 84 83 41 68 58 61 50 0	99 99	27.9 27.6 24.2 27.5 26.3 27.6 25.2 26.7 25.1 23.8 22.8 22.8 25.2 23.6 25.3 24.7 26.4
C.V. % LSD 5% # OF REPS		72 5 4	13 12 4	12 14 4	20 19 4	18 19 4	12.4 NS 4

^aDakota=fenoxaprop:MCPA (1:2.1), Tiller=fenoxaprop:2,4-D:MCPA (1:2:6.3); Data indicates that triasulfuron may not have been included.

Summary

,

Dakota control of green and yellow foxtail was antagonized by bromoxynil. All herbicide treatments containing sulfonylurea herbicides gave complete kochia control except triasulfuron. Triasulfuron gave kochia control in other experiments in the area. Wheat yield were variable because of head blight, so response to weed control was not detectable.

2.4-D plus surfactants in wheat, Fargo 1993. 'Marshall' hard red spring wheat was seeded May 3. Treatments were applied to 5-leaf wheat, 0.5- to 3-inch kochia, 2- to 6-leaf wild buckwheat, 1.5-inch common lambsquarters, and 2- to 3-leaf green and yellow foxtail on June 9 with 70 F, 70% RH, clear sky, and no wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Evaluations of reps 1 and 2 were on June 22 reps 2 and 3 on June 28 22, reps 2 and 3 on June 28.

Data	KOCZ	
Treatment <u>Rate inj</u>	0/	Wimu
oz/A	%	
2.4-Dbee 4 0 2.4-Ddma 4+0.25% 0 2.4-Ddma+IgepalC0630 4+0.25% 1 2.4-Ddma+IgepalC0887 4+0.25% 1 2.4-Ddma+IgepalC0887 4+0.25% 0 2.4-Ddma+SilwettL77 4+0.25% 0 2.4-Ddma+Scoil 4+0.25% 0 2.4-Ddma+Scoil 4+0.25% 0 2.4-Ddma+CaCo-amineC23 4+0.25% 0 2.4-Ddma+ExpS3 0 0 0 0 0 C.V. % 308 NS LSD 5% 4 4	44 53 61 54 50 52 65 61 80 0 29 22 4	99 99 99 99 99 99 99 99 0 0 0

Summary

Weed densities were sparse making evaluation variable. Late evaluation was not taken because the area was flooded for a long period. 2,4-D phytotoxicity to kochia was not influenced by adjuvants, except for ExpS3 which enhanced phytotoxicity. Conditions were moist at treatment which may have reduced any response to adjuvants.

<u>2,4-D plus surfactants in wheat Exp 2, Fargo 1993</u>. 'Marshall' hard red spring wheat was seeded May 3. Treatments were applied to 5-leaf wheat and 0.5- to 3-inch kochia on June 10 with 80 F, 70% RH, wet soil, and 10- to 15-mph wind. Treatments were applied with a bicycle wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates.

Treatment	Rate	Kochia
		<u> </u>
2,4-Ddma 2,4-Ddma+RHODAPEX CO-436 (58) 2,4-Ddma+DOWFAX 2A1 (45) 2,4-Ddma+GAFAC RM-710 (100) 2,4-Ddma+ALPHASTEP ML-40 (100) 2,4-Ddma+ARMEEN L-15 (100) 2,4-Ddma+ETHOMEEN C/20 (100) 2,4-Ddma+ARQUAD 2C-75 (75) 2,4-Ddma+ARQUAD B-100 (100) 2,4-Ddma+PLURONIC L-64 (100) 2,4-Ddma+PLURONIC 10-R5 (100) 2,4-Ddma+AGRIMUL PG2067 (70) 2,4-Ddma+ALFONICS 810-60 (100) 2,4-Ddma+ALFONICS 810-80 (100) 2,4-Dioe Untreated LSD 5% # of REPS	$\begin{array}{c} 4\\ 4+0.25\%$	58 75 78 74 76 85 84 82 84 75 78 82 80 85 82 78 77 0 7 4

Summary

Isooctyl ester formulation of 2,4-D and 2,4-D dimethylamine with addition of surfactants gave greater kochia control than with 2,4-D dma alone. Kochia control with 2,4-D dma was generally enhanced more with cationic surfactants (ARMEEN L-15, ETHOMEEN C/20, ARQUAD 2C-75, and ARQUAD B-100) than with anionic surfactants (RHODAPEX CO-436, DOWFAX 2A1, and GAFAC RM-710). Nonionic surfactant enhancement of 2,4-D dma differed among chemistries. Kochia control with 2,4-D dma with addition of cationic surfactants was generally greater than with 2,4-D isooctyl ester. EXP S3 provided similar 2,4-D enhancement as the cationic surfactants.

2.4-D and MCPA formulations, Fargo 1993. 'Marshall' hard red spring wheat was seeded May 3. Treatments were applied to 5-leaf wheat, 0.5-to 3-inch kochia, 2- to 6-leaf wild buckwheat, 1.5-inch common lambsquarters, and 2- to 3-leaf green and yellow foxtail on June 9 with 70 F, 70% RH, clear sky, and no wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates.

		6,	/26
Treatment	Rate	KOCZ	Wibu
	oz/A	/	0
2,4-Dbee 2,4-D6E(WE) 2,4-Ddma 2,4-DSG(LI) 2,4-DSG-PBI 2,4-Ddma+X-77 2,4-DSG(LI)+X-77 2,4-DSG-PBI+X-77 MCPA-dma MCPA-SG(LI) MCPA-SG-PBI Dica-dma Bromoxynil Untreated	4 4 4 4 4 4 4 4 4 0 25% 4 4 0	58 63 53 25 40 50 45 45 48 15 15 92 93 0	53 53 20 25 40 30 33 38 45 25 15 85 98 0
C.V. % LSD 5% # OF REPS		20 19 2	38 33 2

Summary

None of the herbicides injured wheat (data not presented). Weed density was sparse and only occurred in two replicates. Late season evaluation or yield were not taken because of flood damage. 2,4-D amine formulations, dry or liquid, gave similar weed control. The dry MCPA formulations were less effective than liquid MCPA-dma formulations for both kochia and wild buckwheat.

Propanil for foxtail control in wheat, Fargo 1993. (Marshall' hard red Propanil for foxtall control in wheat, Fargo 1993. Marshall hard red spring wheat was seeded on May 3. Treatments were applied to 5-leaf wheat, 0.5- to 3-inch kochia, 2- to 6-leaf wild buckwheat, 1.5-inch common lambsquarters, and 2- to 3-leaf foxtail spp. on June 9 with 70 F, 70% RH, clear sky, and no wind. Soil was moist at treatment. Treatments were applied with a hand held boom delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Evaluations were on June 28 and August 16 harvest for yield was on September 2.

		Wht	6/28	8	8.	/16	9/2
Treatment	Rate	inj	Fxt1	KOCZ	Fxt1	KOCZ	Yield
	oz/A			%			bu/A
Propanil-wdg+P0 Propanil-wdg+AG-98 Propanil-wdg Propanil-wdg+MCPA-ioe+P0 Propanil-wdg+MCPA-ioe Propanil-wdg+MCPA-ioe Propanil-wdg+MCPA-dma+P0 Propanil-wdg+MCPA-dma+AG-98 Propanil-wdg+MCPA-dma Propanil-wdg+MCPA-SG(LI)+P0 Propanil-wdg+MCPA-SG(LI)+AG-98 Propanil-wdg+MCPA-SG(LI) Propanil-wdg+2,4-Dbee+AG-98 Propanil-wdg+2,4-Dbee+AG-98 Tiller ^a Propanil-wdg+MCPA-ioe+Brox(2E) Untreated	$\begin{array}{c} 16+.12G\\ 16+0.25\%\\ 16\\ 16+4+.12G\\ 16+4+0.25\%\\ 16+4\\ 16+4+.12G\\ 16+4+0.25\%\\ 16+4\\ 16+4+.12G\\ 16+4+.25\%\\ 16+4+.25\%\\ 16+8+.25\%\\ 16+8+.25\%\\ 6.6\\ 16+4+0.5\\ 0\\ \end{array}$	1 4 3 6 5 5 5 4 3 6 6 5 8 4 4 6 0 75	82 81 83 89 94 91 93 88 92 88 90 89 95 91 95 89 0 89 0 89	76 89 78 94 87 95 85 97 88 85 90 77 96 85 59 99 0	83 77 79 85 90 90 88 73 89 85 79 83 76 69 90 88 0	51 93	29.9 27.1 27.3 26.8 28.4 28.7 26.7 26.7 26.8 25.8 28.2 25.5 27.4 27.1 26.0 30.2 28.8 24.8 24.8
# OF REPS		NS 4	9 4	16 4	13 4	14 4	NS 4

^aTiller=Fenoxaprop:2,4-D:MCPA (1:2:6.3).

Summary

Propanil applied with MCPA or 2,4-D gave or tended to give greater green and yellow foxtail control than propanil applied alone, at the early evaluation. Late season evaluation of foxtail control indicated similar trends to the early evaluation, except propanil with MCPA and 2,4-D amine and AG-98 tended to give less foxtail control than other propanil mixtures. Propanil with adjuvants gave similar kochia control to propanil with MCPA or 2,4-D regardless of fomulation or adjuvant. Wheat yield was not or 2,4-D regardless of fomulation or adjuvant. Wheat yield was not influenced by weed control because kochia and foxtail were not competitive with the vigorous wheat but yields were low because of head blight. propanil-wdg formulation was difficult to resuspend and some treatments may The not have the full rate.

Propanil for foxtail control in wheat Exp 2, Fargo 1993. 'Marshall' hard red spring wheat was seeded on May 14. Treatments were applied to 2.5-leaf wheat, 2-leaf foxtail spp, 0.5-inch kochia, and 2-inch wild mustard on June 10 with 80 F, 70% RH, and 10 to 15 mph wind. Treatments were applied with a hand held boom delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Evaluations were on June 27 and August 19.

			6	/27		8/19
Treatment	Rate	Wheat inj	<u>Fxt1</u>	<u>KOCZ</u>	<u>Wimu</u>	<u>Fxtl</u>
Propanil-wdg+P0 Propanil-wdg+AG-98 Propanil-wdg Propanil-wdg+MCPA-ioe+P0 Propanil-wdg+MCPA-ioe+AG-98 Propanil-wdg+MCPA-ioe Propanil-wdg+MCPA-dma+P0 Propanil-wdg+MCPA-dma Propanil-wdg+MCPA-dma Propanil-wdg+MCPA-SG(LI)+P0 Propanil-wdg+MCPA-SG(LI)+AG-98 Propanil-wdg+MCPA-SG(LI) Propanil-wdg+24-Dbee+AG-98 Propanil-wdg+24-Dbee+AG-98 Tiller ⁴ Propanil-wdg+MCPA-ioe+Brox(2E)	$\begin{array}{c} 16+.12G\\ 16+0.25\%\\ 16\\ 16+4+.12G\\ 16+4+0.25\%\\ 16+4\\ 16+4+.12G\\ 16+4+0.25\%\\ 16+4\\ 16+4+.12G\\ 16+4+0.25\%\\ 16+4+0.25\%\\ 16+8+.25\%\\ 16+8+.25\%\\ 16+8+.25\%\\ 6.6\\ 16+4+0.5\end{array}$	0 2 0 0 3 3 0 2 4 0 2 3 3 3	87 88 85 81 62 87 86 93 78 90 80 80 84 66 93 98 74	82 79 78 88 67 94 94 96 79 66 94 87 98 99 65 97	93 93 91 98 94 99 99 99 99 99 99 99 99 99 99	52 45 43 20 47 47 62 40 43 23 43 8 60 63 25
C.V. % LSD 5% # OF REPS		146 NS 3	11 14 3	22 30 3	4 6 3	42 27 3

^aTiller=Fenoxaprop:2,4-D:MCPA (1:2:6.3).

Summary

Propanil without MCPA or 2,4-D was generally as effective as when with MCPA or 2,4-D in controlling foxtail and kochia. MCPA or 2,4-D in mixture with propanil generally enhanced wild mustard control. The late evaluation indicated poor foxtail control with all treatments, indicating recovery from early injury or later emerged plants. The wheat was not competitive because of late seeding, excess water, or low fertility altering foxtail growth.

<u>Triasulfuron with adjuvants in wheat, Fargo 1993.</u> 'Marshall' hard red spring wheat was seeded May 3. Treatments were applied to 3- to 4-leaf wheat, 2- to 4-leaf wild mustard, and common lambsquarters, 1- to 3-leaf wild buckwheat, and less than 2-inch kochia on May 21 with 55 F, 40% RH, clear sky, and 5 mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. Evaluation was on June 18. Weed densities were wild buckwheat and kochia 3 plants/ft², wild mustard 1 plant/vd², and common lambsquarters 1 plants/ft², wild mustard 1 plant/yd², and common lambsquarters 1

				6/19		
Treatment	Rate oz/A	Wht 	<u>Wibu</u>	<u>KOCZ</u>	<u>Wimu</u>	Colq
Triasulfuron+X-77 Triasulfuron+X-77 Triasulfuron+E-93-N1 Triasulfuron+E-93-N1a Triasulfuron+Scoil Triasulfuron+Scoil Untreated	0.06+0.25% 0.12+0.25% 0.06+1% 0.12+1% 0.06+1% 0.12+1% 0	0 0 75 0 3 0	93 99 99 99 99 98 99 0	96 99 99 99 99 99 99 0	99 99 99 99 99 99 99 0	35 56 40 71 39 51 0
C.V. % LSD 5% # OF REPS		48 8 4	2 3 4	3 4 4	0 0 4	27 17 4

^aThe high injury indicates possible spray bottle nicosulfuron residue.

Summary The experiment was to evaluate adjuvants with triasulfuron, but wild buckwheat, kochia and wild mustard were completely controlled regardless of adjuvant. The triasulfuron at 0.12 oz/A + E-93-N1 was not included in the discussion as the wheat injury indicates spray bottle contamination, probably from nicosulfuron.

2.4-D or Dicamba with Penncozeb, Fargo 1993. 'Marshall' hard red spring wheat was seeded on May 4. Treatments were applied to 6- to 7-leaf wheat, 1- to 6-inch kochia, 1- to 8-inch flowering wild mustard, and 1- to 4-inch common lambsquarters on June 15 with 68 F. 80% RH, cloudy sky, and 10 mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Evaluation was on June 28.

Treatment	Rate oz/A	Wht inj 	KOCZ
2,4-Ddma 2,4-Ddma+Penncozeb 2,4-Dbee 2,4-Dbee+Penncozeb Dicamba Dicamba+Penncozeb Untreated	4 4+32 4 4+32 2 2+32 0	0 0 5 5 4 4 4 0	50 44 75 78 53 59 0
C.V. % LSD 5% # OF REPS		87 3 4	24 18 4

Summary

The moist conditions in 1993 gave a high potential for foliar diseases in wheat and inquiries about mixtures of fungicides with herbicides. Penncozeb applied with 2,4-D amine, 2,4-D ester, or dicamba-dma did not influence kochia control or wheat injury.

<u>HRSW variety screening to difenzoquat herbicide, Casselton and Prosper</u>. An experiment was conducted to evaluate difenzoquat herbicide on HRSW varieties. Wheat varities were seeded in the spring of 1993. Difenzoquat was applied at Prosper to 4 - 5-If wheat on June 1, 1993 with 55 F, 30% RH, 20% cloudy sky, and 3-5 mph wind and at Casselton to 4 - 5-If wheat on June 1, 1993 with 58F, 30% RH, 20% cloudy sky, and 3-5 mph wind. Treatments were applied to the entire plot area of 4 by 8 ft plots with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 40 psi through 8001 flat fan nozzles. The experiment was a randomized complete block design with four replicates/treatment.

HRSW									
Variety Rate		Tot	tal	Cass	<u>elton</u>	Pros	Prosper		
······································	lb/A	bu/A	lb/bu	bu/A	lb/bu	bu/A	lb/bu		
XW398	0	24	47	22	48	26	47		
XW398	1	27	47	25	47	30	47		
XW398	1.5	23	48	26	48	26	48		
ND671	0	37	53	36	54	38	53		
ND671	1	34	52	32	52	36	53		
ND671	1.5	33	52	32	50	34	53		
Marshall	0	24	47	25	48	23	46		
Marshall	1	23	48	22	48	23	48		
Marshall	1.5	24	48	25	49	23	48		
2371	0	26	48	24	47	28	48		
2371	1	23	47	22	47	23	47		
2371	1.5	25	46	23	45	26	47		
2375	0	32	52	30	51	35	54		
2375	1	29	50	26	49	33	52		
2375	1.5	32	51	28	49	36	53		
Norm	0	23	45	24	44	22	45		
Norm	1	24	46	24	46	23	45		
Norm	1.4	23	47	20	46	26	48		
Bergen	0	31	49	30	48	33	49		
Bergen	1	29	47	26	46	33	49		
Bergen	1.5	29	49	24	48	32	50		
Prospect	0	23	47	23	46	23	47		
Prospect	1	21	46	21	47	21	46		
Prospect	1.5	25	45	22	42	27	47		
Sharp	. 0	35	53	35	53	35	53		
Sharp	1	32	52	27	51	36	53		
Sharp	1.5	37	54	36	54	38	54		
Sonja	0	25	46	26	47	24	46		
Sonja	1	24	46	21	45	27	47		
Sonja	1.5	27	47	28	48	25	47		
Gus	0	24	48	20	46	27	49		
Gus	1	24	49	26	50	22	48		
Gus	1.5	23	48	19	48	27	49		
Grandin	0	24	47	25	47	24	48		
Grandin	1	23	48	22	47	24	48		
Grandin	1.5	21	48	19	47	22	49		
LSD (0.5)		2	6	2	6	2	6		

Visual injury ratings were not included because of the confounding effect of excessive rainfall that occurred after application. There were small differences within each variety by difenzoquat rate. Excellent growing conditions for small grains was probably a factor for limited effect and resulted in quick recovery.

Lanceleaf sage control in wheat, Minot. An experiment was conducted to evaluate lanceleaf sage control in wheat. 'Stoa' wheat was seeded in May 15, 1993. Herbicides were applied to 4.5 to 5.5-If wheat and cotyledon to 8-If tall (1.5 to 2 inch) lanceleaf sage on June 23, 1993 with 55 F, 75% RH, cloudy sky and no wind. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 40 psi through 8001 flat fan nozzles. The experiment was a randomized complete block design with four replicates/treatment.

		Wheat inj	Lanceleaf sage			
Treatment ^a	Rate	6/30	6/30	7/8	8/20	
Bromoxynil Bromoxynil + MCPA Bromoxynil + MCPA ACPA ioe 2,4-D ioe Dicamba (SGF) Dicamba (SGF) + MCPA ioe Clopyralid + 2,4-D Clopyralid + 2,4-D Harmony Extra + 2,4-D ioe Harmony Extra + 2,4-D ioe Express + 2,4-D ioe Express + 2,4-D ioe Express + 2,4-D ioe + Dicamba (SGF) Express + 2,4-D ioe + Dicamba (SGF)	lb/A	%		- % conti	rol	
Bromozynil	1	0	79	99	84	
	0.38	0	99	99	95	
	0.64	0	99	99	97	
MCPA ioe	0.5	0	81	71	71	
2.4-D ioe	0.5	0	57	20	23	
	0.25	8	16	20	28	
	0.25 + 0.38	10	60	63	68	
	0.6	0	23	24	76	
	0.3	0	6	33	33	
	0.3 oz + 0.25	0	63	74	74	
	0.3 oz + 0.38	0	63	54	59	
	0.1 oz + 0.25	0	42	11	28	
	0.13 oz + 0.38	0	45	34	30	
	0.1 oz+0.25+0.2	25 6	38	30	35	
	0.13 oz+0.38+0	.25 6	36	30	35	
Express + 2,4-D ioe + Manzate	0.13 oz+0.38+1	.5 0	39	43	33	
Harmony Extra + 2,4 D ioe + Manzate	0.3 oz+0.38+1.5	5 0	63	58	59	
Untreated		0	0	0	0	
LSD (0.05)		4	20	22	24	
CV		155	28	32	33	

^aBromoxynil + MCPA was applied as Bronate, dicamba was applied as Banvel SGF, clopyralid + 2,4-D was applied as Curtail.

Treatments that gave at least 83% lanceleaf sage control at the final evaluation was bromoxynil or bromoxynil + MCPA. However, MCPA ice at 0.5 lb/A was one of the most economical treatments that gave at least 70% control. Reduced ratings on some treatments may be due to others flushes that germinated after herbicide application.

<u>Competition experiment in corn, Casselton 1993</u>. 'Interstate 353' corn was seeded May 18. Treatment (spike) was applied to spike- to 2-leaf corn, less than 1.5 inch foxtail, less than 2 inch wild mustard, less the 0.5 inch kochia, and 1- to 3-inch cocklebur on June 7 with 60 F. 100% RH, cloudy sky, and 10- to 20- mph wind. Treatment (grass1-2in) was applied to 3-leaf corn, 1 inch foxtail, 0.5- to 2-inch kochia, cotyledon- to 2-inch wild mustard, and 1to 2-inch common lambsquarters on June 11 with 85 F, 40% RH, and 15 mph wind. Treatment (grass2-4in) was applied to V-3 corn and 1- to 4-inch foxtail on June 19 with 71 F, 45% RH, 3- to 7-mph wind and cloudy sky. Treatment (grass4-6in) was applied to 6- to 7-leaf corn and 5- to 6-leaf foxtail on June 30 with 70 F, 60% RH, and 3- to 5-mph wind. Bentazon + Scoil at a rate of 0.75 lb + 1.5 pt. was applied June 21 to control broadleaf weeds. Treatment (grass6-10in) was applied to V-4 (8- to 12-inch) corn and 5- to 6-leaf foxtail on July 12 with 70 F, 60% RH, 5 mph wind, and cloudy sky. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with 4 replicates.

Treatment	Rate oz/A	<u></u>
Pendimethalin+Cyan-DF(spike) Nicosulfuron+Scoil(grass1-2in) Nicosulfuron+Scoil(grass2-4in) Nicosulfuron+Scoil(grass4-6in) Nicosulfuron+Scoil(grass6-10in) Weed Free Weedy C.V. % LSD 5% # OF REPS	24+320.5+1%0.5+1%0.5+1%0.5+1%00	99 92 97 97 90 95 0 3 3

Summary The experiment was discontinued because of excess water. A11 herbicide treatments effectively controlled foxtail. However, both foxtail and corn were stressed from excess moisture.

Total POST weed control in corn, Casselton 1993. 'Interstate 353' corn was seeded May 18. Treatments were applie to 3- to 4-leaf corn. 1- to 3-inch fxtl spp., cotyledon- to 6-leaf wild mustard, 0.5- to 3-inch kochia and common lambsquarters and cotyledon to 6-leaf common cocklebur on June 15 with 70 F, 40% RH, 5- to 10-mph wind and partly cloudy sky. Treatment after the (/) was applied to 8- to 12-inch corn and 5- to 6-leaf foxtail on July 12 with 70 F, 60% RH, 5 mph wind, and cloudy sky. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 3.5 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replications.

			7/27	
Treatment	Rate	Fxt1	Сосо	KOCZ
CONTRACTOR CONTRACTOR OF CONTRACTOR OF CONTRACTOR	oz/A		- %	
Nicosulfuron+Scoil Nicosulfuron+Scoil Nicosulfuron+Scoil/Nicosulfuron+Scoil Nicosulfuron+Atrazine-DF+Scoil Nicosulfuron+Atrazine-DF+Mor-act Nicosulfuron+Atrazine-DF+X-77 Nicosulfuron+Atrazine-DF+E-93-N Nicosulfuron+Dicamba-dma+Scoil Nicosulfuron+Dicamba-dma+Mor-act Nicosulfuron+Dicamba-dma+X-77 Nicosulfuron+Dicamba-dma+X-77 Nicosulfuron+Dicamba-dma+E-93-N Nicosulfuron+2,4-Ddma+Scoil Nicosulfuron+2,4-Ddma+Mor-act	$\begin{array}{c} 0.5 \pm 0.18G\\ 0.25 \pm 0.18G\\ 0.25 \pm 0.18G\\ 0.25 \pm 0.18G\\ 0.25 \pm 6 \pm 0.18G\\ 0.25 \pm 2 \pm 0.18G\\ 0.25 \pm 4 \pm 0.18G\\ 0.25 \pm 4 \pm 0.18G\end{array}$	89 81 99 97 97 97 97 79 79 55 59 86 80	39 53 57 53 55 55 66 81 50 69 70 63	96 97 99 99 99 82 97 97 97 97 97 97 97 97
Nicosulfuron+2,4-Ddma+X-77 Nicosulfuron+2,4-Ddma+E-93-N Nicosulfuron+Bromoxynil+Scoil Nicosulfuron+Bromoxynil+Mor-act Nicosulfuron+Bromoxynil+X-77 Nicosulfuron+Bromoxynil+E-93-N Untreated	0.25+4+0.25% 0.25+4+0.18G 0.25+4+0.18G 0.25+4+0.18G 0.25+4+0.18G 0.25+4+0.25% 0.25+4+0.18G 0	43 55 83 71 70 65 0	50 44 76 77 75 61 0	85 89 80 84 92 82 0
C.V. % LSD 5% # OF REPS		15 15 4	28 23 4	13 16 4

Summary.

Foxtail (green and yellow) exceeded 90% when nicosulfuron was applied with atrazine at 6 oz/A regardless of adjuvant and as a split application. Common cockelbur control was variable and less than 85% with all treatments. Nicosulfuron control of kochia tended to be reduced by 2,4-D or bromoxynil with certain adjuvants. The experiment was flooded for several weeks which may have confounded the results.

<u>Weed control in corn from PPI herbicides, Casselton</u>. An experiment was conducted to evaluate weed control from existing and recently developed herbicides in corn. 'Interstate 353' corn was seeded May 18, 1993. Treatments were applied on May 17 with 69 F, 38% RH, 50% cloudy sky and 8 to 12 mph wind. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 17 gpa at 40 psi through 8002 flat fan nozzles. The experiment was a randomized complete block design with four replicates/treatment.

	••	y 12					
Treatment ^a	Rate	Fxtl	Wimu	KOCZ	Rrpw	Colq	Cocb
	lb/A	% control					
EPTC & Diclormid	4	80	33	43	99	73	8
EPTC & Diclormid	5	78	29	43	99	73	5
EPTC & Dichlormid +	3.35+	95	71	50	99	80	38
Acetochlor & Dichlormid	0.6						
EPTC & Dichlormid +	3.35+	95	51	70	99	93	20
Acetochlor & Dichlormid	0.8						
Acetochlor & Dichlormid	1.8	82	65	79	99	95	38
Acetochlor & Dichlormid + Cyanazine	1.8+1.5	88	94	87	99	97	74
Metolachlor	3	93	. 25	38	99	71	10
Metolachlor + Cyanazine	3+1.5	96	73	79	99	93	40
Alachlor	3	76	38	48	99	83	23
Alachlor + Cyanazine	3+1.5	76	91	80	99	96	41
Dimethenamid	1.5	92	69	70	99	91	33
Dimethenamid + Cyanazine	1.5+1.5	88	77	85	99	95	48
Flumetsulam & Metolachlor	2.16	89	99	99	99	99	79
Flumetsulam & Metolachlor	2.4	94	99	99	99	99	74
Flumetsulam & Metolachlor + Cyanazine	2.16+1.5	93	99	99	99	99	93
Flumetsulam & Metolachlor + Cyanazine	2.4+1.5	96	99	99	99	99	98
Flumetsulam & Clopyralid + Metolachlor	0.17+2.5	97	96	96	99	97	78
Flumetsulam & Clopyralid + Metolachlor	0.21+2.5	94	99	99	99	99	86
Flumetsulam & Clopyralid + Metolachlor	0.25+2.5	97	99	99	99	99	98
Untreated		0	0	0	0	0	0
C.V.%		13	18	15	0	13	14
LSD 5%		9	13	12	0	9	16

^aDichlormid = safener. Acetochlor & Dichlormid is a premix marketed by Zeneca as Surpass (label pending spring of 1994). Flumetsulam & Metolachlor is a premix marketed by DowElanco as Broadstrike + Dual (available spring of 1994).

Foxtail control from EPTC & safener, alachlor and acetochlor was lower than observed in previous years. An excessive amount of rainfall occurred in June. Rainfall may have leached the herbicides below the effective weed germination zone. However, metolachlor gave greater foxtail control than observed in other years of less precipitation. Greater foxtail control from metolachlor in conditions of abundant moisture shows the necessity of abundant moisture for adaquate foxtail control from metolachlor in Valley soils. Dimethenamid gave adaquate foxtail control under abundant moisture conditions. Usually, cyanazine with the choro-acetamide herbicide resulted in greater weed control than the choro-acetamide herbicide alone. Broadleaf weed control (except cocklebur) was adaquate at all flumetsulam rates tested. Only flumetsulam or flumetsulam + clopyralid provided adaquate cocklebur control.

Weed control in corn from PRE herbicides, Casselton. An experiment was conducted to evaluate weed control from existing and recently developed herbicides in corn. 'Interstate 353' corn was seeded May 17, 1993. Treatments were applied on May 19 with 53 F, 50% RH, 50% cloudy sky and 10 mph wind. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 17 gpa at 40 psi through 8002 flat fan nozzles. The experiment was a randomized complete block design with four replicates/treatment.

		July 12					
Treatment ^a	Rate	Fxtl	Wimu	KOCZ	Rrpw	Colq	Cocb
when plan when some some	lb/A			%	control		
Metolachlor	3	74	00	OF	74	74	
Metolachlor + Cyanazine	3+1.5	99	28 35	25 51	74	74	10
Alachlor	3	99	35 48	51 79	99	99	13
Alachlor + Cyanazine	3+1.5	99	40 99	79 99	99	99	23
Alachlor + MON-12000 & MON-13900	3+0.1	99	99 97	99 98	99 99	99	35
Acetochlor & Dichlormid	1.2	99	46	98 70		99	28
Acetochlor & Dichlormid	1.8	99 99	40 59	70	99	99	34
Acetochlor & Dichlormid	2.2	99	59	87	99 99	99	20
Acetochlor & Dichlormid + Cyanazine	1.2+1.5	99	92	99	99 99	99	16
Acetochlor & Dichlormid + Cyanazine	1.8+1.5	99	95	99	99 99	99 99	29
Acetochlor & Dichlormid + Dicamba	1.2+0.25	99	53	99	99 99	99 99	60
Acetochlor & Dichlormid + Dicamba	1.8+0.25	99	72	93	99		18
Acetochlor & MON 4660	1.2	99	48	95 75	99 99	99 99	35
Acetochlor & MON 4660	1.8	99	64	92	99	99 99	40 18
Acetochlor & MON 4660 + Cyanazine	1.2+1.5	99	99	97	99 99	99 99	24
Acetochlor & MON 4660 + Cyanazine	1.8+1.5	99	93	94	99	99	24 48
Aceto&MON 4660 + MON12000&MON13900	1.2+0.1	99	99	99	99	99	40 92
Aceto&MON 4660 + MON12000&MON13900	1.8+0.12	99	99	99	99	99	92
Dimethenamid	1.38	99	50	72	99	99	18
Dimethenamid	1.5	99	60	51	99	99	33
Dimethenamid + Cyanazine	1.38+1.5	99	91	90	99	99	35
Dimethenamid + Cyanazine	1.5+1.5	99	91	92	99	9 9	36
Flumetsulam & Metolachlor	2.16	99	99	86	99	99	80
Flumetsulam & Metolachlor	2.4	99	99	99	99	99	86
Flumetsulam & Metolachlor + Cyanazine	2.16+1.5	99	99	99	99	99	83
Flumetsulam & Metolachlor + Cyanazine	2.4+1.5	99	99	98	99	99	94
Flumetsulam & Clopyralid + Metolachlor	0.17+2.5	99	99	99	99	99	91
Flumetsulam & Clopyralid + Metolachlor	0.21+2.5	99	99	87	99	99	93
Flumetsulam & Clopyralid + Metolachlor	0.25+2.5	99	99	99	99	99	99
Untreated		0	0	0	0	0	0
C.V.%		. 0	18	15	9	9	24
_SD 5%		13	20	23	13	13	22

^aDichlormid, MON 4660 or MON 13900 = safener. Acetochlor & Dichlormid = premix marketed by Zeneca as Surpass (iabel pending spring of 1994). Acetochlor & MON 4660 = premix marketed by Monsanto as Harness Plus (label pending spring of 1994). Flumetsulam & Metolachlor = premix marketed by DowElanco as Broadstrike + Dual (available spring of 1994). MON 12000 + MON 13900 = premix by Monsanto (Battalion).

Foxtail control from chloro-acetamid herbicides (except metolachlor) was higher than observed in previous years. An excessive amount of rainfall occurred in June. Rainfall may have distributed the herbicides in the effective weed germination zone. Dimethenamid gave adaquate foxtail control under abundant moisture conditions. Usually, cyanazine with the choro-acetamide herbicide resulted in greater broadleaf weed control than the choro-acetamide herbicide alone. Common cocklebur control was adaquate with treatments containing flumetsuiam or MON 12000.

<u>Weed control in corn from POST herbicides, Casselton</u>. An experiment was conducted to evaluate weed control from nicosulfuron with various herbicides and commercial adjuvants. 'Interstate 353' corn was seeded May 17, 1993. The EPOST treatments were applied to V3 corn, 0.5-2.5" fxtl, 0.5-2" rrpw, 1-4" wimu, 0.5-3" KOCZ, 0.5-2" colq, and 1-4" cocb on June 12 with 71 F, 45% RH, 90% cloudy sky and 3 to 7 mph wind. POST treatments were applied to V3-V4 corn, 1-4" fxtl, 1-2" rrpw, 1-5" wimu, 1-3" KOCZ, 1-3" colq, and 1-5" cocb on June 19 with 72 F, 78% RH, partly cloudy sky and 6 mph wind. LPOST treatments were applied June 24. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 40 psi through 8001 flat fan nozzles. The experiment was a randomized complete block design with four reps/treatment.

Treatment ^a				July 12					Aug 6		
meatment	Rate	Fxtl	Wimu	KOCZ	Colq	Cocb	Fxtl		KOCZ	Colq	Cocb
	oz/A					% cc	ontrol				
Nice / Dimether and the Mich											
Nico+Dimethenamid+NIS*	0.25+11	94	99	92	87	50	92	99	99	99	47
Nico+Dimethenamid+Scoil*	0.25+11	99	99	99	99	82	99	99	99	99	55
Nico+Dimeth+Dica+NIS*	0.25+11	98	99	99	99	99	97	99	99	99	99
Nico+Dimeth+Dica+Scoil*	0.25+11	99	99	99	99	99	99	99	99	99	99
Flumichlorac + PO (POST)	0.42	48	45	81	99	86	30	99	99	99	70
Flumichlorac + Scoil (POST)	0.42	54	79	69	99	99	48	99	99	99	95
Nico + Flmc + PO (POST)	0.25+0.42	98	99	91	97	84	73	99	99	99	92
Nico + Flmc + PO (POST)	0.25+0.42	96	99	92	97	93	75	99	99	99	92 87
Nico + Flmc + Scoil (POST)	0.25+0.42	94	99	97	95	70	73	99	99	99	80
Nico + Flmc + Scoil (POST)	0.25+0.63	99	99	97	99	80	78	99	99	99	81
Nico + Atra + Scoil (POST)	0.25+6	99	99	99	99	80	99	99	99	99	70
Nico+Flmc+Atra+Scoil (PÓST)	0.25+0.42+6	99	99	99	99	94	99	99	99	99	92
Nico + Brmx + Scoil (POST)	0.25+4	86	99	99	99	97	70	99	99	99	92
Nico+Brmx(Gel)+Scoil (POŚT)	0.25+4	90	99	99	99	98	73	99	99	99	
Nico+Brmx+Atra+Scoil (POST)	0.25+4+6	99	99	99	99	97	97	99	99	99	92
Nicosulfuron + NIS (POST)	0.25	63	99	50	55	43	63	99	99 95	99 94	96
Nico + Preference (POST)	0.25	59	99	47	53	39	68	99	92		30
Nicosulfuron + PO (POST)	0.25	79	99	81	77	40	73	99		89	21
Nicosulfuron + Scoil (POST)	0.25	97	99	96	94	71	86	99	99 97	93	28
Nicosulfuron + CL4769 (POST)	0.25	84	99	87	87	33	80	99		99	38
Nicosulfuron + CL7769 (POST)	0.25	94	99	92	91	35	85		99	99	38
Nicosulfuron + NIS (LPOST)	0.5	48	99	60	71	30	55	99	99	99	41
Nico + Preference (LPOST)	0.5	48	99	53	55	20		99	99	99	19
Nicosulfuron + PO (LPOST)	0.5	65	99	82	69	35	54	99	99	99	20
Nicosulfuron + Scoil (LPOST)	0.5	92	99	87	81		68	99	99	99	31
Nicosulfuron+CL4769 (LPOST)	0.5	85	99	84	75	60 53	84	99	99	99	35
Nicosulfuron+CL7769 (LPOST)	0.5	89	99	88	79		81	99	99	99	35
Metribuzin+2,4-D dma (POST)	1.5+5.33	54	99	94	79 99	62 99	88	99	99	99	42
Metribuzin+2,4-D iso (POST)	1.5+1.5	60	99	99			56	99	99	99	92
Metribuzin + Dicamba (POST)	1.5+4	70	99	99	99	99	55	99	99	99	94
Metribuzin + Brmx (POST)	1.5+4	69	99	99	98	95	55	99	99	99	96
Metribuzin + Brmx (POSTDIR)	2+4	28	99	99	99	96	61	99	99	99	95
Untreated	- · · ·	20	0	0	99	94	71	99	99	99	97
C.V.%		11	8	-	0	0	0	0	0	0	0
LSD 5%		8	o 7	10	9	17	9	0	2	3	18
		0	/	8	7	14	8	0	3	4	15

 a_* = All treatments with dimethenamid applied at EPOST. NIS = X-77 and Preference applied at 0.25% v/v, PO = petroleum oil with 17% emulsifier applied at 1.5 pt/A; Scoil, CL4769, and CL7769 = methylated vegetable oils (MVO) applied at 1.5 pt/A; dma = dimethylamine = Savage; ioe = isooctyl ester = Salvo.

No corn injury and complete redroot pigweed control was observed with all treatments. Formulants in Frontier herbicide (dimethenamid) appear to enhance nicosulfuron activity similar to MVO adjuvants. Flumichlorac provided good to excellent control of wimu, kochia, rrpw, colq, and cocb. No nicosulfuron/Flumichlorac antagonism on weed control was observed. Scoil appeared to enhance Flumichlorac activity on wild mustard and cocklebur control but reduced kochia control at the 7/12/93 evaluation. Excellent control of all broadleaf weeds was observed at the 8/6/93 evaluation. Excess rains and flooding may have impacted weed ratings. Nicosulfuron + atrazine + Scoil was the most efficacous and economical treatment in this study with neglible risk of residue in 1994.

Weed control in corn, Carrington. An experiment was conducted to evaluate weed control in corn from soil and POST applied herbicides. 'AgriPro 082' corn was seeded and Eradicane was applied on May 12, 1993. PRE treatments were applied on May 13 with 63 F. POST treatments were applied to V3 corn, 2-3" fxtl, 1-4" wimu, 2" rrpw, 2" prpw, 3" colq, 1-3" ruth, 2-3" KOCZ, 2" wibw, and 3-4" wipm on June 17 with 61 F, 56% RH, light overcast skies and 14 mph wind. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 17 gpa at 40 psi through 8002 flat fan nozzles for soil applied treatments and 8.5 gpa at 40 psi through 8001 flat fan nozzles for POST treatments. The experiment was a randomized complete block design with four reps/treatment.

						J	ulv 28				
AND MERIA ADDAR MERIALI PLAN		Crop									
Treatment ^a	Rate	Inj	Fxtl	Wimu	Rrpw	Prpw	Colq	Ruth	KOCZ	Wibw	Wipm
	oz/A					% c	ontrol				
EPTC & Dichlormid (PPI)	4	0	99	63	87	90	98	60	80	80	98
Alachlor (PRE)	2.5	0	90	45	93	68	33	64	58	34	30
Alachlor + Cyanazine (PRE)	2.5+1.5	0	99	96	84	70	68	74	79	70	60
Dimethenamid (PRE)	1.38	0	89	56	73	51	18	60	15	19	33
Dimethenamid (PRE)	1.5	0	94	68	63	60	51	28	35	15	44
Dimethenamid + Cyanazine (PRE)	1.38+1.5	0	96	94	61	56	51	74	36	43	40
Dimethenamid + Cyanazine (PRE)	1.5+1.5	0	95	98	64	51	56	54	51	76	45
Acetochlor & Dichlormid (PFIE)	1.2	1.3	91	58	85	59	45	60	28	18	31
Acetochlor & Dichlormid (PFIE)	1.8	0	92	97	94	82	56	62	55	51	40
Aceto. & Dichlor + Cyan. (PRE)	1.2+1.5	0	97	89	85	79	54	63	55	54	54
Aceto. & Dichlor + Cyan (PRE)	1.8+1.5	0.8	92	99	90	81	65	75	77	69	63
Acetochlor & MON 4660 (PRE)	1.2	0	86	57	85	45	15	18	38	25	15
Aceto & MON 4660 (PRE)	1.8	0	90	71	87	72	41	46	45	50	30
Aceto & MON 4660 + Cyan (PRE)	1.2+1.5	0	92	95	64	64	36	50	50	54	45
Aceto & MON 4660 + Cyan (PRE)	1.8+1.5	0	95	87	80	68	53	61	49	64	50
Flumetsulam & Metolachlor (PRE)	2.16	5.8	95	99	99	98	85	89	93	69	58
Flumetsulam & Metolachlor (PRE)	2.4	2.0	97	99	99	96	89	92	95	82	80
Flumet&Metol + Cyanazine (PRE)	2.16+1.5	1.3	96	97	99	94	80	85	92	81	71
Flumet&Metol + Cyanazine (PRE)	2.4+1.5	2.0	98	94	99	96	88	97	92	94	86
Flumet&Clopyralid + Metol (PRE)	0.21+2.5	4.0	98	99	99	98	92	94	96	92	64
Flumet&Clopyralid + Metol (PRE)	0.25+2.5	3.8	99	99	99	97	89	97	93	87	80
Nico + Dimethen + Dica (POST)	0.25+11.25	2.5	93	99	99	98	98	98	99	98	95
Nico + Atrazine + Scoil (POST)	0.25+6+1.5pt	0.8	99	99	99	99	91	94	93	85	98
Metribuzin + 2,4-D dma (POST)	1.5+5.33	5.0	65	99	97	95	97	95	76	90	61
Metribuzin + 2,4-D iso (POST)	1.5+1.5	6.3	70	99	99	92	99	98	78	80	68
Untreated		0	0	0	0	0	0	0	0	0	0
C.V.%		15	7	17	18	21	22	23	37	30	40
LSD 5%		2.9	8	12	12	13	9	14	18	15	17

^aDichlormid and MON 4660 = safeners. Acetochlor & dichlormid is a premix by Zeneca available as Surpass in spring 1994 (registration pending); acetochlor & MON 4660 is a premix by Monsanto available as Harness Plus in spring of 1994 (registration pending); dma = dimethylamine = Savage; ioe = isooctyl ester = Salvo.

Precipitation occurred soon after application which provided greater herbicide activity from soil applied herbicides than observed in previous years. Grass control was generally excellent from all chloro-acetamid herbicides with or without cyanazine. However, broadleaf control was variable. Flumetsulam generally provided excellent control of all broadleaf weeds. Flumetsulam has no activity on grasses, so the amount of foxtail and wild proso millet control observed resulted from metolachlor. Formulants in Frontier herbicide (dimethenamid) appear to enhance nicosulfuron. Nicosulfuron + atrazine + Scoil is the most efficacous and economical treatment in this study with neglible risk of carryover for crop rotation the following year.

Bentazon + Thifensulfuron in soybeans. Prosper 1993. 'McCall' soybeans were seeded May 17. Treatments were applied to first- to second-trifoliolate soybeans. 2- to 6-inch kochia and wild mustard, 4- to 10-leaf common lambsquarters. 2- to 4-leaf redroot pigweed, and 3 to 4 leaf foxtail on June 18 with 70 F. 35% RH. mostly cloudy sky, and 10 mph wind. Split treatments (/) were applied to second trifoliolate soybeans and 4- to 5-leaf foxtail on June 21 with 85 F. 50% RH, clear sky, and 5- to 7-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Evaluations were July 3 and August 10.

			7,	/3				8/10	
Treatment	Rate	Sobe	KOCZ	Colq	Yeft	Rrpw	Fxt1	KOCZ	Colg
	oz/A								
<pre>Bent+Thif+28N+X-77/Seth(plus)+DASH-HC 12+</pre>	.03+2.5%+.25%/2.25+.06G	38	95	99	94	92	85	74	81
Bent+Thif+28N+X-77/Seth(plus)	12+.03+2.5%+.25%/2.9	44	93	97	99	92	87	68	71
Bent+Thif+Seth(plus)+DASH-HC	12+.025+2.25+.06G	34	88	88	94	84	84	71	70
Bent+Thif+Seth(plus)+DASH-HC+28N 12	2+.025+2.25+.06G+2.5%	33	87	88	89	81	71	74	75
Bentazon+Thif/Seth(plus)+DASH-HC	12+.032/2.25+.06G	16	68	80	98	95	94	45	56
Bentazon+Thif/Seth(plus)+DASH-HC+28N 12	2+.032/2.25+0.6G+2.5%	20	55	70	99	90	97	35	49
<pre>Bentazon+Thif+Sethoxydim(plus)</pre>	12+.025+3	55	92	96	95	95	71	75	78
Bentazon+Thif+Sethoxydim(plus)+28N	12+.025+3+2.5%	62	99	98	93	98	46	86	94
Bentazon+Thif/Sethoxydim(plus)	12+.032/3	15	55	82	99	93	97	31	43
Bentazon+Thif/Sethoxydim(plus)+28N	12+.032/3+2.5%	16	73	84	99	89	98	34	45
Untreated	0	0	0	0	0	0	0	0	0
						U	U	U	U
C.V.%		24	11	8	4	8	12	15	20
LSD 5%		10	11	10	5	9	13	12	18
# OF REPS		4	4	4	4	4	4	4	4
		т	т	-1	4	4	4	4	4

Summary

Bentazon + thifensulfuron injured soybeans severly when applied with the sethoxydim Plus formulation with or without 28% liquid nitrogen fertilizer. The addition of DASH-HC adjuvant to the bentazon + thifensulfuron + sethoxydim Plus reduced injury to soybeans. Soybeans recovered from injury before the second evaluation. Sethoxydim phytotoxicity to foxtail was antagonized by bentazon + thifensulfuron regardless of adjuvants, but was greatest in the presence of 28% liquid nitrogen fertilizer. Bentazon + thifensulfuron applied without a surfactant gave less than 60% kochia or common lambsquarters control. The greatest kochia and common lambsquarters control from bentazon + thifensulfuron occurred when applied with sethoxydim Plus + 28% liquiud nitrogen fertilizer. This treatment was the most antagonistic to foxtail control. <u>Imazethapyr with adjuvants in soybeans, Casselton 1993.</u> 'McCall' soybeans were seeded May 17. Treatments were applied to 1st trifoliolate soybeans, 2- to 3-leaf foxtail, cotyledon- to 6-leaf wild mustard and coclebur, 0.5- to 3-inch kochia and common lambsquarters, and 0.5- to 1-inch redroot pigweed on June 15 with 70 F, 40% RH, partly cloudy sky, and 15 mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. Weed densities wer foxtail $50/ft^2$, wild mustard $1/ft^2$, common cockelbur were small and may have emerged after treatment.

Summary

Environmental conditions were extremely wet which may have reduced the response to various adjuvants. In general the oil adjuvants were more effective than the surfactants and the inclusion of 28% N with oils did not increase imazethapyr phytotoxicity to weeds. However, 28% N with surfactants generally enhanced phytotoxicity. None of the treatments injured soybean (data not included).

<u>Soluble Boron plus acifluorfen and bentazon in soybeans, Prosper 1993.</u> 'McCall' soybeans were seeded May 17. The foxtail infestation was sparse so no herbicides were applied for grass weed control. Treatments were applied to first to second trifoliolate soybeans, 2- to 6-inch kochia, 4-to 6-leaf wild mustard, 4- to 10-leaf common lambsquarters, 2- to 4-leaf redroot pigweed, 3to 4-leaf foxtail on June 18 with 70 F, 35% RH, mostly cloudy sky, and 10 mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with 4 replicates. Evaluations were on June 22 and August 10.

Treatment	Data	Caba	6/22			8/10	
	<u>Rate</u> oz/A	<u></u>	KOCZ	<u> </u>	<u>Fxt1</u> - % -	<u>KUCZ</u>	Colq
Bentazon&Acif+Boron Bentazon&Acif+Boron+28N Bentazon&Acif+Boron+Mor-act	$15+2.5\% \\ 15+0.25G \\ .5+2.5\%+0.25G \\ 15+4 \\ 15+4+2.5\% \\ 15+4+0.25G \\ .5+4+.25\%+0.25G \\ .3+15+2.5\% \\ .3+15+4 \\ .3+15+4+2.5\% \\ .15+1\% \\ .0 \\ 0$	14 16 40 10 18 20 26 46 40 56 20 16 0	40 73 86 44 75 75 93 85 95 56 55 0	19 26 21 24 31 28 85 89 91 21 25 0	0 0 0 0 81 82 80 25 38 0	70 94 92 77 82 89 91 48 53 50 72 89 0	96 99 92 92 96 99 65 65 63 90 96 0
C.V. % LSD 5% # OF REPS		18 6 4	12 11 4	16 9 4	17 8 2	14 21 2	6 10 2

Summary

Boron only reduced bentazon + acifluorfen toxicity to soybeans when applied with Mor-act + 28% liquid nitrogen fertilizer. Bentazon + acifluorfen were most injurious to soybeans when applied with sethoxydim formulated with an adjuvant. Soybeans recovered from injury within several weeks after treatment. Early kochia control ratings did not relate to late season ratings. Treatments giving good early kochia control usually gave poor late season control. Early ratings probably reflect contact injury preventing translocation and plant death. Further, the treatments giving early contact injury to kochia also were most injurious to soybeans. Thus, injury to soybeans does not necessarily indicate effective weed control, but could indicate ineffective control. Two replicates were only evaluated for late season weed control because of late season foxtial emergence which dominated the area. <u>Weed control in soybean from PPI herbicides, Casselton</u>. An experiment was conducted to evaluate weed control from existing and recently developed herbicides in soybean. 'McCall' corn was seeded May 17, 1993. Treatments were applied on May 17 with 68 F, 38% RH, 50% cloudy sky and 6 to 11 mph wind. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 17 gpa at 40 psi through 8002 flat fan nozzles. The experiment was a randomized complete block design with four replicates/treatment.

	A DE COMPANY - SULAR D	1	Aug 6							
Treatment ^a	Rate	Fxtl	Wimu	KOCZ	Rrpw	Colq	Cocb			
	lb/A			%	control					
Frifluralin	0.75	86	53	74	95	92	20			
Alachlor	3	70	43	58	89	80	20			
/letolachlor	3	78	50	55	91	74	23			
Dimethenamid	1.38	74	64	38	95	81	20			
Dimethenamid	1.5	93	73	50	95	76	24			
-6285	0.38	65	74	99	99	99	77			
-6285 + Trifluralin	0.75	86	77	97	98	97	92			
lumetsulam & Trifluralin	0.69	92	99	99	99	99	86			
Flumetsulam & Trifluralin	0.8	95	99	99	99	99	99			
Flumetsulam & Trifluralin	0.91	95	99	99	99	99	99			
Flumetsulam & Metolachlor	1.92	55	99	99	99	99	68			
Flumetsulam & Metolachlor	2.16	68	99	99	99	99	73			
Flumetsulam & Metolachlor	2.4	74	99	99	99	99	79			
Untreated		0	0	0	0	0	0			
D.V.%		.7	18	9	3	7	21			
LSD 5%		7	15	9	4	9	19			

^aFlumetsulam & trifluralin is a premix marketed by DowElanco as Broadstrike + Treflan. Flumetsulam & metolachlor is a premix marketed by DowElanco as Broadstrike + Dual.

No crop injury was observed with any treatments. An excessive amount of rainfall occurred in June. Rainfall may have leached some herbicides below the effective weed germination zone. Dimethenamid gave adaquate foxtail control under abundant moisture conditions and gave equal or greater foxtail and broadleaf control than alachlor or metolachlor. Except for wild mustard, F-6285 gave excellent broadleaf weed control. Trifluralin increased foxtail and common cocklebur control with F-6285 and gave excellent control of all weeds. Flumetsulam has no activity on grasses so the grass control observed results from the grass tank-mix pardner. Flumetsulam & trifluralin gave greater common cocklebur control than flumetsulam & metolachlor. Only flumetsulam or F-6285 plus trifluralin provided adaquate cocklebur control.

<u>Weed control in soybean from PRE herbicides, Casselton</u>. An experiment was conducted to evaluate weed control from existing and recently developed herbicides in soybean. 'McCall' corn was seeded May 17, 1993. Treatments were applied on May 19 with 53 F, 50% RH, 50% cloudy sky and 10 to 20 mph wind. Treatments were applied with a shield to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 17 gpa at 40 psi through 8002 flat fan nozzles. The experiment was a randomized complete block design with four replicates/treatment.

-					Aug 6			
Treatment ^a	Rate	Fxtl	Wimu	KOCZ	Rrpw	Colq	Cocb	Fibw
	lb/A				% contr	ol		
Alachlor	3	99	76	79	94	93	13	0
Metolachlor	3	84	65	56	91	83	23	0
Dimethenamid	1.38	93	68	56	95	79	28	Ő
Dimethenamid	1.5	99	78	68	97	83	31	0
Acetochlor + Dichlormid	1.2	99	88	86	99	97	48	0
Acetochlor + Dichlormid	1.8	99	88	93	99	98	60	Ő
F-6285	0.38	91	99	99	99	99	99	93
F-6285 + Trifluralin	0.38+0.75	98	99	99	99	99	99	93
Flumetsulam & Metolachlor	1.92	83	99	99	99	99	99	40
Flumetsulam & Metolachlor	2.16	94	99	99	99	99	99	54
Flumetsulam & Metolachlor	2.4	99	99	99	99	99	99	78
Untreated		0	0	0	0	0	0	0
C.V.%		3	6	5	1	4	12	19
LSD 5%		4	7	5	2	5	10	8

^aFlumetsulam + metolachlor is a premix marketed by DowElanco as Broadstrike + Dual (available spring of 1994).

No crop injury was observed with any treatments. An excessive amount of rainfall occurred in June. Weed control was greater than observed in years with less precipitation. Possibly the rainfall moved the herbicides into the effective weed germination zone. Except metolachlor, all chloro-acetamide herbicides gave excellent foxtail control and labeled weeds. F-6285 gave excellent control of all weeds including field bindweed. Flumetsulam gave excellent control of all weeds and suppression of field bindweed. Flumetsulam has no activity on grasses so the grass control observed results from the grass tank-mix pardner.

Weed control in soybean from POST herbicides, Casselton. An experiment was conducted to evaluate weed control from imazethapyr with adjuvants and tank-mix combinations in soybean. 'McCall' soybean was seeded May 17, 1993. POST treatments were applied to V1 soybean, 0.5-4" fxtl, 0.5-3" KOCZ, 0.5-2" colq, 0.5-2" rrpw, 1-5" wimu, and 1-5" cocb on June 18 with 71 F, 55% RH, 100% cloudy sky and 3 to 5 mph wind. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 40 psi through 8001 flat fan nozzles. The experiment was a randomized complete block design with four replicates/treatment.

		August 6							
Treatment ^a	Rate	Inj	Fxtl	Wimu	KOCZ	Rrpw	Colq	Cocb	
Distance and the second second	oz/A				% contr	ol			
Imazethapyr + NIS	0.5	0	85	99	99	99	68	74	
Imazethapyr + Preference	0.5	0	81	99	99	99	59	62	
mazethapyr + PO	0.5	0	90	99	99	99	80	82	
mazethapyr + Sun-It II	0.5	0	96	99	99	99	90	95	
mazethapyr + CL4769	0.5	0	92	99	99	99	90	91	
mazethapyr + CL7769	0.5	0	93	99	99	99	92	91	
Imazethapyr + NIS	1	0	64	99	99	99	50	69	
Imazethapyr + Preference	1	0	64	99	99	99	51	65	
mazethapyr + PO	1	1	71	99	99	99	65	68	
mazethapyr + Sun-It II	1	0	80	99	99	99	80	75	
mazethapyr + CL4769	1	• 0	76	99	99	99	81	80	
mazethapyr + CL7769	1	0	78	99	99	99	83	83	
Imazethapyr + Lactofen + NIS + UAN	0.5+1	4	73	99	99	99	60	88	
mazethapyr + Lactofen + NIS + UAN	0.5+1.5	5	81	99	99	99	75	85	
mazethapyr + Lactofen + NIS + UAN	0.5+2	7	81	99	99	99	81	86	
mazethapyr + Lactofen + Sun-It II + UAN	0.5+1+0.5qt	7	94	99	99	99	89	94	
mazethapyr + Lactofen + Sun-It II + UAN	0.5+1.5+0.5qt	7	96	99	99	99	89	94	
Imazethapyr + Lactofen + Sun-It II + UAN	0.5+2+0.5 qt	4	95	99	99	99	93	95	
Flumichlorac + PO + UAN	0.42	5	5	55	99	99	99	91	
Flumichlorac + Sun-It II + UAN	0.42	8	38	79	99	99	99	92	
Imazethapyr + Flumichlorac + PO + UAN	0.5+0.42	.7	92	99	99	99	96	94	
Imazethapyr + Flumic + Sun-It II + UAN	0.5+0.42	13	96	99	99	99	98	98	
Untreated		0	0	0	0	0	0	0	
CV.		16	6	4	0	0	8	7	
LSD (0.05)		3	6	6	0	0	9	9	

^aNIS and Preference was applied at 0.25% v/v, PO was applied at 1 qt/A; Sun-It II, CL4769, CL7769 are methylated vegetable oil (MVO) adjuvants and were applied at 1 qt/A, UAN 28% was applied at 2 qt/A.

All treatments gave complete control of wild mustard, kochia, and redroot pigweeed. Adjuvant enhancement of imazethapyr was MVO>PO>NIS. Sun-It II enhanced imazethapyr control of foxtail, common lambsquarters and common cocklebur control over NIS. Sun-It II enhanced flumichlorac control of wild mustard over PO. Imazethapyr plus flumichlorac provided excellent control of all weeds present in study.

<u>Weed control in soybean, Mooreton, ND</u>. An experiment was conducted to evaluate weed control from PPI, PRE and POST herbicides in soybean. 'Dawson' soybean was seeded May 13, 1993. PPI and PRE treatments were applied with shield on May 13, 1993 with 86 F, 67% RH, parly cloudy sky and 10-15 mph wind. PPI treatments were incorporated with a roto-tiller at a depth of 2 inches. POST treatments were applied with shield to unifoliate to V1 soybean, 1-4" rrpw, 1-3" colq, and 4" wheat and barley on June 15 with 68 F, 35% RH, 30% cloudy sky and 5 to 10 mph wind. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 17 gpa at 40 psi through 8002 flat fan nozzles for PPI and PRE treatments and 8.5 gpa at 40 psi through 8001 flat fan nozzles for POST treatments. The experiment was a randomized complete block design with four replicates/treatment.

			July 26	
Treatment ^a	Rate	Inj	Vol Grains	Rrpw
	oz/A		% control	
Alachlor (PPI)	3 lb	0	95	98
Metolachlor (PPI)	3 lb	0	97	75
Dimethenamid (PPI)	1.38 lb	9	90	87
Dimethenamid (PPI)	1.5 lb	13	93	95
Flumetsulam + Trifluralin (PPI)	0.69 lb	5	70	99
Flumetsulam + Trifluralin (PPI)	0.91 lb	4	85	99
Flumetsulam + Metolachlor (PPI)	1.92 lb	3	81	99
Flumetsulam + Metolachlor (PPI)	2.4 lb	0	92	99
Alachlor (PRE)	3 lb	0	23	99
Metolachlor (PRE)	3 lb	0	0	80
Dimethenamid (PRE)	1.38 lb	0	41	97
Dimethenamid (PRE)	1.5 lb	0	49	99
Acetochlor + Dichlormid (PRE)	1.2 lb	0	83	99
Acetochlor + Dichlormid (PRE)	1.8 lb	0	85	99
Flumetsulam + Metolachlor (PRE)	1.92 lb	0	21	99
Flumetsulam + Metolachlor (PRE)	2.4 lb	0	29	99
Imazethapyr + NIS	0.5	0	73	99
Imazethapyr + PO	0.5	0	99	99
Imazethapyr + Sun-It II	0.5	0	99	99
Imazethapyr + Lactofen + Sun-It II	0.5+1	21	99	99
Imazethapyr + Lactofen + Sun-It II	0.5+2	28	99	99
Imazethapyr + Flumichlorac + Sun-It II	0.5+0.42	12	99	99
Clethodim + Imazethapyr + Scoil	1+0.5	8	99	99
Clethodim + Imazethapyr + Scoil	1.5+0.5	0	99	99
Clethodim + Imazethapyr + Scoil	2+0.5	3	99	99
Fusion + Imazethapyr + Scoil	2.66+0.5	0	99	99
Fusion + Galaxy + Scoil	2.66+14.7	31	99	99
Fusion + Thifensulfuron + Scoil	2.66+0.64	13	99	99
Fusion + Fomesafen + Scoil	2.66+2	17	99	99
Untreated		0	0	0
LSD (0.05)		9	5	6
CV		31	10	11

^aNIS was applied at 0.25% v/v, PO, Sun-It II, and Scoil were applied at 1.5 pt/A.

An excessivie amount of rainfall occurred after application which affected crop injury ratings. Chloro-acetamide herbicides applied PPI provided adaquate control of wheat and barley. Acetochlor appplied PRE provided at least 85% wheat and barley control. With the exception of metolachlor, most all treatments gave adaquate control of redroot pigweed.

Weed control in dry bean, Minto, ND. An experiment was conducted to evaluate weed control from PPI, PRE and POST herbicides in Pinto type dry edible bean. 'Othello' dry bean was seeded May 5, 1993. PPI and PRE treatments were applied May 5, 1993 with 79 F, 42% RH, parly cloudy sky and 1 mph wind. PPI treatments were incorporated with a roto-tiller at a depth of 2 inches. POST treatments were applied to unifoliate to V2 dry bean, 0.5-2.5" fxtl, 2" to bolt wimu, 0.5-3" rrpw, 1-3" prpw, 0.5-3" colq, 1-5" wibw, 1-3" coma, 1-4" pesw, 0.5-3" seedling Cath, 2-4" seedling pest, 1-5" KOCZ, 1-6" biennial wormwood, rosette-bolt fipc, 0.5-1" spsp, 0.5" tall to 3" rosette shpu, 1-1.5" girw, 2-4" mael, 1-3" nfcf, rosette dock and 1-3" swcl on June 18 with 71 F, 55% RH, 100% cloudy sky and 3 to 5 mph wind. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 17 gpa at 40 psi through 8002 flat fan nozzles for PPI and PRE treatments and 8.5 gpa at 40 psi through 8001 flat fan nozzles for POST treatments. The experiment was a randomized complete block design with four replicates/treatment.

Treatment ^a				July 26			- Internet
	Rate	Fxtl	Wimu	Rrpw	Colq	Wibw	Coma
	oz/A			% contr	ol		
Alachlor (PPI)	3 lb	94	37	99	94	38	•
Metolachlor (PPI)	3 lb	92	57	99 98	94 96	30 18	0
Dimethenamid (PPI)	1.38 lb	99	30	90 99	90	58	0
Dimethenamid (PPI)	1.5 lb	99	66	99	99	61	0
Flumetsulam + Trifluralin (PPI)	0.69 lb	99	99	99	99	99	99
Flumetsulam + Trifluralin (PPI)	0.91 lb	99	99	99	99	99	99
Flumetsulam + Metolachlor (PPI)	1.92 lb	99	99	99	99	99 75	99
Flumetsulam + Metolachlor (PPI)	2.4 lb	99	99	99	99	83	99
Alachlor (PRE)	3 lb	55	95 0	32	23	0	99
Metolachlor (PRE)	3 lb	61	0	18	13	0	0
Dimethenamid (PRE)	1.38 lb	49	0	50	0	0	0
Dimethenamid (PRE)	1.5 lb	61	0	81	10	0	0
Acetochlor + Dichlormid (PRE)	1.2 lb	78	0	79	61	29	0
Acetochlor + Dichlormid (PRE)	1.8 lb	81	0	86	85	51	0
Flumetsulam + Metolachior (PRE)	1.92 lb	86	96	97	99	56	51
Flumetsulam + Metolachlor (PRE)	2.4 lb	84	99	98	96	56	63
Imazethapyr + NIS	0.5	74	86	81	50	46	0
Imazethapyr + PO	0.5	86	96	97	76	44	0
Imazethapyr + Sun-It II	0.5	89	99	99	84	70	0
Imazethapyr + Lactofen + Sun-It II	0.5+1	90	99	99	86	80	45
Imazethapyr + Lactofen + Sun-It II	0.5+2	96	99	99	86	91	48
Imazethapyr + Flumichlorac + Sun-It II	0.5+0.42	97	98	99	97	95	99
Clethodim + Imazethapyr + Scoil	1+0.5	86	99	94	75	75	0
Clethodim + Imazethapyr + Scoil	1.5+0.5	83	99	94	86	78	0
Clethodim + Imazethapyr + Scoil	2+0.5	86	99	94	70	78	0
Fusion + Imazethapyr + Scoi	2.66+0.5	86	99	97	80	78	0
Fusion + Galaxy + Scoil	2.66+14.7	91	99	87	89	40	0
Fusion + Thifensulfuron + Scoil	2.66+0.64	83	99	99	85	81	0
Fusion + Fomesafen + Scoil	2.66+2	99	99	99	88	80	75
Jntreated		0	0	0	0	0	0
_SD (0.05)		9	14	8	8	8	5
CV		16	24	15	16	15	14

^aNIS was applied at 0.25% v/v, PO, Sun-It II, and Scoil were applied at 1.5 pt/A.

The following weeds were noted in PPI and PRE plots of alachlor, metolachlor and dimethenamide: KOCZ, coma, mael, pesw, fipc, coma, biww, swcl, nfcf, prpw, cath, pest, cocb. The following weeds were noted in PPI and PRE plots of acetochlor: swcl, fipc, cocb, coma, cath, biww, pest. Flumetsulam + trifluralin gave complete control of all weeds. Variable common cocklebur control was attributed to flushes emerging after POST herbicides were applied. Most POST treatments controlled pesw, seedling cath and pest, biww, fipc, spsp, shpu, girw, mael, and dock.

<u>Weed control in Flax, Farqo 1993.</u> 'Omega' flax was seeded May 5. Treatments were applied to 4-inch flax, 2- to 8-leaf wild mustard, 2- to 3lead foxtail spp, 2-inch common lambsquarters, 1- to 4-leaf redroot pigweed, 3-inch wild buckwheat, and 0.5- to 4-inch kochia on June 10 with 80 F, 70% RH, clear sky, and 10 mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with 4 replicates. Evaluation was on June 21 and harvest for yield October 6. Weed densities were foxtail 10/ft², wild mustard 1- to 10-/yd², kochia 1/ft; colq 3/ft².

Treatment	Rate oz/A	Flax inj F	6/21 xtl Wimu	-	Colq	10/6 Flax yield
MCPA-ioe+Thif+Seth+Scoil	4+3+0.18G 8+3+0.18G 4+3+0.18G 4+0.06+3+0.18G 4+0.06+3+0.18G 4+0.06+3+0.18G 3+0.18G 4+0.06+0.18G 4+0.06+0.18G 8+4+3+0.18G 0	23 19 66 69 75 0 78 78 74	99 91 98 98 99 93 97 99 99 99 99 99 99 99 92 9 5 99 15 99 99 98 0 0	16 92 89 99 99 99 3 99 99 79 0	99 99 97 99 99 99 0 99 99 99 99 99	bu/A 3.1 8.3 6.3 6.6 6.4 3.8 1.7 1.6 3.4 5.9 .7
C.V. % LSD 5% # OF REPS	•		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 8 4	2 2 4	66.0 4.1 4

Summary

All herbicide treatments were injurious to flax, probably because of the moist warm environment at treatment. Excellent wild mustard, kochia, and common lambsquarters control occurred when thifensulfuron was applied with MCPA and bromoxynil. However, thifensulfuron severely injured flax. The flax recovered from injury and yield was similar to that of flax treated with bromoxynil and MCPA plus sethoxydim which also gave effective weed control. The thifensulfuron treated flax was delayed in maturity by several weeks. Plots with excessive weeds were not harvested accounting for the high coefficient of variability. Injury to flax from thifensulfuron was similar when applied with or without sethoxydim. The severe injury from thifensulfuron probably occurred because of the wet conditions as such injury had not occurred in past 3 years with experiments at many locations. Sunflower response to nicosulfuron residue, Grand Forks. An experiment was conducted to determine response of sunflower planted in 1993 in soil treated with nicosulfuron in 1992. Nicosulfuron was applied to V3 to V5 corn on July 16, 1992. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 40 psi through 8001 flat fan nozzles. 'Interstate 3311' sunflower was seeded May 26, 1993 in the same plots previously treated with nicosulfuron. The experiment was a randomized complete block design with four replicates/treatment. The randomization was forced to allow for convenience in seeding half of the study with potato and the other half with sunflower.

Treatment	Rate	Sunflower seed weight (g)
	oz/A	Average of 10 heads
Nicosulfuron + NIS Nicosulfuron + NIS Untreated LSD (0.05) CV	0.5 + 0.25% 1 + 0.25%	41 33 36 NS 133

Visual injury ratings were not included because of the confounding effect of excessive rainfall and poor stand due to variability in the planter. When visual evaluation was taken (July 14, 1993) there were no symptoms of stunting, yellowing, termination of the main growing point or any other negative expression that would have been developed as a result of exposure to nicosulfuron residues in the soil. In addition, there were no apparent differences in plant height or evidences of stand loss that could not be explained by excessive moisture or planter problems (no dead sunflower carcasses). Yield was taken by harvesting 10 sunflower heads per plot, drying the heads for 5 days, threshing and weighing the seed. Approximately, 40% of the study was negatively affected by excess rainfall. Heads from sunflower that were affected were visable smaller than those from plants not effected by rainfall. It is the opinion of the authors that negative effects on sunflower did not result from nicosulfuron residue and the large varibility was due to excessive rainfall.
<u>Effect of imazethapyr on establishing alfalfa</u>. An experiment was conducted to evaluate weed control and effect of imazethapyr on alfalfa establishment. 'Vernal' alfalfa was seeded at 10 lb/A on April 29, 1992 and and at 12 lb/A on April 23, 1993. POST herbicides were applied on May 27, 1992 to 0.5-2 inch alfalfa with 69 F, 58% RH, partly cloudy sky and 3 mph wind and on May 20, 1993 to 0.5-2 inch (late unifoliate to 1st trifoliate) alfalfa with 66 F, 60% RH, partly cloudy sky and 8 mph wind. Treatments were applied to the center 16 ft of 20 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 40 psi through 8001 flat fan nozzles. The experiment had a randomized complete block design with four replicates.

- *		To	Total forage yield			Alfalfa y	ield	Alfalfa	Weeds
Treatment	Rate	7-24	9-4	Total	7-24	9-4	Total	density	7-24
	oz/A			tons [DM/A			Pls/ft ²	%
Imazethapyr	0.5	1.51	1.41	2.92	1.47	1.41	2.88	35	3
Imazethapyr	0.75	1.50	1.46	2.96	1.50	1.46	2.96	31	0
mazethapyr	1	1.38	1.42	2.80	1.36	1.42	2.78	35	1
mep+Brox	0.5+3	1.27	1.33	2.60	1.24	1.33	2.57	34	3
mep+Seth	0.5+1.28	1.50	1.53	3.03	1.46	1.54	3.00	35	3
Untreated		1.78	1.28	3.06	1.29	1.28	2.57	35	28
LSD (0.05)		0.25	0.16	0.31	0.21	0.16	0.30	NS	7

Table 1. Forage yield of Vernal alfalfa and weeds treated with imazethapyr, Fargo, 1992.

*All herbicide treatments contained Sun-It II and 28% UAN applied at 1.5 pt/A and 1 qt/A, respectively.

Table 2. Forage yield of Vernal alfalfa and weeds treated with imazethapyr, Fargo, 1993.

	_Total	forage y	<u>/ield</u>	Alfalfa		1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
Rate	7-27	8-27	Total	density		
oz/A	t	ons DM/	A	Plants/ft ²		
0.5	1.57	0.98	2.55	43		
0.75	1.62	0.93	2.55			
1	1.58	0.95	2.53			
0.5+3	1.64	1.02	2.66			
0.5+1.28	1.64	1.06	2.70	42		
	2.21	0.83	3.04	42		
	0.15	0.09	0.17	NS		
	0.5 0.75 1 0.5+3	Rate 7-27 oz/A tr 0.5 1.57 0.75 1.62 1 1.58 0.5+3 1.64 0.5+1.28 1.64	Rate 7-27 8-27 oz/A tons DM/ 0.5 1.57 0.98 0.75 1.62 0.93 1 1.58 0.95 0.5+3 1.64 1.02 0.5+1.28 1.64 1.06 2.21 0.83	oz/A tons DM/A 0.5 1.57 0.98 2.55 0.75 1.62 0.93 2.55 1 1.58 0.95 2.53 0.5+3 1.64 1.02 2.66 0.5+1.28 1.64 1.06 2.70 2.21 0.83 3.04	Rate 7-27 8-27 Total density oz/A tons DM/A Plants/ft ² 0.5 1.57 0.98 2.55 43 0.75 1.62 0.93 2.55 41 1 1.58 0.95 2.53 44 0.5+3 1.64 1.02 2.66 39 0.5+1.28 1.64 1.06 2.70 42 2.21 0.83 3.04 42	Rate 7-27 8-27 Total density oz/A tons DM/A Plants/ft ² 0.5 1.57 0.98 2.55 43 0.75 1.62 0.93 2.55 41 1 1.58 0.95 2.53 44 0.5+3 1.64 1.02 2.66 39 0.5+1.28 1.64 1.06 2.70 42

All herbicide treatments contained Sun-It II and 28% UAN applied at 1.5 pt/A and 1 qt/A, respectively.

All treatments gave greater than 97% control of green foxtail, yellow foxtail, waterpod, field pennycress, sheperd'spurse, redroot pigweed, prostrate pigweed, kochia, wild mustard, curly dock, common mallow, common sunflower, common ragweed, perennial sowthistle, common lambsquarters, common purslane, and prickly lettuce. All treatments gave poor control of Canada thistle, field bindweed and had little activity on common milkweed. No crop injury was observed at evaluation. Imazethapyr applied alone had little effect on establishing alfalfa. Imazethapyr plus bromoxynil had lower harvest measurments in 1992 but not in 1993, probably due to the cooler weather in 1993. Plots that received treatments of imazethapyr plus sethoxydim usually had greater forage yield. More biomass was harvested in the untreated plots than treated plots at the first harvest but treated plots had greater biomass than untreated plots at the second harvest. This was due to heavy weed infestations in the untreated area and the limited weed regrowth after the first cutting. Alfalfa stand was similar with all treatments. <u>Control of established alfalfa, Fargo</u>. An experiment was conducted to evaluate alfalfa control from normally recommended herbicides. 'Vernal' alfalfa was seeded April 29, 1992. Herbicides were applied to 8 inch tall alflafa on May 11, 1993 with 78 F, 61% RH, partly cloudy sky and 5 to 7 mph wind. Treatments were applied to an 16 ft wide area the length of 20 by 20 ft plots with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 40 psi through 8001 flat fan nozzles. The experiment was a randomized complete block design with four replicates/treatment.

		A	Alfalfa control				
Treatment ^a	Rate	6/2	6/21	8/31			
	lb/A	(% control				
Glyphosate + NIS + AMS	0.75	63	68	48			
2,4-D ioe	1	81	96	64			
2,4-D ioe	2	88	98	84			
Glyphosate + 2,4-D ^b + AMS	1	88	95	68			
Dicamba	0.25	55	79	11			
Dicamba + Glyphosate ^C + AMS	0.65	83	92	39			
Dicamba + Glyphosate ^c + AMS Clopyralid + 2,4-D ^d	1.2	80	98	94			
Untreated		0	0	0			
LSD (0.05)		10	8	11			
CV		11	7	13			

^aNIS was applied at 0.25% v/v. ^bApplied in the premix form of Landmaster BW at the equivalent rate of 54 fl oz/A. ^cApplied in the premix form of Fallow Master at the equivalent rate of 3.25 pt/A. ^dApplied in the premix form of Curtail at the equivalent rate of 4 pt/A.

Treatments that gave at least 80% control in the 6/2 evaluation provided 90% or greater alfalfa control at the 6/21 evaluation. However, at the 8/31 evaluation 2,4-D at 2 lb/A and Curtail provided 84% control or greater.

<u>Surfactants and salts with Roundup, Fargo, 1993.</u> 'Newdak' oat, 'McCall' soybeans, and 'Siberian' foxtail millet were seeded in adjacent strips May 11. Treatments were applied to 5- to 6-leaf oats. 1st trifoliolate soybeans, and 4-leaf foxtail millet on June 19 with 65 F, 50% RH, cloudy sky, and 5 mph wind. Treatments were applied with a bicycle wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. Fargo city water was used as the spray carrier. The experiment was a randomized complete block design with four replicates.

Summary

Soil moisture was excessive at treatment and plant growth generally good. Conditions were positive for glyphosate as foxtail millet control was complete and not evaluated at the second rating. All adjuvants enhanced oats control from glyphosate (Roundup), except EOP which was an oil type adjuvant unintentionally included in the treatments. Oil adjuvants are known to reduce glyphosate phytotoxicity. Roundup control of oats varied from 60 to 90% depending upon the adjuvant. Adjuvants most effective with glyphosate for oats control were also most effective for soybean control. <u>Surfactants and salts with Roundup, Carrington 1993</u>. 'Grandin' hard red spring wheat, 'Sunup' proso millet, and 'Linton' flax were seeded in adjacent strips as bioassay species on May 21. Treatments were applied to 5-leaf wheat, 3- to 4-leaf proso millet, and 5- to 6-inch flax on June 28 with 58 F, 66% RH, clear sky, and 7 mph wind. Treatments were applied with a bicycle wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

			Contraction of the second	7/9	
Treatment		Rate	Prmi	Flax	Wht
Roundup+Acti	erence 00 etL-77 yBoosterS(Cenex) vator90	Rate oz/A 1 1+0.5% 1+0.5% 1+0.5% 1+0.5% 1+0.5% 1+0.5% 1+0.5% 1+0.5%	9 13 11 19 8 29 13 8	Flax - % - 10 20 20 19 15 19 11 23	13 29 34 31 16 46 26 43
Roundup+Acti Roundup+AD-1 Roundup+Acti Roundup+CAYU Roundup+CAYU Roundup+Cene Roundup+Disp Roundup+ExpS Roundup+E93- Untreated	00(Riverside) ve-it SE+R-11 exSAS atch 3	1+0.5% 1+0.5% 1+0.5% 1+0.5%+0.5% 1+2% 1+2% 1+2% 1+2% 1+2% 1+2% 0	10 3 11 46 69 40 45 67 1	15 3 11 58 73 43 60 78 3	15 20 26 66 80 72 71 83 1
C.V. % LSD 5% # OF REPS			39 13 4	39 16 4	24 14 4

Summary

Areas of the experiment were partly flooded making evaluation difficult and may have confounded the results. Roundup (glyphosate) gave generally less control of the species than occurred at Fargo. The ammonium salt type adjuvants (Cayuse, Cenex SAS, Dispatch, ExpS3, E93-G1) were generally more effective than the surfactant adjuvants. At the level of species control obtained surfactant differences were not detectable. The large increase from the ammonium adjuvants indicates that the Carrington station water maybe high in glyphosate antagonistic salts. <u>Surfactants and salts with Roundup, Minot 1993.</u> 'Excel' barley, 'Siberian' foxtail millet, and 'Linton' flax were seeded in adjacent strips as bioassay species on July 1. Treatments were applied to 5- to 6-leaf barley, 4 inch foxtail millet, and 3.5 leaf flax on August 5 with 60 F, 80% RH, 7 to 10 mph wind and partly cloudy sky. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to an area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates.

		(9/10
Treatment	Rate	Flax	Barley
	oz/A		%
Roundup Roundup+X-77 Roundup+R-11 Roundup+Preference Roundup+Li-700 Roundup+SilwetL-77 Roundup+SprayBoosterS(Cenex) Roundup+Activator90 Roundup+Active-it Roundup+Active-it Roundup+Active-it Roundup+Amway Roundup+CAYUSE+R-11 Roundup+CenexSAS Roundup+Dispatch Roundup+ExpS3 Roundup+Ey3-G1 Untreated C.V. % LSD 5% # OF REPS	$1 \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+2\% \\ 1+2\% \\ 1+2\% \\ 1+2\% \\ 0$	15 26 71 43 33 6 26 48 25 21 58 70 76 73 85 76 0 25 16 4	$50\\65\\82\\76\\68\\73\\73\\67\\68\\66\\76\\73\\95\\92\\93\\85\\0\\14\\14\\14\\4\\4$

Summary

All adjuvants enhanced glyphosate (Roundup) control of barley. Glyphosate phytotoxicity to flax varied greatly with the various adjuvants. Silwet L-77 was less effective than many other adjuvants for flax, but equally as effective as others for barley. Flax is generally considered a species difficult to wet and Silwet L-77 considered an excellent wetter. Thus, the flax response to Silwet L-77 is of special interest. Adjuvants containing ammonium salts (Cenex SAS, Dispatch, ExpS3, E93-G1) generally were most effective in the enhancement of phytotoxicity to barley, except Cayuse. Surfactant R-11 was more effective than the other surfactants in enhancement of glyphosate phytotoxicity to flax and tended to be more effective for barley. <u>Surfactants and salts with Roundup, Williston, 1993.</u> 'Otana' oats, 'Indian head' lentil beans, 'Dawn' proso millet were seeded in adjacent strips as bioassay species on May 25. Treatments were applied to 5 leaf oats, 4- to 5-leaf millet, and 3- to 4-inch tall lentils on June 30 with 73 F, 45% RH, partly cloudy sky, and 9 mph wind. Treatments were applied with a bicycle-wheel-type sprayer with a wind shield mounted on a G-Allis Chalmers tractor delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 24 ft plots. The experiment was a randomized complete block design with four replicates.

				7/7	
Treatment	Rate	Ruth	Grft		Lentils
	oz/A	-		%	
Roundup Roundup+X-77 Roundup+R-11 Roundup+Preference Roundup+Li-700 Roundup+SilwetL-77 Roundup+SprayBoosterS(Cenex) Roundup+Activator90 Roundup+Activator90 Roundup+Active-it Roundup+Active-it Roundup+Active-it Roundup+Active-it Roundup+CAYUSE+R-11 Roundup+CenexSAS Roundup+CenexSAS Roundup+Dispatch Roundup+Ey3-G1 Untreated	$1 \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+0.5\% \\ 1+2\% \\ 1+2\% \\ 1+2\% \\ 1+2\% \\ 0$	44 60 71 54 58 46 56 63 61 54 83 86 87 84 86 86 0	73 81 86 83 73 83 74 76 80 80 80 85 93 91 91 93 93 0	50 74 76 58 68 66 81 60 75 76 86 88 88 86 90 88 0	$\begin{array}{c} 40\\ 49\\ 63\\ 45\\ 40\\ 41\\ 43\\ 34\\ 42\\ 40\\ 51\\ 59\\ 44\\ 54\\ 63\\ 60\\ 0\end{array}$
C.V. % LSD 5% # OF REPS		20 18 4	7 8 4	14 14 4	28 18 4

Summary

Adjuvants generally enhanced glyphosate (Roundup) phytotoxicity to all species except lentiles. Phytotoxicity to lentiles was only enhanced by Cayuse, ExpS3, and E93-G1. Silwet L-77 did not enhance glyphosate phytotoxicity to Russian thistle, but enhanced phytotoxicity to oats and green foxtail. These results appear to relate to those from Minot where phytotoxicity to flax was not increased by Silwet L-77. Flax and Russian thistle both have small leaves considered hard to wet by spray. Silwet L-77 is considered to impart a low dynamic surfact tension to spray carriers that should increase spray retention by such plants. The salt type adjuvants were generally most effective for all species. <u>Sethoxydim with commercial adjuvants, Fargo 1993.</u> 'Newdak' oats, 'McCall' soybeans, and 'Siberian' foxtail millet were seeded in adjacent strips as bioassay species on May 11 ?. Treatments were applied to 5- to 6-leaf oats, 1st trifoliolate soybeans, 4-leaf foxtail millet, and 3- to 4-leaf foxtail on June 19 with 65 F, 50% RH, 5-mph wind, and cloudy sky. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

			7/14			/20
Treatment	Rate	Oat	Sobe	Fomi	Oat	Mil
Sethoxydim+DASH Sethoxydim+DASH Sethoxydim+DASH-HC ^a Sethoxydim+DASH-HC Sethoxydim+Scoil Sethoxydim+Scoil Sethoxydim+Methoil Sethoxydim+Methoil Sethoxydim+MSO Sethoxydim+MSO Sethoxydim+Dyn-amic Sethoxydim+Dyn-amic Sethoxydim+Dyn-amic Sethoxydim+MES-100 Sethoxydim+MES-100 Sethoxydim+ECO-GARDII Sethoxydim+ECO-GARDII Sethoxydim+ECO-GARDII Untreated C.V. % LSD 5% # OF REPS	Nate oz/A 1+0.18G 1+0.12G 0	86 80 41 70 62 69 74 58 49 45 69 66 78 74 74 74 73 0 17 15 4	0 0 0 3 0 5 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Point % 99 99 95 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 0 1 2 4 1	90 82 19 70 71 73 73 73 59 47 23 72 63 72 63 78 67 77 83 0 26 23 4	$ \begin{array}{c} 99\\ 99\\ 94\\ 98\\ 98\\ 99\\ 99\\ 99\\ 99\\ 99\\ 99\\ 99\\ 99$

^aThe negative response to DASH-HC volume indicates that it may not have been included in the treatment.

Summary

Foxtail millet was highly susceptable to sethoxydim with greater than 90% control regardless of adjuvant. Soybean was not injured by sethoxydim regardless of adjuvant. DASH-HC adjuvant was less effective at the high than low volume indicating a possible misapplication. DASH was or tended to be more effective than the methylated oils as an adjuvant with sethoxydim for oats control and was significantly more effective than MSO.

<u>Wheat response to clomazone plus safener, Farqo 1993</u>. The experiment was designed to test the efficacy of phorate insecticide applied in-furrow as a safener to protect wheat from clomazone injury. The experimental site had a conventionally tilled silty clay with pH 7.8 and 4% organic matter. On May 20 herbicides were applied using a bicycle wheel sprayer delivering 17 gal/A with 8002 nozzles and 40 psi. Air temperature was 55 F, RH was 70%, the wind was 3 to 7 mph, skies were sunny, and the soil surface was dry. All treatments were then incorporated with two passes (opposite directions) with a field cultivator. Marshall wheat was planted 1.5 inches deep on May 21 with two offset passes of a 22-inch-row planter resulting in 12 11inch rows per plot. Phorate at 1.2 ounces/1,000 ft of row was applied with the planter as a "modified in-furrow" or "T-band" application. Visual estimates of wheat injury were made June 24. All plots were sprayed June 28 with 0.75 lb/A bentazon plus 1 quart/A Scoil for broadleaf weed control. Grain yields were harvested Sept. 7 with a plot combine (four rows wide by 25 ft long). Plot size was 12 by 25 ft and the experiment was a randomized complete block design with four replications.

Treatment	Rate (1b/A)	Phorate applied	Wheat injury (%)	Grain <u>yield</u> (bu/A)
Clomazone(PPI) Clomazone(PPI) Clomazone(PPI) Clomazone(PPI) Clomazone(PPI) Clomazone(PPI) Clomazone(PPI) Clomazone+Trifluralin(PPI) Clomazone+Trifluralin(PPI) Clomazone+Trifluralin(PPI) Clomazone+Trifluralin(PPI) Clomazone+Trifluralin(PPI) Weedy check	0.375+0.75	No No No Yes Yes Yes Yes Yes Yes Yes No No	28 48 69 88 6 28 66 74 39 64 28 29 34 0	19 13 12 10 22 20 13 14 18 17 21 23 20 13
C.V. % LSD 5%			34 21	26 6

<u>Summary</u>. Phorate appeared to reduce wheat injury from clomazone at 0.25 and 0.375 lb/A, but not from higher clomazone rates. Even at the lower clomazone rates, however, phorate did not eliminate clomazone injury. Thifensulfuron plus synergists for foxtail control in wheat, Fargo 1993. 'Marshall' wheat was seeded May 12 at 90 lb/A in a conventionally tilled silty clay. Treatments were applied June 22 using a bicycle wheel sprayer delivering 8.5 gal/A with 8001 nozzles and 40 psi. At time of application, wheat was 6 to 8 inches tall and 5.5 leaf (including two tillers), yellow foxtail was 2 to 4 inches tall with 3 to 5 leaves, air temperature was 86 F, relative humidity was 60%, wind was 25 mph, skies were cloudy, and the soil was dry on the surface. The sprayer was shielded. Visual estimates of wheat injury were made July 2, and wheat injury, foxtail control, and wild mustard control were estimated July 20. The experiment was a randomized complete block design with four replications.

Treatment ^a	Rate (oz/A)	<u>Wheat</u> July 2	<u>injury</u> (%)	9 Yeft	<u>Wimu</u>
Thifensulfuron Thifensulfuron Thif+Mefluidide Thifensulfuron+Piperonyl butoxide Thifensulfuron+MGK-264 Thifensulfuron+Chlorpyrifos Thifensulfuron+Malathion Thifensulfuron+Paclobutrazole Mefluidide Piperonyl butoxide MGK-264 Chlorpyrifos Malathion Paclobutrazole	0.33 1.33 0.33+2 0.33+8 0.33+8 0.33+8 0.33+8 0.33+8 0.33+8 2 8 8 8 8 8 8 8 8	$\begin{array}{c} 0\\ 0\\ 27\\ 0\\ 0\\ 6\\ 14\\ 3\\ 32\\ 0\\ 0\\ 0\\ 0\\ 0\\ 3\\ 3\end{array}$	0 90 0 0 2 5 94 0 0 0 0 7	$\begin{array}{c} 0 \\ 0 \\ 41 \\ 15 \\ 6 \\ 15 \\ 37 \\ 21 \\ 13 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{r} 100\\ 100\\ 98\\ 96\\ 96\\ 100\\ 100\\ 100\\ 97\\ 0\\ $
C.V. % LSD 5%		70 6	26 5	72 14	4
All treatments were applied with 1	.5 pint/A	Scoil (met	hylated	seed oil	con-

All treatments were applied with 1.5 pint/A Scoil (methylated seed oil taining emulsifier; MGK-264 is an analogue of piperonyl butoxide.

Quinclorac plus adjuvants in wheat, Harbin, Heilongjiang Prov., China 1993. Wheat (Northeast Agricultural University 120) was seeded April 13 in rows 30 cm apart. Treatments were applied May 19 using a backpack sprayer delivering 8.5 gal/A with 8001 nozzles and 30 psi (pressure generated by a hand-pump lever). Conditions at time of treatment were: 72 F air temperature, 50% relative humidity, clear skies, wheat 3 to 4 leaf, common lambsquarters 2 to 4 leaf and 0.5 to 1.5 inch tall, willowleaf knotweed (Polygonum bungeanum) 2 to 3 leaf and 0.5 to 1.5 inch tall, barn-yardgrass 2 to 3 leaf and 1 to 1.5 inch tall, and yellow foxtail 2 to 3 leaf and 1 to 1.5 inch tall. Visual estimates of percentage weed control were taken June 3. Plot size was 10 by 27 ft and the experiment was a randomized complete block design with four replications.

Troatmontd		Wheat injury	Colq	Weed co Wlkw	ontrol Bygr	Yeft
<u>Treatment^d</u>	(oz/A)	<u></u>		(%)	<u> </u>	
Quinclorac Quinclorac+Activator 90 Quinclorac+Herbimax Quinclorac+Penetrator Plus Quinclorac+Dyne-Amic Quinclorac+Silowet L77 Quinclorac+Scoil Quinclorac+Scoil Quinclorac+Scoil Quinclorac+Scoil Qucl+Chlorsulfuron+Activator 90 Qucl+Chlorsulfuron+Scoil	4.3 4.3+0.5% 4.3+0.25G 4.3+1% 4.3+0.5% 4.3+0.5% 4.3+0.188G 5.7+0.188G 5.7+0.188G 5.7+0.17+0.5% 5.7+0.17+0.188G		18 25 31 26 28 28 68 44 49 99 98	0 2 4 2 3 8 10 7 8 8 7 87	50 79 77 84 80 87 95 94 77 95	38 65 68 72 71 87 87 87 83 64 84
C.V. % LSD 5%		0 NS	42 28	31 8	9 11	14 17
Ouinclorac was 75% DF by BASF;	chlorsulfuron wa	as 75% [)F by	DuPont.		

 $^{\rm b}G = gal/A$ (e.g. 0.25G = 0.25 gal/A or 1 qt/A).

<u>Summary</u>. Barnyardgrass was slightly more susceptible to quinclorac than was yellow foxtail. Overall, Scoil provided the greatest enhancement of weed control by quinclorac although Dyne-Amic and Silowet L77 appeared to enhance barnyardgrass control by quinclorac as well as Scoil. The addition of chlorsulfuron to quinclorac was required for high levels of common lambsquarter and willowleaf knotweed control.

<u>POST chlorimuron and imazethapyr in soybean, Harbin, Heilongjiang Prov., China 1993</u>. Soybeans were planted in rows spaced 27.6 inches apart and placed on ridges at the Northeast Agricultural University Experimental Station. Cultivation was done July 2. Treatments were applied June 5 under sunny skies, a 1 to 5 mph wind, 55% relative humidity, and 71 F air temperature using a backpack sprayer delivering 8.5 gal/A with 8001 nozzles and 25 psi pressure (generated by a hand-pump lever). Plant stages at time of treatment were: soybeans 1 small trifoliolate; barnyardgrass 3 to 5 leaf and 1 to 3 inches tall; common lambsquarters 6 to 8 leaf and 2 to 4 inches tall; willowleaf knotweed (<u>Polygonum bungeanum</u>) 4 to 6 leaf and 2 to 4 inches tall; field horsetail (<u>Equisetum arvense</u>) 4 to 7 inches tall. Visual estimates of percentage soybean injury and weed control were taken June 30. Plot size was 10 by 27 ft and the experiment was a randomized complete block with four replications.

Treatment ^a	p, b	Soybean		Weed c	ontrol	
	Rateb	injury	Bygr	Colq	WIKW	Hota
	(oz/A)			—(%)—		
Imazethapyr+Activator90+AMN Imazethapyr+Herbimax Imazethapyr+Scoil Imazethapyr+PenetratorPlus Imazethapyr+Dyne-Amic Imazethapyr+SilwetL77 Imazethapyr+Activator90 Imazethapyr+Activator90+AMN Imazethapyr+DWL Imazethapyr+Herbimax Imazethapyr+Herbimax Imazethapyr+Bio-Veg Imazethapyr+Bio-Veg Imazethapyr+PenetratorPlus Imazethapyr+PenetratorPlus Imazethapyr+Pyne-Amic Imazethapyr+LI-700 Imazethapyr+SilwetL77 Imazethapyr+SilwetL77 Imazethapyr+Quinclorac+Scoil Chlorimuron+Quinclorac+Scoil	$\begin{array}{c} 0.5{+}0.5\%{+}1.5\\ 0.5{+}0.25G\\ 0.5{+}0.19G\\ 0.5{+}1\%\\ 0.5{+}0.5\%\\ 0.5{+}0.5\%\\ 0.75{+}0.5\%\\ 0.75{+}0.5\%\\ 0.75{+}0.5\%{+}1.5\\ 0.75{+}0.25G\\ 0.75{+}0.25G\\ 0.75{+}0.25G\\ 0.75{+}0.25G\\ 0.75{+}0.25G\\ 0.75{+}0.5\%\\ 0.75{+}0.5\%\\ 0.75{+}0.5\%\\ 0.75{+}0.5\%\\ 0.5{+}0.5\%\\ 0.5{+}0.19G\\ 0.29{+}5.7{+}0.19G\\ 0.29{+}11.4{+}0.19G\end{array}$	5 1 24 12 8 9 5 8 3 17 4 4 4 4 5 3 15 11 74 81 87	70 45 72 61 27 50 74 63 79 76 63 58 73 58 73 58 91 98 97	18 19 28 30 21 18 21 28 31 28 33 42 41 43 16 33 23 89 91 93	71 50 85 73 46 23 34 69 86 44 58 64 85 48 55 63 93 94 95	2 23 3 0 2 1 5 2 0 3 4 2 0 5 0 3 25 28 34
C.V. % LSD 5%		33	22	32	21	94
LSD 1%		9 12	21 28	17 23	19 26	10 13
"Activator90 is a nonionic sur	factant; AMN = ar	and the second designed and th	nitrat			$\frac{13}{15a}$

Activatory is a nonronic surfactant; AMN = ammonium nitrate; Herbimax is a petroleum oil adjuvant containing 17% emulsifier; Scoil is a methylated soybean oil adjuvant containing emulsifier; SilwetL77 is a silicone-base adjuvant; imazethapyr is made by American Cyanamid, 5% SC containing adjuvant; DWL = dishwashing liquid; Bio-Veg = vegetable oil adjuvant containing 15% emulsifier; LI-700 is a nonionic surfactant; chlorimuron is Chinese-made, 20% $B^{\rm WP}$; quinclorac is Chinese-made, 50% WP. G = gal/A (0.19G = 1.5 pint/A; 0.25G = 1 quart/A). POST chlorimuron and imazethapyr in soybeans, 81378 Army Farm, Heilongjiang Prov., China 1993. Soybeans (93-292 cultivar developed by a state farm in Heilongjiang Province) were planted May 10 in 70-cm rows placed on ridges at the 81378 Army Farm. Cultivation was done on June 1 and July 16. Treatments were applied June 20 under partly cloudy skies, no wind, 60% relative humidity, and 24 C air temperature using a backpack sprayer delivering 80 L/ha with 8001 nozzles and 207 kPa pressure generated by a hand-pump lever. Plant stages at time of treatment were: soybeans 1 trifoliolate, 12 to 14 cm tall; wild oats 20 to 30 cm tall and well-tillered; barnyardgrass 3 to 4 leaf and 4 to 7 cm tall; dayflower (<u>Commelina communis</u>) 4 to 6 leaf and 7 to 10 cm tall; hempnettle (<u>Galeopsis tetrahit</u>) 7 to 15 cm tall; wild mint (<u>Mentha arvensis</u>) 4 to 6 leaf and 4 to 7 cm tall; (<u>Bidens tripartita</u>) 4 to 10 cm tall. Visual estimates of percentage soybean injury and weed control were taken July 21.

		Soybean				ontro		
<u>Treatment^a</u>	Rate	injury	Wioa	Bygr	Daf1	Hene	Wimi	Bide
	(oz/A)			((%)—			
Chlorimuron+Activator90	0.125+0.5%	6	33	29	2	100	100	100
Chlorimuron+DWL	0.125+0.5%	8	10	19	0	100	95	98
Chlorimuron+DWL	0.15+0.5%	10	46	20	1	-	-	98
Chlorimuron+DWL	0.18+0.5%	12	14	10	3	-	-	-
Chlorimuron+DWL(HWC)	0.125+0.5%	9 7	-	-	-	-	-	-
Chlorimuron+DWL(HWC)	0.18+0.5%		-	-	-	- 1	-	=
Chlorimuron+DWL(HWC)	0.25+0.5%	12	-	-	-	-	-	-
Chlorimuron+DWL+AMN	0.125+0.5%+24	3	1	11	0	100	-	-
Chlorimuron+DWL+AMN	0.18+0.5%+24	13	5	55	2	-	-	-
Chlorimuron+Scoil	0.125+0.188G	10	10	7	3	100	-	-
Chlorimuron+Scoil	0.18+0.188G	48	1	12	0	100	-	-
Chlorimuron+Fluazifop-P	0.125+2	12	99	10	0	100	-	-
Chlorimuron+Fluazifop-P	0.18+2	29	100	28	0	100	-	-
Chlorimuron+Fluazifop-P+DWL	0.125+2+0.5%	17	100	9 21	0 0	100	-	-
Chlorimuron+Fluazifop-P+DWL	0.18+2+0.5%	22	99 99	71	0	100	1	2
Fluazifop-P	2	0	100	94	0	0		2 1
Fluazifop-P+DWL	2+0.5%	0 % 15	100	94 16	0	99	90	99
Chlorimuron+Quinclorac+DWL	0.125+4.3+0.5		0	47	0	98	67	
Chlorimuron+Quinclorac+DWL	0.125+4.3+0.188		4	100	1	100	100	
Clim+Quinclorac+Scoil	0.125+4.3+0.188		- 0	99	¹ 0	100	- 100	_
Clim+Quinclorac+Scoil	0.1014.010.100	0	100	97	30	74	-	
Imazethapyr+AMN	0.5+0.25G	7	62	92	34	76	75	-
Imazethapyr+Herbimax	0.5+0.188G	8	87	85	30	50	-	76
Imazethapyr+Scoil Imazethapyr	0.75	2	97	95	51	80	-	-
Imazethapyr+AMN	0.75+1700	2 2	99	99	62	85	-	-
Imazethapyr+Herbimax	0.75+0.25G	4	94	100	31	33	37	40
Imazethapyr+Scoil	0.75+0.188G	6	100	96	75	80	91	90
Imazethapyr	1	4	99	99	68	83	-	-
		70	27	34	70	12	29	20
<u>LSD 5%</u>		15	22	26	15	13	27	19
	ister a bing daton	agent c	ommon	11 21/2	ilah	lo in	China	· HWC

^aDWL = "White cat" brand dishwashing detergent, commonly available in China; HWC = handweeded check; AMN = ammonium nitrate; Activator 90 = surfactant; Scoil = methylated vegetable oil adjuvant with emulsifier; Herbimax = petroleum oil adjuvant with 17% emulsifier; chlorimuron is Chinese-made, 20% WP; quinclorac is BASF-made, 75% DF; imazethapyr is Cyanamid-made, 5% SC (5 g/100 ml).

<u>Comments</u>. Considerable rain and cool weather was received for several days before and after treatment. These conditions probably increased soybean injury by chlorimuron. Similar conditions also were associated with high levels of chlorimuron injury at a number of other Army farms throughout Heilongjiang Province. Weed control economics in a minimum till and no-till soybean-wheat rotation, Fargo 1992. The experiment was established in 1988 as a multi-year study on a silty clay soil having a pH of 7.8 and organic matter of 5%. Treatments were arranged as a split plot with three tillage-row spacing combinations serving as main plots and herbicide systems in soybeans constituting sub-plots. The experiment is conducted on two adjacent areas with soybeans planted in one area and wheat in the other. Each area is seeded to wheat one year and to soybeans the next in a continuous rotation. Individual plot identity is preserved over the duration of this long-term experiment in order to assess the net returns and shifts in weed species associated with a particular treatment.

1992 SOYBEANS

Methods

Minimum till plots were chisel plowed in late October of 1991 and received one pass with a field cultivator in early May 1992. McCall soybeans were seeded 1.5 inches deep at 185,000 seeds/A on May 15 using a Hiniker no-till planter for 30-inch rows and at 215,000 seeds/A on May 18 with a Haybuster drill for 7-inch rows. Broadcast herbicide treatments were applied using a bicycle wheel sprayer delivering 8.5 gal/A for all postemergence (including burndown) treatments and 17 gal/A for soil-applied treatments. Postemergence treatments in 30-inch-row soybeans were applied in a 10-inch band using an ATV-mounted sprayer delivering 22.2 gal per treated acre (7.4 gal per field acre) with 4002E twinjet tips. All postemergence and burndown treatments were applied only as required and at a rate deemed necessary by the investigator. Rates and dates of all herbicide applications are given in Tables 1 and 2. Cultivation of 30-inch-row plots also was done on an as-needed basis, and took place on June 12 for the total postemergence treatment in rowed soybeans. All rowed soybeans (except the handweeded checks) were cultivated July 14. Aboveground wheat residues in no-till plots were sampled randomly from four 0.25 m² areas on May 1 and yielded an average of 8300 lb/A dry weight. Weed numbers per m² (by species) were determined at time of postemergence herbicide application (June 29) with two 0.25 m² subsamples per plot. Broadleaf weeds taller than 6 inches and foxtail plants of any size found within a plot were counted just before harvest. Grain yields were machine harvested in early October and values adjusted to 12% moisture. Plots requiring post-harvest control of perennial weeds were treated on October 9. Soil was sampled to 2 ft and fertilized on October 21 for a 60-bu/A yield goal (for 1993 wheat) with the application of 115 lb N/A to no-till plots and 75 lb N/A to tilled plots (surface-applied ammonium nitrate). Tilled plots were chisel plowed 8 inches deep on October 22. Four 0- to 2-inch soil samples were taken from each plot between Oct. 19 and 21. Subsamples were bulked and analyzed for pH and organic matter. Herbicide application, tillage, and seeding costs were used in developing the economic analysis.

Table 1. Rates and dates of planned herbicide treatments (early preplant, preplant incorporated, and preemergence) and as-needed burndown applications in 1992 soybeans.

Planned herbic	ide treatme	nt ^a		As-needed bur	ndown	application ^b
Herbicide	Rate	Date	Herbicide	Kate	Date	Target weed species
	(1b/A)			(1b/A)		
<u>TILLED, 30-INCH R</u> Trif+Metr(PPI) Trif+Imep(PPI) Trif+Clom(PPI) Trif+Clam(PPI) Total post(PO) HWC - Trif+ Imep+Clom(PPI)	20WS 1+0.2 1+0.047 1+0.75 1+2.5 0.75+ 0.04+0.4	5/15 5/15 5/15 5/15 - 5/15	None None None None None			None None None None None
NO-TILL, 30-INCH	DUMS					
Cyanazine(EPP) Metribuzin(EPP)	<u>8</u> 3 0.25	4/29 4/29	Glyt+S Glyt Glyt+ 2,4-D+S	0.5+0.13% 0.375 0.25+ 0.19+0.38%	5/20 5/6 5/20	Ftba, annual weeds Ftba (spot spray) Annual weeds
Imazethapyr(EPP) Metribuzin(PRE)	0.063 0.2	4/29 5/20	2,4-D+S Glyt+S Glyt Glyt+ 2,4-D+S	0.19+0.38% 0.5+0.13% 0.375 0.25+ 0.19+0.38%	5/20 5/6 5/20	Ftba Ftba (spot spray) ^C Annual weeds
Total post(PO) HWC - Pend+ Imep+Clom(EPP)	2+ 0.04+0.4	- 4/29	Glyt Glyt Glyt Glyt	0.5+0.13% 0.375 1.5	5/20 5/6 5/20	Ftba, annual weeds Ftba (spot spray) ^d All weeds
NO-TILL, 7-INCH R	NWS					
Cyanazine(EPP)	3	4/29	Glyt Glyt+S	0.375 0.25+0.38%	5/6 5/21	Ftba (spot spray) ^C Annual weeds
Metribuzin(EPP)	0.25	4/29	Glýt Glyt+S Glyt+	0.375 0.5+0.13% 0.5+	5/6 5/21 5/21	Ftba (spot spray) ^C Ftba, annual weeds Cath (spot spray) ^d
Imazethapyr(EPP)	0.063	4/29	2,4-D+S Glyt+	0.25+0.13% 0.625+	5/21	Smwd, Cath
Metribuzin(PRE)	0.2	5/21	Gfyt+9+S	0.5+0+0323%	5/21	Ftba, annual weeds
Total post(PO)	-	-	Glyt Glyt+S	0.375 0.5+0.13%	5/6 5/21	Ftba (spot spray) ^d Ftba, annual weeds
HWC - Pend+ _Imep+Clom(EPP)	2+ 0.04+0.4	4/29	Glyt	0.375 1.5	5/6 5/21	Ftba (spot spray) ^d All weeds

^aEPP = early preplant; PPI = preplant incorporated; PRE = preemergence; PO = post-

dEPP = early preprant; PPT = preprant incorporated; PRE = preemergence, PO = post-emergence; HWC = hand-weeded check. bGlyt = glyphosate, always applied with ammonium sulfate at 1.5 lb/A; S = X-77 non-conic surfactant; 2,4-D = 2,4-D amine. Conly 2 of 4 plots required treatment. For cost calculations, this treatment was dconsidered to be spot sprayed over 1/4 of the field. Only 1 of 4 plots required treatment. For cost calculations, this treatment was considered to be spot sprayed over 1/8 of the field.

Dlappad happinidad		Δ		h
<u> Planned herbicides</u> ^d <u> Herbicide Rate</u>	lloubicido	<u>As-needed</u>	poster	pergence application ^D
<u>Herbicide Rate</u> (1b/A)	Herbicide	Rate	Date	Target weed species
(TD/A)		(lb/A)		
TILLED, 30-INCH ROWS				
Trif+Metr(PPI) 1+0.2	Sathaway	0 15	C100	Valley fastail
11 11 Metr (PP1) 1+0.2	Sethoxy	0.15	6/28	Yellow foxtail
Trif+Imep(PPI) 1+0.047	Bent+Acif	0.75+0.13	6/29	KOCZ, Colq, Rrpw Canada thistle (spot spray) ^C
Trif+Imep(PPI) 1+0.047 Trif+Clom(PPI) 1+0.75	Bentazon	1	6/29	(spot spray)
1111+CTOIII(PP1) 1+0.75	Sethoxy	0.15	6/28	Yellow foxtail
Trif+Clam(PPI) 1+2.5	Bent+Acif	0.75+0.13	6/29	KOCZ, Rrpw, Colq, Wimu
	Sethoxy	0.15	6/28	Yellow foxtail
	Bentazon	1	6/29	Cath, KOCZ
Total post(DO)	Bentazon	1	7/9	Canada thistle (spot spray) ^d
Total post(PO) -	Sethoxy	0.15	6/28	Yellow foxtail
	Bent+Acif	0.75+0.13	6/29	KOCZ, Rrpw, Colq, Wimu, Wibw
NO-TILL, 30-INCH ROWS				
<u>NO-TILL, 30-INCH ROWS</u> Cyanazine(EPP) 3	Acif+Seth	0 10.0 15	C 100	Veft Due 11:1
Cyanazine(LFF) 3		0.13+0.15	6/29	Yeft, Rrpw, Wibw
Metribuzin(EPP) 0.25	Bentazon	1	6/29	Canada thistle (spot spray) ^C
Metribuzin(EPP) 0.23	Sethoxy	0.15	6/28	Yellow foxtail
Imazethapyr(EPP) 0.063	Bent+Acif None	0.75+0.13 0	6/29	KOCZ, Rrpw, Colq, Wibw, Dand
Metribuzin(PRE) 0.2		0.15	- -	
MELTIDUZIN(FRL) 0.2	Sethoxy Bent+Acif		6/28	Yellow foxtail
Total post(PO) -	Sethoxy	0.75+0.13	6/29	KOCZ, Rrpw
10tur post(10) -	Bent+Acif	0.15 0.75+0.13	6/28	Yellow foxtail
	DELLTACTI	0./5+0.13	6/29	KOCZ, Colq, Rrpw, Cath
NO-TILL, 7-INCH ROWS				
Cyanazine(EPP) 3	Acif+Seth	0.13+0.15	6/28	Voft Dnow Dand
Metribuzin(EPP) 0.25	Bent+Acif	0.13+0.13 0.75+0.13	6/28	Yeft, Rrpw, Dand
	Sethoxy	0.15	6/29	KOCZ, Rrpw, Colq, Cath Yellow foxtail
Imazethapyr(EPP) 0.063	Bentazon	1	6/28	Canada thistle (cnot consul)
Metribuzin(PRE) 0.2	Sethoxy	0.15	6/28	Canada thistle (spot spray) ^C
	Bent+Acif	0.15	6/29	Yeft, Foxtail barley 'KOCZ, Wibw, Dand
Total post(PO) -	Sethoxy	0.15	6/28	Yellow foxtail
	Bent+Acif	0.15	6/29	KOCZ, Rrpw, Colq
	Bentazon	0.75	6/29	<u>Canada thistle (spot spray)</u> ^d
^a EPP = early preplant; P			od · DD	E = preemergence; PO = post-
Li curij prepidite, i		incorporat	cu, rn	preemeryence, ru - post-

Table 2.	Rates	and	dates	of	postemergence	herbicide	lada	ications	in	1992 \$	sovbeans.
----------	-------	-----	-------	----	---------------	-----------	------	----------	----	---------	-----------

bemergence. Postemergence treatments were applied in a 10-inch band (22 gal/A) for all 30-inch-

row plots (spot sprays were applied broadcast), and broadcast (8.5 gal/A) for 7-inch-row plots; applications containing acifluorfen were applied with 1 pt/A Scoil

adjuvant; bentazon spot sprays were applied with 1.5 pt/A Scoil; sethoxydim was Poast Plus and was applied with 0.5 pt/A Scoil. Only 2 of 4 plots required treatment. For cost calculations, this treatment was considered to be spot sprayed over 1/4 of the field (cost was reduced by 1/4). Only 1 of 4 plots required treatment. For cost calculations, this treatment was considered to be spot sprayed over 1/8 of the field (cost was reduced by 1/8).

Table 3. Weeds present in 1992 soybeans at time of postemergence herbicide treatments.

Planned herbicide		Wee herb	d dens icide	ity at applic	poste ation	mergen on Jun	ce e 29 ^a	
treatment	Yeft	KOCZ	Rrpw	Colq	WIDW	WIMU	Prsp	Cath
				—(no.	per m ²)		
<u>TILLED, 30-INCH ROWS</u> Trifluralin+Metribuzin(PPI) Trifluralin+Imazethapyr(PPI) Trifluralin+Clomazone(PPI) Trifluralin+Chloramben(PPI) Total postemergence Average:	9 11 5 7 82 26	1 0 1 0 12 3	0 0 1 0 5 1	0 0 0 1 14 4	0 0 0 0 0	0 1 1 1 0 0	0 0 1 5 1	0 3 0 0 1 1
<u>NO-TILL, 30-INCH ROWS</u> Imazethapyr(EPP) Cyanazine(EPP) Metribuzin(EPP) Metribuzin(PRE) Total postemergence Average:	18 21 32 46 64 36	1 1 2 6 2	0 0 3 6 2	1 0 1 1 5 1	0 0 0 0 0	0 0 0 0 0	1 0 1 5 1 1	0 5 0 0 0 1
<u>NO-TILL, 7-INCH ROWS</u> Imazethapyr(EPP) Cyanazine(EPP) Metribuzin(EPP) Metribuzin(PRE) Total postemergence Average:	30 54 112 102 106 81	2 0 16 2 16 7	0 0 2 0 2 1	0 0 0 8 2	0 0 0 0 0 0	0 0 0 0 0 0	0 0 2 0 0	4 0 0 0 4 2
LSD 5% (Treatments within a tillage Tillage effect (P-value)	.012	5 .818	3 . 365	NS . 508		NS . 253	NS . 875	
^a Yeft = yellow foxtail; KOCZ = k	(ochia;	Rrpw		droot				common strate

lambsquarters; Wibw = wild buckwheat; Wimu = wild mustard; Prsp = prostrate spurge; Cath = Canada thistle.

Planned herbicide				Wee	d der	sitv	at ha	arvest	a			Soybean
<u>treatment</u>	Yeft	KOCZ	Rrpw	Cold	Wibw	/ Ftba	Danc	1 Cath	Smwd	Biww	Bvar	grain yield
					(no.	per 1	00 m ²)			<u></u>	(bu/A)
TILLED, 30-INCH ROWS												
Trif+Metribuzin(PPI)	41	5	1	5	0	0	1	5	0	1	2	16.3
Trif+Imazethapyr(PPI Trif+Clomazone(PPI)) 18 74	0 10	0	0	0	0	5	91	0	2	2	15.5
Trif+Chloramben(PPI)	16	2	0 1	6	0	0	0	2	0	0	1	15.3
Total postemergence	433	109	2	4 219	0 0	0	1	95	0	0	0	15.8
Hand-weeded check ^D		105	2	219	0	0	7	6	26	3	3	16.7
Average:	116	25	1	47	0	0	-3	40	- _	-	-	14.0
	110	20	Т	+/	0	0	3	40	5	1	2	15.5
NO-TILL, 30-INCH ROWS	S											
Cyanazine(EPP)	245	1	8	3	7	8	4	149	2	0	16	10 0
Metribuzin(EPP)	258	13	2	6	11	8	10	6	13	0	16 24	18.8
Imazethapyr(EPP)	87	2	0	3	0	30	104	11	112	8	86	17.1 21.4
Metribuzin(PRE)	192	40	3	5	3	28	5	12	16	0	0	18.0
Total postemergence	291	40	3	64	10	2	9	24	20	0	16	19.5
Hand-weeded check ^C	-	-	-	-	-	-	_	_	-	-	-	22.1
Average:	215	19	3	16	6	15	26	40	33	2	28	19.5
NO TILL 7 INCLL DOUG											20	13.0
<u>NO-TILL, 7-INCH ROWS</u> Cyanazine(EPP)	171	0	00									
Metribuzin(EPP)	474 309	2	99	4	1	21	1	2	15	0	4	14.5
Imazethapyr(EPP)	103	22 2	36	22	3	108	_2	9	69	2	4	13.9
Metribuzin(PRE)	216	38	0 85	13	0	103	54	45	53		.55	17.8
Total postemergence	307	50 69		12 127	11	75	19	17	34	2	2	14.9
Hand-weeded check	- 507	- 09	93		3	21	4	24	61	0	0	11.3
Average:	282	27	63	- 36	- 4	- 66	-	-	-	-	-	14.0
in crage.	LUL	L1	00	50	4	00	16	20	46	3	33	14.4
LSD 5% (in a tillage)	221	60	NS	104	7	NS	31	NS	NS	6	50	NC
<u>Tillage (P-value)</u> ^a Yeft = yellow foxtai guarters: Wibw = wi	.214	.81	.15	.52	.12	03	04	70	14	37	50	NS
"Yeft = yellow foxtai	1; KOC.	Z = k	ochia	; Rrp	W = 1	redroc	ot pi	aweed	$\cdot 14$	$\frac{0.07}{1} = 0.00$	IJ	<u>.062</u> 1ambs-
												• • •
	= per	ennia	1 sma	rtwee	d; Bi	iww =	bien	nial	vormwc	od: B	var =	barn-
byardgrass.										за, D		Surri

Table 4. Weed control and grain yield of 1992 soybeans grown in rotation with wheat.

Hand-weeded check was treated with trifluralin + imazethapyr + clomazone (PPI) at 0.75 + 0.04 + 0.4 lb/A plus hand weeding. Hand-weeded check was treated with pendimethalin + imazethapyr + clomazone (EPP) at 2 + 0.04 + 0.4 lb/A plus hand weeding.

tilled and no	<u>)-till so</u>	ybeans	<u>in 1992.</u>					
	1 1			treatme	<u>nt</u>	Postemerge	nce trea	tment
Planned tr		Cash	Herbicide	D.1.	0	Herbicide	D 1	• •
Herbicide	Rate	Cost	<u>or adjuvant</u>	Rate	Cost	or adjuvant		Cost
	(1b/A)	(\$/A)		(1b/A)	(\$/A)		(1b/A)	(\$/A)
TILLED, 30-IN		7 02	Nono		0	Cathanus	0 1 5	0.10
Trifluralin+	1	7.92	None	-	0	Sethoxy+	0.15	2.19
Metribuzin	0.2	6.32				Scoil	0.5 pt	. 31
						Bentazon+	0.75	3.81
						Acif+	0.125	. 62
Tuiflunglint	1	7 00	Nono		0	Scoil	1 pt	.62 3.81 ^b
Trifluralin+	1	7.92	None	-	0	Bentazon+	1	3.81
Imazethapyr	0.047	12.95	Nono		0	Scoil	1.5 pt	.70
Trifluralin+		7.92	None	-	0	Sethoxy+	0.15	2.19
Clomazone	0.75	14.05				Scoil	0.5 pt	.31
						Bentazon+ Acif+	0.75	3.81 .62
						Scoil	1 pt	. 62
Trifluralin+	1	7.92	None		0	Sethoxy+	0.15	2.19
Chloramben	2.5	28.00	NULLE		0	Scoil	0.15 0.5 pt	.31
CITIOI diliberi	2.5	20.00				Bentazon+	1.5 pt	5.08
						Scoil	1.5 pt	2 79.
						Bentazon+	1.0 pt	2.79 _b 1.91 ^b
						Scoil	1.5 pt	.35
Total post			None	-	0	Sethoxy+	0.15	2.19
roour poor						Scoil	0.5 pt	.31
						Bentazon+	0.75	3.81
						Acif+	0.125	.62
						Scoil	1 pt	.62
	INCH ROWS							
Cyanazine	3	16.50	Glyphosate+	0.5	6.23	Sethoxy+	0.15	2.19
(EPP)			NIS+	0.13%	.18	Acif+	0.125	. 62
			AS	1.5	. 38	Scoil	0.5 pt	.31 3.81 ^b
						Bentazon+		3.81
Matuibutio	0.25	7 00	Cluphocator	0.375	1.17 ^b	Scoil Sotboyyt	1.5 0.15	.70 2.19
Metribuzin	0.25	7.90	Glyphosate+ AS	1.5	.10	Sethoxy+ Scoil	0.15	.31
(EPP)			Glyphosate+		3.11	Bentazon+	0.75	3.81
			2,4-D+	0.188	.45	Acif+	0.125	. 62
			NIS+	0.38%	. 55	Scoil	1 pt	.62
			AS	1.5	.38			
Imazethapyr	0.063	17.27	Glyphosate+	0.5	6.23	None	0	0
(EPP)			NIS+	0.13%	.18			
			AS	1.5	.38 1.17 ^b			
Metribuzin	0.2	6.32	Glyphosate+	0.375	1.170	Sethoxy+	0.15	2.19
(PRE)			AS	1.5	.10	Scoil	0.5_pt	.31
			Glyphosate+	0.25	3.11	Bentazon+	0.75	3.81
			2,4-D+	0.188	. 45	Acif+	0.125	. 62
			NIS+	0.38%	.55	Scoil	1 pt	. 62
T.+.1			AS	1.5	.38	Sathawy	0 15	2.19
Total post	-	-	Glyphosate+	0.5 0.13%	6.23 .18	Sethoxy+ Scoil	0.15 0.5 pt	2.19
			NIS+ AS	1.5	. 10 . 38	Bentazon+	0.5 pt	3.81
			AJ	1.0	.00	Acif+	0.125	.62
						Scoil	1 pt	. 62
			No. of the Association of the As					

<u>Table 5</u>. Herbicide and adjuvant costs for burndown and postemergence treatments in tilled and no-till soybeans in 1992.

<u>Planned t</u> Herbicide	<u>reatment</u> Rate (1b/A)	<u>Cost</u> (\$/A)	Burndown Herbicide or adjuvant	<u>treatme</u> Rate (lb/A)	ent ^a Cost (\$/A)	<u>Postemerge</u> Herbicide or adjuvant		tment ^a <u>Cost</u> (\$/A)
<u>NO-TILL, 7-I</u> Cyanazine (EPP)	<u>NCH_ROW:S</u> 3	16.50	Glyphosate+ AS Glyphosate+ NIS+ AS	0.375 1.5 0.25 0.38% 1.5	1.17 ^b .10 3.11 .55 .38	Sethoxy+ Acif+ Scoil	0.15 0.125 0.5 pt	6.58 1.86 .93
Metribuzin (EPP)	0.25	7.90	Glyphosate+ AS Glyphosate+ NIS+ AS Glyphosate+ 2,4-D+ NIS+ AS	0.375 1.5 0.5 0.13% 1.5 0.5 0.25 0.13% 1.5	1.17 ^b .10 6.23 .18 .38 .78 ^c .07 .02 .05	Sethoxy+ Scoil Bentazon+ Acif+ Scoil	0.15 0.5 0.75 0.125 1 pt	6.58 .93 11.43 1.86 1.86
Imazethapyr (EPP)	0.063	17.27	AS Glyphosate+ 2,4-D+ NIS+ AS	0.63 0.125 0.13% 1.5	.05 7.79 .30 .18 .38	Bentazon+ Scoil	1 1.5 pt	3.81 ^b .70
Metribuzin (PRE)	0.2	6.32	Glyphosate+ NIS+ AS	0.5 0.13% 1.5	6.23 .18 .38	Sethoxy+ Scoil Bentazon+ Acif+	0.15 0.5 0.75 0.125	6.58 .93 11.43 1.86
Total post ^a AS = ammoni	- um sulfa	-	Glyphosate+ AS Glyphosate+ NIS+ AS	0.375 1.5 0.5 0.13% 1.5	.58 ^C .05 6.23 .18 .38	Scoil Sethoxy+ Scoil Bentazon+ Acif+ Scoil Bentazon+ Scoil = m	1 pt 0.15 0.5 0.75 0.125 1 pt 0.75 <u>1.5 pt</u>	1.86 6.58 .93 11.43 1.86 1.86 1.43 ^c .35

Table 5, continued. Herbicide and adjuvant costs for burndown and postemergence treatments in tilled and no-till soybeans in 1992.

'AS = ammonium sulfate; NIS = X-77 nonionic surfactant; Scoil = methylated vege-

table oil adjuvant with emulsifier. Only 2 of 4 plots required treatment. For cost calculations, this treatment was considered to be spot sprayed over 1/4 of the field (cost was reduced by 1/4). Only 1 of 4 plots required treatment. For cost calculations, this treatment was considered to be spot sprayed over 1/8 of the field (cost was reduced by 1/8).

		Herbicide			Annli	
Planned	Herbicide		Broadcast or		Appli- cation	Target
treatment	Herbicide or adjuvant ^a	Rate	spot spray	Cost	cost	weeds
		(1b/A)		(\$	/A)——	
TILLED, 30-INCH	ROWS					
Trif+Metr(PPI)	Clopyralid&2,4-D	0.095&0.5	Spot spray ^D	1.78	.19	Cath, Smwd
	+2,4-D amine	+0.5		.30	70	Cath
Trif+Imep(PPI) Trif+Clom(PPI)	Clopyralid&2,4-D Clopyralid&2,4-D	0.095&0.5	Broadcast Spot spray ^C	7.14 .89	.76 .10	Cath Cath
	+2.4-D amine	+0.5		.15	. 10	outin
Trif+Clam(PPI)	Clopyralid&2,4-D	0.095&0.5	Broadcast Spot spray ^b	7.14	.76	Cath
Total post	Clopyralid&2,4-D	0.095&0.5	Spot spray~	1.78 .30	.19	Cath, Smwd
	+2,4-D amine	TU.0		. 30		
NO-TILL, 30-INC	H ROWS					
Cyanazine(EPP)	Clopyralid&2,4-D	0.095&0.5	Broadcast	7.14	.76	Cath, Ftba
Metr(EPP)	+glyphosate Clopyralid&2,4-D	+0.56	Broadcast	6.98 7.14	.76	Cath, Smwd,
Metr (LFF)	+glyphosate	+0.56	Dioddedst	6.98	.70	Ftba, Dand
	+2,4-D amine	+1		2.38	76	
Imep(EPP)	Clopyralid&2,4-D	0.095&0.5	Broadcast	7.14 6.98	.76	Cath, Smwd, Ftba, Dand
	+glyphosate +2,4-D amine	+0.56 +1		2.38		
Metr(PRE)	Clopyralid&2,4-D	0.095&0.5	Broadcast	7.14	.76	Cath, Smwd,
	+glyphosate	+0.56		6.98		Ftba, Dand
Total post	+2,4-D amine Clopyralid&2,4-D	+1 0.095&0.5	Broadcast	2.38 7.14	.76	Cath, Smwd,
Total post	+glyphosate	+0.56	Dioducust	6.98	.70	Ftba, Dand
	+2,4-D amine	+1		2.38		
<u>NO-TILL, 7-INC</u> Cyanazine(EPP)	<u>Glyphosate</u>	0.56	Spot spray ^b	1.75	.19	Ftba, Smwd,
ogunazine (zm.)	+2,4-D amine	+1.5		. 89		Cath, Dand
Metr(EPP)	Clopyralid&2,4-D	0.095&0.5	Broadcast	7.14	.76	Cath, Smwd, Ftba, Dand
	+glyphosate +2.4-D amine	+0.56 +1		6.98 2.38		FLDA, DANU
Imep(EPP)	Clopyralid&2,4-D	0.095&0.5	Broadcast	7.14	.76	Cath, Smwd,
	+glyphosate	+0.56		6.98		Ftba, Dand
Mate (DDE)	+2,4-D amine	+1 0.095&0.5	Broadcast	2.38 7.14	.76	Cath, Smwd,
Metr(PRE)	Clopyralid&2,4-D +glyphosate	+0.56	Dioducust	6.98	.70	Ftba, Dand
	+2,4-D amine	+1		2.38		
Total post	Clopyralid&2,4-D	0.095&0.5	Broadcast	7.14	.76	Cath, Smwd,
	+glyphosate +2,4-D amine	+0.56 +1		6.98 2.38		Ftba, Dand
$\frac{a}{b^2}$, 4-D = 2, 4-D	amine; clopyralid&2	$2, 4-D = CUR^2$	TAIL herbicid	e.		

<u>Table 6</u>. Herbicide and adjuvant costs for post-harvest treatments in tilled and no-till soybeans in 1992. Treatments were applied October 9, 1992.

d2,4-D = 2,4-D amine; clopyralid&2,4-D = CURTAIL herbicide. b0nly 2 of 4 plots required treatment. For cost calculations, this treatment was considered to be spot sprayed over 1/4 of the field (cost was reduced by 1/4). C0nly 1 of 4 plots required treatment. For cost calculations, this treatment was considered to be spot sprayed over 1/8 of the field (cost was reduced by 1/8).

				2			· · · · · · · · · · · · · · · · · · ·
		Variabl	<u>e producti</u>	on costs ^a	01.1.7		
Planned herbicide treatment	Seed	Herbicide plus adjuvant	Herbicide appl. and incorp.		Chisel plow & seedbed prep.	Crop value ^b	Net _return
		***		-(\$/A)		vuruc	TELUITI
<u>TILLED, 30-INCH ROWS</u> Trif+Metribuzin(PPI) Trif+Imazethapyr(PPI Trif+Clomazone(PPI) Trif+Chloramben(PPI) Total postemergence Average:	12.22) 12.22 12.22	23.87 32.52 30.56 55.69 9.63 30.45	8.85 8.66 8.76 9.61 8.09 8.79	2.98 2.98 2.98 2.98 2.98 5.96 3.58	7.70 7.70 7.70 7.70 7.70 7.70 7.70	84.43 80.29 79.25 81.84 86.51 82.46	28.81 16.21 17.03 -6.36 42.91 19.72
<u>NO-TILL, 30-INCH ROW</u> Cyanazine(EPP) Metribuzin(EPP) Imazethapyr(EPP) Metribuzin(PRE) Total postemergence Average:	<u>S</u> 12.22 12.22 12.22 12.22 12.22 12.22 12.22	45.04 37.71 40.56 36.13 30.84 38.06	3.23 3.99 2.28 3.99 3.04 3.31	2.98 2.98 2.98 5.96 5.96 4.17	0 0 0 0 0 0	97.38 88.58 110.85 93.24 101.01 98.21	33.91 31.68 52.81 34.94 48.95 40.46
<u>NO-TILL, 7-INCH ROWS</u> Cyanazine(EPP) Metribuzin(EPP) Imazethapyr(EPP) Metribuzin(PRE) Total postemergence <u>Average:</u> ^a Variable cost rates (Minnesota values a	14.20 14.20 14.20 14.20 14.20 14.20 14.20 derived	33.82 56.04 46.93 52.27 48.36 47.48 from Unive	2.66 4.09 2.47 3.80 3.23 <u>3.25</u> ersity of	2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98	0 0 0 0 0 values	75.11 72.00 92.20 77.18 58.53 75.00 reduced	21.45 -5.31 25.62 3.93 -10.24 <u>7.09</u> by 25%

<u>Table 7</u>. Economic analysis for minimum till and no-till soybeans grown under various weed control systems in 1992.

Variable cost rates derived from University of Minnesota values reduced by 25% (Minnesota values assume a farmer owns all new equipment). Included in variable cost rates is equipment overhead, repairs, maintenance, and fuel. Labor is not included. Costs are as follows: spraying, \$.76/A; herbicide incorporation, \$3.19/A per pass; cultivation, \$2.98/A; chisel plowing, \$4.51/A. b1992 soybeans were valued at \$5.18 per bushel (Ave. price for Sept.-Nov. 1992, North Dakota Agricultural Statistics).

<u>Table 8</u> . S	oil pH a	and organic matt	er (0 to 2	inch depth)	in the fall	of 1992 for
various trea	itments -	in a soybean-whe	at rotation	experiment	initiated in	1987. Data
pertain to t	he area	planted to soybe	eans in 1992			

Herbicide treatments in soybeansOrganic pHAverage matterAverage organic matterTILLED, 30-INCH ROWS(%)(%)17.34.6Trifluralin+Metribuzin(PPI)7.64.417.34.6Trifluralin+Imazethapyr(PPI)7.54.627.85.0Trifluralin+Clomazone(PPI)7.74.237.84.1Trifluralin+Chloramben(PPI)7.44.447.34.5Total postemergence7.74.2LSD 5%0.130.14Average:7.64.3LSD 5%0.130.14NO-TILL, 30-INCH ROWS Cyanazine(EPP)7.74.54.51
TILLED, 30-INCH ROWS (%) Trifluralin+Metribuzin(PPI) 7.6 4.4 1 7.3 4.6 Trifluralin+Imazethapyr(PPI) 7.5 4.6 2 7.8 5.0 Trifluralin+Clomazone(PPI) 7.7 4.2 3 7.8 4.1 Trifluralin+Chloramben(PPI) 7.4 4.4 4 7.3 4.5 Total postemergence 7.7 4.2 LSD 5% 0.13 0.14 Average: 7.6 4.3 LSD 5% 0.13 0.14 Mo-TILL, 30-INCH ROWS 7.8 4.5 4.5 1
TILLED, 30-INCH ROWSTrifluralin+Metribuzin(PPI)7.64.417.34.6Trifluralin+Imazethapyr(PPI)7.54.627.85.0Trifluralin+Clomazone(PPI)7.74.237.84.1Trifluralin+Chloramben(PPI)7.44.447.34.5Total postemergence7.74.2LSD 5%0.130.14Average:7.64.34.310.14NO-TILL, 30-INCH ROWS7.84.5111Cyanazine(EPP)7.84.51111
Trifluralin+Imazethapyr(PPI) 7.5 4.6 2 7.8 5.0 Trifluralin+Clomazone(PPI) 7.7 4.2 3 7.8 4.1 Trifluralin+Chloramben(PPI) 7.4 4.4 4 7.3 4.5 Total postemergence 7.7 4.3 4 7.3 4.5 Hand-weeded check 7.7 4.2 LSD 5% 0.13 0.14 NO-TILL, 30-INCH ROWS 7.8 4.5 4.5
Trifluralin+Imazethapyr(PPI) 7.5 4.6 2 7.8 5.0 Trifluralin+Clomazone(PPI) 7.7 4.2 3 7.8 4.1 Trifluralin+Chloramben(PPI) 7.4 4.4 4 7.3 4.5 Total postemergence 7.7 4.3 4 7.3 4.5 Hand-weeded check 7.7 4.2 LSD 5% 0.13 0.14 NO-TILL, 30-INCH ROWS 7.8 4.5 Cyanazine(EPP) 7.8 4.5
Total postemergence7.74.3Hand-weeded check7.74.2Average:7.64.3NO-TILL, 30-INCH ROWS7.84.5
Total postemergence7.74.3Hand-weeded check7.74.2Average:7.64.3NO-TILL, 30-INCH ROWS7.84.5
Total postemergence7.74.3Hand-weeded check7.74.2Average:7.64.3NO-TILL, 30-INCH ROWS7.84.5
Hand-weeded check 7.7 4.2 LSD 5% 0.13 0.14 Average: 7.6 4.3 4.3 0.14
Average:7.64.3NO-TILL, 30-INCH ROWS Cyanazine(EPP)7.84.5
NO-TILL, <u>30-INCH ROWS</u> Cyanazine(EPP) 7.8 4.5
Cyanazine(EPP) 7.8 4.5
Imazethapyr(EPP) 7.7 4.8
$\frac{1}{1} \frac{1}{1} \frac{1}$
Metribuzin(PRE) 7.6 4.7
Total postemergence 7.7 4.7
Hand-weeded check 7.6 4.7
Average: 7.7 4.6
NO-TILL, 7-INCH ROWS
Cyanazine(EPP) 7.4 4.8
Metribuzin(EPP) 7.5 4.5
Imazethapyr(EPP) 7.6 4.7
Metribuzin(PRE) 7.4 4.7
Total postemergence 7.4 4.7
Hand-weeded check 7.4 4.7
Average: 7.4 4.7
Treatments in a tillage (LSD 5%) NS NS
<u>Tillage effect (P-value) NS NS</u>

1992 WHEAT

Methods

Tilled plots were chisel plowed late October 1991. Ammonium nitrate was applied in November 1991 at 205 lb/A (94 lb N/A) for tilled plots and 248 lb/A (114 lb N/A) for no-till plots according to soil test recommendations for a 60-bu/A yield goal. Butte 86 hard red spring wheat was seeded 1.5-inch deep at 95 lb/A April 29, 1992 with a Haybuster drill. Tilled plots were worked once with a field cultivator/harrow (2.5 to 3-inches deep) on April 28. Preemergence burndown treatments were applied May 7 (Table 9). Postemergence treatments were applied May 24 (Table 9). All herbicide tratments were applied only when needed and at rates deemed necessary by the investigator. Herbicides were applied broadcast using a bicycle wheel sprayer delivering 8.5 gal/A with 8001 nozzles and 40 psi. Weed counts were taken at harvest (three 0.25-m² quadrats per plot). Wheat was machine-harvested Aug. 20 by taking two 4-ft-wide by 37-ft-long subsamples per plot. Post-harvest herbicide treatments on tilled and no-till plots were applied Sept. 22 and a second treatment was made Sept. 29 on selected no-till plots (Table 10). All tilled plots were chisel plowed 8 inches deep on Oct. 1 and received one pass with a field cultivator/harrow (3-inch depth) Oct. 5 to further incorporate heavy wheat residues.

1991 soybean	As-need	ded burne	down a	application ^a	As-needed	posteme	raence	applic	cationa
herbicide	Herbi-			Target	Herbi-			Targe	et
treatments	cide	Rate (1b/A)	Date	weeds	<u> </u>	Rate	Date	weed	<u>ds</u>
TILLED, 30-INCH	ROWS	(ID/A)				(oz/A)			
Trif+Metr(PPI)	Norie	0	-	None	Trib +2.4-D	0.125 +4	5/24	KOCZ,	Cold
Trif+Imep(PPI)	None	0	-	None	Trib +2.4-D	0.25	5/29	KOCZ, Cath	Colq,
Trif+Clom(PPI)	Norie	0	-	None	Trib +2,4-D	0.125 +4	5/24	KOCZ, Wimu	Colq,
Trif+Clam(PPI)	Norie	0	-	None	Trib +2,4-D	0.25 +6	5/29	KOCZ, Wibw,	Colq, Cath
Total post(PO)	Norie	0	-	None	Trib +2,4-D	0.188 +4	5/24	Colq,	KOCZ
HWC - Trif+ Imep+Clom(PPI)	Nore	0	-	None	Thif&Trib	0.375	6/11	Wimu	
<u>NO-TILL, 30-INC</u> Cyanazine(EPP)	<u>H ROW'S</u> Glyt	0.375 ^b	5/7	Ftba	Trib	0.188	5/24	KOCZ,	Colq,
Metribuzin(EPP)	None	0	-	None	+2,4-D Thif&Trib	+4 0.225	5/24		Cath Wibw,
Imazethapyr(EPP)) None	0	-	None	+2,4-D Thif&Trib +2,4-D	+4 0.225 +4	5/24		Wibw,
Metribuzin(PRE)	Glyt	0.375 ^C	5/7	Ftba, KOCZ, Wibw		+4 0.338 +4	5/24	KOCŻ,	Dand Wibw,
Total post(PO)	Glyt	0.375 ^b	5/7	Ftba, Dand, KOCZ, Wibw		0.25 +6	5/24	Cath,	Wimu KOCZ, Colq
HWC - Pend+ Imep+Clom(EPP)	Glyt	0.75	5/7	Ftba	Thif&Trib	0.375	6/11	WIDW,	UUIQ
NO-TILL, 7-INCH	ROWS	h							
Cyanazine(EPP)	Glyt	0.49 ^D	5/7	Smwd, Wibw, Ftba	Trib +2,4-D	0.25 +6		Cath, KOCZ	Wibw,
Metribuzin(EPP)	Glyt	0.375 ^C	5/7	Ftba, KOCZ	Trib +2,4-D	0.25 +6	5/24	Cath, Wibw,	
Imazethapyr(EPP)	Glyt	0.49 ^C	5/7	Smwd	Trib +2,4-D	-	5/24	KOCZ, Wibw	
Metribuzin(PRE)	Glyt	0.375 ^C	5/7	Ftba, KOCZ	Trib +2,4-D	0.25 +6	5/24	Cath, Colg	Wibw,
Total post(PO)	Glyt	0.49 ^b	5/7	Dand, Wibw, KOCZ, Ftba	Trib +2,4-D	0.25 +6	5/24	KOCŻ,	Smwd, Dand
HWC - Pend+ <u>Imep+Clom(EPP)</u>	<u>Glyt</u>	0.75	5/7		Thif&Trib +Clpy&24D	0.225		KOCZ	

Table 9. Rates and dates of as-needed burndown and postemergence applications in tilled and no-till wheat in 1992.

Glyt (glyphosate) always applied with ammonium sulfate at 1.5 lb/A; 2,4-D = 2,4-D butoxyethyl ester; Trib (tribenuron) and Thif&Trib (thifensulfuron-tribenuron package mix) applied with nonionic surfactant at 0.125% except when the 2,4-D rate was

^{age mix)} appried with homonic surfactant at 0.125% except when the 2,4-b rate was 0.375 lb/A in which case surfactant was not used. Only 2 of 4 plots required treatment. For cost calculations, this treatment was considered to be spot sprayed over 1/4 of the field. Only 1 of 4 plots required treatment. For cost calculations, this treatment was considered to be spot sprayed over 1/8 of the field.

1991						
soybean	Herbicide			Broadcast or		
herbicides	or adjuvant	^a Rate	Date	spot spray	Costb	Target weeds
		(1b/A)	Ducc	<u>spoc spruy</u>	(\$/A)	Turget weeus
TILLED, 30-INCH	ROWS				(+///)	
Trif+Metr(PPI)	Clpy&2,4-D +Glyt	0.024&0.13 +0.75	9/22	Spot spray ^C	.22 1.17	Cath
Trif+Imep(PPI)	+AS Clpy&2,4-D +Glyt	+1.5 0.024&0.13 +0.75	9/22	Spot spray ^C	.05 .22 1.17	Cath
Trif+Clom(PPI) Trif+Clam(PPI)	+AS None Clpy&2,4-D	+1.5 0 0.024&0.13	- 9/22	Spot spray ^C	.05 0 .22	None Cath
	+Glyt +AS	+0.75 +1.5			1.17 .05	
Total post	Clpy&2,4-D +Glyt +AS	0.024&0.13 +0.75 +1.5	9/22	Spot spray ^C	.22 1.17 .05	Cath
NO-TILL, 30-INC						
Cyanazine(EPP)	Glyt +Surfact.	0.375 +0.125%	9/22	Broadcast	4.67	Ftba, Yeft, Wibw, vol. wheat
	+AS Clpy&2,4-D +Glyt +Surfact.	+1.5 0.024&0.13 +0.375 +0.125%	9/29	Spot spray ^C	.38 .22 .58 .02	Canada thistle
	+AS	+1.5			.05	
Metr(EPP)	Glyt +Surfact.	0.375 +0.125%	9/22	Broadcast	4.67	Ftba, Yeft, Wibw, vol. wheat
	+AS Clpy&2,4-D +Glyt +Surfact.	+1.5 0.024&0.13 +0.375 +0.125%	9/29	Spot spray ^b	.38 .44 1.17 .04	Canada thistle
Imep(EPP)	+AS Clpy&2,4-D +Glyt +Surfact.	+1.5 0.024&0.13 +0.5 +0.125%	9/22	Broadcast	.10 1.78 6.23 .18	Cath, Ftba, Wibw, KOCZ, Dand, Llsa, Yeft, vol. wheat
Metr(PRE)	+AS Clpy&2,4-D +Glyt +Surfact.	+1.5 0.024&0.13 +0.5 +0.125%	9/22	Broadcast	.38 1.78 6.23 .18	Cath, Yeft, Ftba, Wibw, KOCZ, vol. wheat
Total post	+AS Glyt +Surfact.	+1.5 0.375 +0.125%	9/22	Broadcast	.38 4.67 .18	KOCZ, Wibw, Dand, Corw, Colq, Ftba,
	+AS Clpy&2,4-D +Glyt +Surfact.	+1.5 0.024&0.13 +0.375 +0.125%	9/29	Spot spray ^b	.38 .44 1.17 .04	vol. wheat Cath, Ftba
	+AS	+1.5			.10	

 $\underline{\text{Table 10}}.$ Herbicide treatments applied following the 1992 harvest of tilled and no-till wheat.

1991							
soybean	Herbicide	2		Broadcast or	h		
herbicides	or adjuvant		Date	<u>spot</u> spray	Cost ^b	Tar	get weeds
		(1b/A)			(\$/A)		
NO-TILL, 7-INCH	ROWS						
Cyanazine(EPP)	Clpy&2,4-D	0.024&0.13	9/29	Spot spray ^D	.44	Cath,	Wibw, Yeft,
	+G]yt	+0.75			2.34	vo]. 1	
Matic (EDD)	+AS	+1.5	0.400	D 1 1	.10	0.11	
Metr(EPP)	Clpy&2,4-D +Glyt	0.024&0.13 +0.5	9/22	Broadcast	1.78	Cath,	Ftba, Yeft,
	+Surfact.	+0.5			6.23 .18	wheat	Dand, vol.
	+AS	+1.5			. 38	wheat	
Imep(EPP)	Dicamba	0.125	9/22	Broadcast	2.15	Wibw.	Yeft, Llsa,
	+Glyt	+0.188			2.34	vol. i	
	+Surfact.	+0.5%			.73		
	+AS	+1.5	0/20	Crat and b	. 38 . 44	C	11 1 1 7
	Clpy&2,4-D +Glyt	0.024&0.13 +0.5	9/29	Spot spray ^b	.44 1.56	Canada	a thistle
	+Surfact.	+0.125%			.04		
	+AS	+1.5			.10		
Metr(PRE)	Clpy&2,4-D	0.024&0.13	9/22	Broadcast	1.78	Cath,	Smwd,
	+Glyt	+0.5			6.23	Ftba,	Dand
	+Surfact.	+0.125%			.18		
Total post	+AS Glyt	+1.5 0.375	9/22	Propheret	.38	lib	David Ethe
iocui posc	+Surfact.	+0.125%	5122	Broadcast	4.67 .18		Dand, Ftba, vol. wheat
	+AS	+1.5			. 18	LISA,	vor. wheat
$\frac{d}{d} \frac{1}{2} \frac{1}$	UDTATI bouch	aida		and the second			-

Table 10, continued. Herbicide treatments applied following the 1992 harvest of tilled and no-till wheat.

^aClpy&2,4-D = CURTAIL herbicide. ^bOnly 2 of 4 plots required treatment. For cost calculations, this treatment was considered to be spot sprayed over 1/4 of the field. ^cOnly 1 of 4 plots required treatment. For cost calculations, this treatment was considered to be spot sprayed over 1/8 of the field.

<u>Table 11</u>. Weeds present at harvest, wheat stand density, and wheat grain yield of 1992 wheat grown in rotation with soybeans.

1991 soybean herbicide treatments Yeft	We KOCZ		Colq	Wibw	Cath		Dand	<u>1992 w</u> Stand density	wheat Grain yield
TILLED, 30-INCH ROWS		(nc). per	n 100	m²)			(no./m)	(bu/A)
Trifluralin+Metribuzin(PPI) 367 Trifluralin+Imazethapyr(PPI) 233 Trifluralin+Clomazone(PPI) 133 Trifluralin+Chloramben(PPI) 933 Total postemergence 1267 Hand-weeded check Tillage average: 568	33 0 8 89 200	0 33 0 44 0 -	100 67 67 356 400 - 190	100 33 67 0 0 - 42	67 67 0 89 167 - 77	0 0 33 0 0 - 7	33 33 133 33 - 49	32.3 33.3 29.3 32.6 32.5 31.4 31.9	56.4 58.0 56.9 55.7 50.3 62.2 56.6
NO-TILL, 30-INCH ROWSCyanazine(EPP)1667Metribuzin(EPP)700Imazethapyr(EPP)800Metribuzin(PRE)1030Total postemergence330Hand-weeded check-Tillage average:907	0 33 200 33 33 100	0 0 0 33 7	0 67 0 33 233 67	200 67 200 100 400 193	133 0 33 467 67 140	67 0 0 0 13	33 67 133 33 100 - 73	28.0 30.9 33.3 31.3 29.6 33.6 31.1	61.7 61.9 60.5 53.4 58.5 68.0 60.7
NO-TILL, 7-INCH ROWSCyanazine(EPP)578Metribuzin(EPP)533Imazethapyr(EPP)933Metribuzin(PRE)2000Total postemergence313Hand-weeded check-Tillage average:918	33 0 0 89	0 0 0 0 0 - 0	0 33 44 100 44 47	889 233 222 233 756 439	565 156 938 599 0 243	44 67 0 67 89 - 55	89 33 178 100 400 - 149	31.4 30.5 28.8 33.9 30.4 32.6 31.3	60.1 57.1 58.4 54.0 61.5 62.1 58.5
LSD 5% Trts within a tillage 602 Tillage effect (P-value) .279		NS .575	NS . 321	NS . 236	NS .146	NS .261	NS . 299	NS . 557	NS . 163

West Company and a second seco	and the second sec					
	1992	<u>Variable proc</u>	duction co	stsa		
1991 planned	Herbicide	Herbicide	Fall	Seedbed	1992	
herbicide treat		applica-	chisel	prepar-		Net
ment in soybear		tion	plowing	ation	HRSW value ^b	return
merre in cojscur			(\$/A		Variac	
			(4//			
TILLED, 30-INCH	ROWS					
Trif+Metr(PPI)	5.52	.86	4.51	3.19	174.28	160.20
Trif+Imep(PPI)	8.88	.86	4.51	3.19	179.22	161.78
Trif+Clom(PPI)	4.08	.76	4.51	3.19	175.82	163.28
Trif+Clam(PPI)	8.88	.86	4.51	3.19	172.11	154.67
Total post	7.11	.86	4.51	3.19	155.43	139.76
Average:	6.89	. 84	4.51	3.19	171.37	155.94
<u>NO-TILL, 30-INC</u>						
Cyanazine(EPP)	13.03	1.81	0	0	190.65	175.81
Metribuzin(EPP)		1.71	0	0	191.27	178.38
Imazethapyr(EPP		1.52	0	0	186.95	172.66
Metribuzin(PRE)		1.62	0	0	165.01	148.33
Total post	15.68	1.90	0	0	180.77	163.19
Average:	13.54	1.71	0	0	182.93	167.67
	DOUC					
NO-TILL, 7-INCH		1 1 /	0	0	105 71	170 00
Cyanazine(EPP)	11.94	1.14	0	0	185.71	172.63
Metribuzin(EPP)		1.62	0	0	176.44	158.18
Imazethapyr(EPP		1.81	0	0	180.46	162.66
Metribuzin(PRE)		1.62	0	0	166.86	148.60
Total post	14.29	1.71	0	0	190.04	174.04
Average:	15.10	1.58 from Univer	0	0	179.90	163.22
Variable cost	races derived	from Univer	SILY OT M	innesota	values redu	uced by

Table 12. Economic analysis for 1992 tilled and no-till spring wheat grown in rotation with soybeans produced with various herbicide programs.

25% (Minnesota values assume a farmer owns all new equipment). Included in variable cost rates is equipment overhead, repairs, maintenance, and fuel. Labor is not included. Herbicide application cost was \$0.76/A. 1992 hard red spring wheat was valued at \$3.09 per bushel (average for Sept.-Nov. 1992, North Dakota Agricultural Statistics).

Table 13. Soil pH and organic matter (0 to 2 inch depth) in the fall of 1992 for various treatments in a soybean-wheat rotation experiment initiated in 1987. Data pertain to the area planted to wheat in 1992.

Herbicide treatments in soybeans	рН	Organic matter	Rep	Average pH	Average organic matter
<u>TILLED, 30-INCH ROWS</u> Trifluralin+Metribuzin(PPI) Trifluralin+Imazethapyr(PPI) Trifluralin+Clomazone(PPI) Trifluralin+Chloramben(PPI) Total postemergence Hand-weeded check Average:	7.8 7.9 7.7 7.7 7.8 8.0 7.8	(%) 4.2 3.9 4.0 4.1 4.1 4.1 4.0 4.0	1 2 3 4 <u>LSD</u>	7.3 8.0 7.9 8.0 5% 0.14	4.1 4.1 3.6 4.6 0.15
<u>NO-TILL, 30-INCH ROWS</u> Cyanazine(EPP) Metribuzin(EPP) Imazethapyr(EPP) Metribuzin(PRE) Total postemergence Hand-weeded check Average:	7.7 7.9 7.9 8.0 7.8 7.8 7.8 7.8	4.2 4.1 4.2 4.2 3.9 4.2 4.1			
NO-TILL, 7-INCH ROWS Cyanazine(EPP) Metribuzin(EPP) Imazethapyr(EPP) Metribuzin(PRE) Total postemergence Hand-weeded check Average:	7.7 8.0 7.7 7.8 7.7 7.8 7.7 7.8 7.7	$\begin{array}{c} 4.1 \\ 4.3 \\ 4.0 \\ 4.0 \\ 4.2 \\ 4.1 \\ 4.1 \end{array}$			
Treatments in a tillage (LSD 5%) <u>Tillage effect</u>	NS NS	NS NS			

. . .

<u>Multiple applications of bentazon in drybeans, Fargo 1993</u>. The experiment was established on a conventionally tilled silty clay with pH 7.8 and 4% organic matter. Oilseed sunflower seed was spread by hand before seedbed preparation to simulate volunteer sunflowers. Othello pinto beans were planted 1.5 inches deep at 70,000 seeds/A and in 30-inch rows. Plots were treated either 1, 2, 3, or 4 times, each time at the lb/A rate shown in the table below. Treatment dates were as follows: July 9 for plots treated once; July 9 and June 28 for plots treated twice; July 9, June 28, and June 22 for plots treated 3x; July 9. June 28, June 22, and June 15 for plots treated 4x. All herbicides were applied with a bicycle wheel or backpack sprayer delivering 17 gal/A with 8002 nozzles and 40 psi. Conditions on June 15 were as follows: unifoliolate drybeans, 2 to 3 inches tall; cotyledonary sunflowers, wild mustard, and redroot pigweed; kochia 0.5 inch tall: 2-leaf foxtail; air temperature 62 F: relative humidity 50%; wind 2 to 5 mph; sunny skies; dry soil surface. Conditions on July 9 were: 1 to 2 trifoliolate drybeans (yellowed from water stress). 4- to 6-leaf and 2- to 4-inch-tall sunflowers, 6-leaf and 4-inch-tall wild mustard, 4- to 6-leaf and 2-inch-tall lambsquarters, 1- to 2-inch-tall kochia, 70% relative humidity, 80 F air temperature, wind 5 to 10 mph, sunny skies, and wet soil. The entire experiment was sprayed on July 12 with sethoxydim at 0.2 lb/A plus Scoil at 1 quart/A for foxtail control. Visual estimates of weed control were made July 23 and Aug. 10. Plot size was 10 by 30 ft and the experiment was a randomized complete block design with four replications.

							ontro	1		
<u>Treatment</u> ^a	Rate ^b	No. of	Eva			<u>y 23</u>	Eva			
	(1b/A)	<u>applications</u>	Cosf	Wimu	Colq	KOCZ	<u>Cosf</u> %)	Wimu	Cold	KOCZ
	(12,11)					(/0)			
Bentazon+POC	0.25+10	4	3	100	76	98	3	99	64	96
Bentazon+POC	0.33+10	3	3	100	34	79	25	75	25	46
Bentazon+POC Bentazon+POC	0.5+1Q 1+1Q	2	0	99	31	64	0	83	0	36
Bentazon+Dash	0.25+0.50	4	0 6	94 99	8	52	0	96	0	53
Bentazon+Dash	0.33+0.50		8	100	90 79	77 98	3 0	99 100		-
Bentazon+Dash	0.5+0.50	2	0	100	76	100	3	95	73	98 100
Bentazon+Dash	1+0.5Q	1	Õ	93	5	88	Ő	97	3	89
Bentazon+AS	0.25+2.5	4	0	100	53	86	18	99	4	86
Bentazon+AS	0.33+2.5	3	5	97	0	16	9	97	0	5
Bentazon+AS Bentazon+AS	0.5+2.5 1+2.5	2	0	96	9	6	0	42	1	5
DentaZONAS	172.0	T	0	98	5	8	0	43	0	1
C.V. %			317	4	45	26	390	22	96	39
LSD 5% ^d POC = petrole			NS	5	23	22	NS	25	21	39 29
^a POC = petrole	um oil adju	uvant contain	ing 1	7% em		and the second design of the s	Dash =	D 1		Sprav

adjuvant from BASF, different from Dash; AS = ammonium sulfate. Q = quart per acre; rate shown indicates the amount applied for each separate application. Thus, a plot receiving 0.25 lb/A bentazon four times was treated with a total of 1 lb/A (all plots received a total of 1 lb/A).

<u>Summary</u>. Extremely heavy rains in July slowed crop growth and made evaluation of weed control and crop injury difficult. Volunteer sunflowers were not controlled by any treatments. Other weeds, however, were controlled most effectively by four separate applications of 0.25 lb/A bentazon.

Bentazon, acifluorfen, and imazethapyr in drybeans, Fargo 1993. The experiment was established on a conventionally-tilled silty clay with pH 7.8 and 4% organic matter. Oilseed sunflower seed was spread by hand (to simulate volunteer sunflower) before tilling the entire area once with a field cultivator 3 to 5 inches deep to prepare a seedbed. Othello pinto beans were planted 1.5 inches deep on June 2 at 70,000 seeds/A using a Hiniker no-till planter set on 30-inch rows. The first POST treatments were applied June 15 using a bicycle wheel sprayer delivering 17 gal/A with 8002 nozzles, 40 psi, and the following conditions: unifoliolate drybeans, 2 to 3 inches tall; cotyledonary sunflowers, wild mustard, and redroot pigweed; 0.5-inch kochia; 2-leaf yellow foxtail; air temperature 62 F; RH 50%; sunny skies; dry soil surface; wind 2-5 mph. The second POST treatments were applied July 9 under very wet conditions using a 4-nozzle backpack sprayer with nozzles, gpa, and pressure as above, and conditions as follows: 1- to 2-trifoliolate, 3- to 4-inch-tall drybeans; 4- to 6-leaf, 2- to 4-inch-tall sunflowers; 4- to 6-leaf, 2-inch-tall common lambs-quarters; 6-leaf, 4-inch-tall wild mustard, 2- to 4-leaf, 1-inch-tall redroot pigweed; 1- to 2-inch-tall kochia; air temperature 80 F; RH 70%; wind 5 to 10 mph; sunny skies; wet soil surface. The entire experiment was sprayed July 12 with 0.2 lb/A sethoxydim plus 1 quart/A Scoil for foxtail control. Estimates of percentage weed control were made July 23 and Aug. 11. Drybean yields were taken by hand Sept. 28 from the two center rows of each plot. Plot size was 10 by 26.5 ft and the experiment was a randomized complete block design with four replications.

					WE	eed co	ontro				
			Eva	luated			Contraction of the local division of the loc	the second s	d Aug	11	Grain
<u>Treatment^a</u>	Rate ^D		Cosf			KOCZ			Colq		yield
	(1b/A)					(%	<u>%)</u>				(1b/A)
Untreated	0		0	0	0	0	0	0	0	0	182
Bentazon+POC/ Bentazon+POC	0.5+10/ 0.5+10		10	100	77	100	0	97	85	99	258
Bent+Acif+POC/ Bent+Acif+POC	0.5+0.06+0.5Q/ 0.5+0.06+0.5Q		11	100	88	99	5	100	77	89	329
Bent+Imep+POC/ Bentazon+POC	0.5+0.016+1Q/ 0.5+1Q		20	100	96	100	6	95	74	99	413
Ben+Imep+X7+28%/ Bentazon+POC	0.5+0.016+0.13%+2 0.5+10	.5%/	30	100	99	100	0	98	95	99	405 205
Bentazon+POC Ben+Imep+X7+28%/	1+1Q 0.5+0.016+0.13%+2	. 5%,		100	100	100	0	100	99	99	
Ben+Imep+X7+28% Ben+Imep+X7+28%/			97	100	100	100	99	100	100	100	359
Bentazon+POC Bentazon+POC/	0.5+1Q 0.5+1Q/		75	100	100	100	26	100	100	100	295
Ben+Imep+X7+28			83	100	97	100	95	100	96	100	253
C.V. %			31 17	0 NS	11 13	1	16 6	4	16 19	5 6	39 NS
<u>LSD 5%</u> ^a Acif = Acifluor	fen: Imep = Imazet	hap	+ /	ent o		= be				etrol	the second s

Acif = Acifluorfen; Imep = Imazethapyr concentrate containing 17% emulsifier. b1Q = 1 quart/A; 0.5Q = 0.5 quart/A.

Bentazon combinations in drybeans, Farqo 1993. The experiment was conducted on a conventionally-tilled silty clay with pH 7.8 and 4% organic matter. The entire experiment was treated before planting with trifluralin at 1 lb/A and incorporated twice with a field cultivator to control grasses. Othello pinto beans at 70,000 seeds/A and Upland navy beans at 90,000 seeds/A were planted 1.5 inches deep in alternating rows (30 inches apart) so that the treated area would contain one row of each variety. Initial treatments (PO1) were applied June 15 with a bicycle wheel sprayer delivering 17 gal/A with 8002 nozzles at 40 psi. Conditions at time of treatment were as follows: unifoliolate drybeans, 2 to 3 inches tall; air temperature 62 F: RH 50%; wind 2 to 5 mph; sunny skies; dry soil surface. Final treatments (PO2) were applied July 9 using a 4-nozzle backpack sprayer (nozzles. gpa, and pressure as above) when air temperature was 80 F. RH was 70%, wind was 5 to 10 mph, skies were sunny, the soil surface was wet, and drybeans were 1 to 2 trifoliolate and 3 to 5 inches tall. The entire experiment was cultivated Aug. 11. Drybean yields were hand harvested Sept. 17. Plot size was 10 by 26.5 ft and the experiment was a randomized complete design block with four replications.

Treatment ^a	Rate ^b	Grain Pinto	yield Navy D/A)
Untreated	0	257	259
Bentazon+POC(PO1)/ Bentazon+POC(PO2)	0.5+1Q/ 0.5+1Q	266	307
Bentazon+Acifluorfen+POC(PO1)/ Bentazon+Acifluorfen+POC(PO2)	0.5+0.06+0.5Q/ 0.5+0.06+0.5Q	304	296
Bentazon+POC(PO1)	1+1Q	297	234
Bentazon+Imazethapyr+X77+28%UAN(PO1)	0.5+0.031+0.125%+2.5%	376	301
Bentazon+Imazethapyr+X77+28%UAN(PO1)/ Bentazon+Imazethapyr+X77+28%UAN(PO2)	0.5+0.016+0.125%+2.5%/ 0.5+0.016+0.125%+2.5%	306	306
Bentazon+Sethoxydim+POC(PO1)/ Bentazon+Sethoxydim+POC(PO2)	0.5+0.15+1Q/ 0.5+0.15+1Q	325	356
C.V. % <u>LSD 5%</u> ^d POC = petroleum oil adjuvant containing factant by Valent; 28%UAN = 28% urea amm	17% emulsifier; X77 = no	27 NS pnionic	29 NS sur-

 $^{D}Q = quart/A.$

<u>Comments</u>: Due to extreme flooding in mid July, drybean injury could not be evaluated.

<u>EPTC for weed control in drybeans, Farqo 1993</u>. The experiment was established on a conventionally tilled silty clay with pH 7.8 and 4% organic matter. On June 2 the entire experiment was worked with a field cultivator. All PPI treatments were applied using a bicycle wheel sprayer with 8002 nozzles delivering 17 gal/A at 40 psi when air temperature was 62 F, relative humidity was 50%, skies were sunny, wind was 5 to 9 mph, and the soil surface was dry. All treatments were immediately incorporated with two passes in opposite directions using a field cultivator set to till 2 to 3 inches deep. Othello pinto beans were planted 1.5 inches deep at 70,000 seeds/A on 30-inch rows. Visual estimates of percentage weed control were made July 2 and Sept. 9. Grain yields were taken by hand from the center two rows of each plot on Sept. 14. Plot size was 10 by 26.5 ft and the experiment was a randomized complete block design with four replications.

			Evalua	ated .	July 2	2		Evalua	ated S	Sept.	9	Grain
<u>Treatment^a</u>	Rate	Fxt1	Wimu		KOCZ			Wimu	Cold	KOCZ	Rrpw	yield
11 00 0110110	(1b/A)					(;	%)——					(1b/A)
EPTC EPTC+Trif EPTC+Etha EPTC+Alac&Trif EPTC+Imep Weedy check	4 2.2+0.5 2.2+0.75 2.2+0.5&0.06 2.5+0.031	85 98 99 3 98 100 0	20 11 46 39 100 0	97 99 100 92 100 0	6 76 100 0 100	99 100 100 96 100 0	18 74 61 18 46 0	13 0 6 10 100 0	82 100 100 85 100 0	15 95 99 0 100 0	47 100 100 95 100 0	342 389 458 377 481 207
C.V. %	0	14	57	4	26	3	45	79	9	20	26	23
LSD 5%		16	28	4	21	4	24	23	10	1/	31	129
$\frac{d}{EPTC} = Eptam$	7E emulsifia		concer				Trefl			lsifi		concen-
	Sonalan 3E						Alac			eeaom solu		hich is concen-

2.67 lb/gal alachlor + 0.33 lb/gal trifluralin; Imep = Pursuit soluble concentrate.

<u>Comments</u>. Low temperatures throughout the season and extremely heavy rains during July produced poor crop growth and low yields, and made it difficult to evaluate any crop injury.

Economics of fallow with Detectspray, broadcast sprayer, and tillage, Fargo 1993. The experiment was established on a silty clay with pH 7.8, 4.5% organic matter, and standing wheat stubble. The objective was to compare the full-season economics of controlling weeds as needed in fallow using Detectspray. a conventional broadcast sprayer, or tillage. Herbicide treatments were applied with a sprayer mounted on an all-terrain vehicle treating a 10-ft-wide effective spray swath (6 nozzles spaced 20 inches apart). Plot size was 20 by 220 ft, requiring two adjacent passes of the sprayer to treat the entire plot area. Alleys 10 by 220-ft were placed between plots to protect against spray drift from one plot to the next. All herbicides were applied with X-77 nonionic surfactant at 0.5% v/v and were applied at 7 mph and 25 psi pressure using extended-range nozzle tips. Standard broadcast treatments were applied at 5 gal/A with 80015 nozzles, while Detectspray treatments were applied at 10 gal/A with 8003 nozzles. Higher spray volume was used for Detectspray because of the potential for spray displacement by wind. Tillage was done 2 to 3 inches deep with a field cultivator. The experiment was a randomized complete block design with four replications.

All treatments (Detectspray, conventional broadcasting, and tillage) were applied on an as-needed basis as judged by the investigator. The tilled treatment was tilled when weeds were 4 to 5 inches tall. Weed stages at time of herbicide application are given in Table 1.

Costs and prices used to generate the economic analysis (Table 2) were as follows:

1993 herbicide prices were obtained from Ostlund Chemical Co. in Fargo and were \$37/gal for glyphosate (Roundup RT, 3 lb ae/gal), \$9.50/gal for 2,4-D dimethylamine, and \$17.50/gal for X-77 surfactant. Conventional broadcast application cost was \$0.76/A and tillage cost was \$3.19/A (both supplied by Univ. of Minnesota Exten-

Application	Woods process	t at application	Envir	<u>onmental</u> c	
date	<u> </u>	<u>t at application</u> Size	Air temp.	Relative humidity	Soil
£			(F)	(%)	<u>moisture</u>
May 11	volunteer wheat dancelion kochia	4 to 6 inches tall 4 to 8 inches diam. 1 inch tall	81	35	dry
May 13	Same as May 11	Same as May 11	53	70	dry
June 15	dandelion volunteer wheat Canada thistle kochia yellow foxtail cocklebur	8 to 12 inches diam. 6 to 8 inches tall 6 to 8 inches tall 4 to 6 inches tall 1 to 3 inches tall 4 inches tall	66	50	moist
Sept. 10	volunteer wheat yellow foxtail redroot pigweed dandelion <u>Canada thistle</u>	4 to 6 inches tall 4 to 6 inches tall 2 to 6 inches tall 4 to 8 inches diam. 6 to 10 inches tall	58	-	dry

<u>Table 1</u>. Weed species and sizes and environmental conditions at time of applications in fallow at Fargo.

sion). Conventional broadcasting was assumed to be done by the farmer and labor was assumed to be "free". Detectspray application cost was assumed to be done by a custom applicator and was estimated at \$3.23/A. This includes a custom broadcast cost of \$2.48/A (U. of Minn. Extension) plus an additional \$0.75/A premium for Detect-spray application (figure supplied by Kelly Johnson, Saskatchewan custom applicator, adjusted for a U.S.-Canada exchange rate of \$1.00:\$0.75).

1993 was unusually cool throughout the season and wet through July with extremely wet conditions during the last 2 weeks of July following over 5 inches of rain July 16. Weed growth on no-till fallow plots was especially slowed by these conditions.

<u>Table 2</u>. Comparative economics of using Detectspray, conventional broadcasting, and tillage for weed control in fallow at Fargo.

Treatment plan	Herbicide <u>treatme</u> Herbicide	ent	or tilla <u>applied</u> ate	Date	Spray vol. red.	Herbi- cide+S	Cost ^a Appli- cation	Total		
<u>First applic</u> Broadcast Detectspray Tillage	<u>ation</u> Glyt+2,4-D Glyt+2,4-D None		25+1 25+1 -	(1b/A) 5/13 5/11 5/3	(%) - 59 -	5.90 2.60	—(\$/A)— 0.76 3.23 -	6.66 5.83 3.19		
<u>Second appli</u> Broadcast Detectspray Tillage	<u>cation</u> Glyt+2,4-D Glyt+2,4-D None		28+1 28+0.5 -	9/10 6/15 6/11	43	6.27 3.15 -	0.76 3.23 -	7.03 6.38 3.19		
<u>Third applic</u> Broadcast Detectspray Tillage	<u>ation</u> None Glyt+2,4-D None	0	.28+0.38 -	9/10 7/12	- 34 -	0 3.45 -	0 3.23 -	0 6.68 3.19		
<u>Fourth appli</u> Broadcast Detectspray Tillage	<u>cation</u> None None None		- -	- 8/4		0 0 -	0 0 -	0 0 3.19		
<u>Fifth applic</u> Broadcast Detectspray Tillage	<u>cation</u> None None None		- - -	- 9/1	- - -	0 0 -	0 0 -	0 0 3.19		
<u>Total</u> Broadcast Detectspray Tillage	Glyt+2,4-D Glyt+2,4-D None	0 0	.53+2 ^b .45+0.88 -	b _ _	- 45 -	12.17 9.20 -	1.52 9.69 -	13.69 18.89 15.95		
C.V. % LSD 5% ⁴ X-77 nonionic surfactant (S) at 0.5% v/v was added to all treatments; herbicide cost includes surfactant cost; glyt = glyphosate; 2.4-D = 2.4-D dimethylamine										

herbicide cost includes surfactant cost; glyt = glyphosate; 2.4-D = 2,4-D dimethylamine. BRepresents the total amounts of glyphosate and 2,4-D applied for

"Represents the total amounts of glyphosate and 2,4-D applied for these treatments. <u>Sulfosate and glyphosate for control of volunteer wheat and foxtail, Fargo 1993</u>. Marshall wheat was planted May 12 at 90 lb/A on silty clay soil to simulate volunteer wheat. Treatments were applied June 21 using a bicycle wheel sprayer delivering 8.5 gal/A with 8001 nozzles and 40 psi. Conditions at time of treatment were: wheat 6 to 8 inches tall with 5.5 leaves (including two tillers), yellow foxtail 3- to 5-leaf and 2 to 4 inches tall, air temperature 87 F, relative humidity 65%, wind 3 to 7 mph, skies sunny, and the soil was dry at the surface. Visual estimates of percentage weed control were made July 2 and July 19. Plot size was 10 by 30 ft and the experiment was a randomized complete block design with four replications.

		Weed control			
<u>Treatment^a</u>	Rate	<u>Eval.</u> Wheat	<u>July 2</u> Yeft	<u>Eval. Jul</u> Wheat	<u>y 19</u> Yeft
	(1b/A)			-(%)	
Sulfosate Sulfosate Sulfosate Sulfosate+2,4-D Sulfosate+2,4-D Sulfosate+Dicamba Sulfosate+Dicamba Sulfosate+Dicamba Glyphosate Glyphosate Glyphosate+2,4-D Glyphosate+Dicamba Glyphosate+Dicamba Glyphosate+Dicamba	$\begin{array}{c} 0.19\\ 0.25\\ 0.375\\ 0.19+0.25\\ 0.25+0.25\\ 0.375+0.25\\ 0.19+0.125\\ 0.25+0.125\\ 0.375+0.125\\ 0.375+0.125\\ 0.19\\ 0.25\\ 0.19+0.25\\ 0.25+0.25\\ 0.19+0.125\\ 0.25+0.125\\ 0.25+0.125\\ \end{array}$	23 33 70 18 35 78 25 41 68 91 96 60 89 76 90	84 88 97 63 82 100 88 84 99 99 100 99 98 100 100	$\begin{array}{c} 46\\ 78\\ 98\\ 54\\ 89\\ 99\\ 43\\ 91\\ 98\\ 100\\ 100\\ 99\\ 100\\ 99\\ 100\\ 99\\ 100\\ 99\\ 100\\ 99\\ 100\\ \end{array}$	88 95 79 92 99 92 94 99 99 99 99 99 99
C.V. % LSD 5%		14 11	12 14	13 15	10 12
"All treatments were applied with X77 nonionic surfactant at 0.25%					

v/v. 2,4-D was the dimethylamine salt.

<u>Summary</u>. Glyphosate controlled wheat and yellow foxtail better than did sulfosate. 2.4-D appeared to antagonize control with glyphosate but the antagonism was not observed at the latter evaluation.
Leafy spurge control with quinclorac applied with various adjuvants. Rodney G. Lym. Quinclorac is an auxin-type herbicide with moderate soil residual. Previous greenhouse research at North Dakota State University has shown that quinclorac will injure leafy spurge and may be more effective when applied with a seed-oil adjuvant rather than alone. The purpose of this research was to evaluate quinclorac applied alone and in combination with picloram or various spray adjuvants as an annual retreatment.

The experiment was established near West Fargo on September 14, 1990, when leafy spurge was in the fall regrowth stage, 20 to 30 inches tall with 2 to 3 inch long new fall growth on stems. Retreatments were applied on approximately the same date in 1991 and 1992. Herbicides were applied using a tractor-mounted sprayer delivering 8.5 gpa at 35 psi. The plots were 10 by 30 ft in a randomized complete block design with four replications. Evaluations were based on a visual estimate of percent stand reduction as compared to the control. Previous research has shown that quinclorac provided the best leafy spurge control when fall-applied.

		and a second	Evaluation date						
Treatment	Rate	June 91	June 92	June 93	Sept 93				
	— lb/A —	ere entre	% c	control ———					
Quinclorac + BAS-090	1 + 1 qt	90	93	99	92				
Quinclorac + Scoil	1 + 1 qt	74	95	99	94				
Ouinclorac	1	49	82	89	59				
Quinclorac + picloram	1 + 0.5	85	97	97	94				
Quinclorac + picloram + BAS-090	1 + 0.5 + 1 qt	91	99	99	97				
Picloram + 2.4-D	0.5 + 1	81	92	94	90				
Picloram $+ 2.4-D + Scoil$	0.5 + 1 + 1 qt	43	69	92	61				
Picloram $+ 2,4-D + BAS-090$	0.5 + 1 + 1 qt	57	83	94	73				
Picoram + Scoil	0.5 + 1 qt	71	82	95	60				
Picloram	0.5	60	84	96	81				
LSD (0.05)		28	14	6	28				

Treatments applied annually in September for 3 yr.

Quinclorac either alone or with Scoil provided better leafy spurge control in June 1992 following a second application compared to June 1991 (Table). Leafy spurge control in June 1993 following a third application averaged 92% or better with all treatments except when quinclorac was applied alone. Quinclorac at 1 lb/A plus BAS-090 or the methylated-seed-oil adjuvant Scoil provided better long-term leafy spurge control than quinclorac applied alone. Control in September 1993, which was 12 months after the third annual treatment averaged 93% with quinclorac plus an additive but only 59% when quinclorac was applied alone. Control with quinclorac plus BAS-090 or Scoil was similar to picloram plus 2,4-D at 0.5 plus 1 lb/A, the most commonly used fall-applied treatment. Quinclorac applied with picloram or picloram plus BAS-090 provided similar control to picloram plus 2,4-D and quinclorac plus BAS-090 or Scoil. Scoil applied with picloram did not improve leafy spurge control compared to picloram alone and both Scoil and BAS-090 reduced control when applied with picloram plus 2,4-D.

Quinclorac plus BAS-090 or Scoil fall-applied provided good leafy spurge control and may be an alternative to picloram plus 2,4-D. There was no grass injury with any treatment. (Published with approval of the Agric. Exp. Stn., North Dakota State Univ., Fargo 58105). Leafy spurge control with imazethapyr, imazaquin, quinclorac, and nicosulfuron. Rodney G. Lym and Calvin G. Messersmith. Previous research at North Dakota State University has shown that fall-applied nicosulfuron at 1 to 2 oz/A, imazethapyr and imazaquin at 2 to 4 oz/A, and quinclorac at 16 to 24 oz/A provide good leafy spurge control. Also, control occasionally has been increased when these herbicides have been applied with an adjuvant. The purpose of this research was to evaluate imazethapyr, imazaquin, quinclorac, and nicosulfuron with several spray adjuvants fall-applied for leafy spurge control.

The experiment was established at Hunter and Chaffee, ND on September 2 and 6, 1991, respectively. Leafy spurge at Hunter was 16 to 20 inches tall with 4- to 6-inch long sparse fall regrowth on stems, red leaves and moisture stressed, while at Chaffee it was 28 to 36 inches tall, with lush, dense fall regrowth with green leaves and adequate soil moisture. The soil at Hunter was sandy with pH 7.4 and 2.3% organic matter and at Chaffee was a sandy loam with pH 7.8 and 6.7% organic matter. Herbicides were applied using a tractor-mounted sprayer delivering 8.5 gpa at 35 psi. Plots were 10 by 30 ft, and each treatment was replicated four times in a randomized complete block design. A follow-up treatment of picloram plus 2,4-D at 8 + 16 oz/A was spring-applied on June 22, 1992 to the rear one-third of all plots, and the original treatment was reapplied to the whole plot in September 1992. Visual evaluations were based on percent stand reduction as compared to the control.

Quinclorac tended to provide the best leafy spurge control at both locations, and control, when averaged across rates and adjuvants, averaged 97 and 69% control 9 and 12 months after treatment (MAT), respectively (Table 1). Control 9 MAT, averaged over rate and adjuvant, was higher at Chaffee than Hunter with imazethapyr, imazaquin, and nicosulfuron averaging 27, 61 and 42% at Hunter and 85%, 93 and 74% at Chaffee, respectively. The quinclorac treatments and imazaquin plus Scoil (a methylated-seed oil adjuvant) were the only treatments to provide similar control at Chaffee and Hunter.

Nicosulfuron provided an average of 58 and 22% control 9 and 12 MAT, respectively, and control was similar regardless of rate or adjuvant (Table 1). Imazaquin and imazethapyr tended to provide better leafy spurge control when applied with Scoil than X-77 surfactant, especially at Hunter. However, control with quinclorac plus BAS-090 or Scoil was similar at both locations regardless of herbicide rates. Retreatment with picloram plus 2,4-D provided 90% control 2 MAT, averaged over both locations, and was similar regardless of the original treatment.

In general, quinclorac, following a second treatment in September 1992, provided better leafy spurge control than the other herbicides evaluated (Table 2). Quinclorac at 24 oz/A, which averaged 90% control in August 1993 (11 months after the second treatment), provided the best long-term control regardless of additive. This control of 90% was much better than 62% for the standard treatment of picloram plus 2,4-D in August 1993. No other herbicide evaluated provided long-term leafy spurge control comparable to picloram plus 2,4-D.

In summary, quinclorac had the most promise for consistent leafy spurge control of the new herbicides evaluated. Control was similar to or better than picloram plus 2,4-D at 8 + 16 oz/A, the standard fall-applied treatment. Nicosulfuron may be useful for leafy spurge control in cropland, but previous research has shown that this herbicide injures grass and would not be acceptable for pasture and rangeland use. (Published with approval of the Agric. Exp. Stn., North Dakota State Univ., Fargo 58105).

Table 1. Leafy spurge control with various herbicides applied September 1991 alone and then retreated	ed with picloram plus 2,4-D in June
1992 (Lym and Messersmith).	

		Hunter				Chaffee		Mean			
		May 92	A	igust 92	May 92	Aug	gust 92	May 92	Au	gust 92	
		Con-	Con-	Retreat-	Con-	Con-	Retreat-	Con-	Con-	Retreat-	
Treatment	Rate	trol	trol	ment*	trol	trol	ment	trol	trol	ment	
	- oz/A -					_ % _					
Imazethapyr + X-77	2 + 0.5%	5	0	98	76	8	86	41	4	92	
Imazethapyr + X-77	4 + 0.5%	36	6	99	85	14	71	61	10	85	
Imazethapyr + Scoil	2 + 1 qt	20	1	97	90	29	82	55	15	89	
Imazethapyr + Scoil	4 + 1 qt	47	9	93	88	43	86	68	26	89	
Imazaquin + X-77	2 + 0.5%	34	3	94	85	10	90	60	6	92	
Imazaquin + X-77	4 + 0.5%	38	6	92	98	36	91	69	21	91	
Imazaquin + Scoil	2 + 1 qt	84	8	83	92	38	95	88	23	89	
Imazaquin + Scoil	4 + 1 qt	87	13	89	96	49	82	92	31	85	
Quinclorac + BAS-090	16 + 1 qt	91	38	97	100	82	97	95	60	97	
Quinclorac + BAS-090	24 + 1 qt	95	65	99	100	93	98	97	79	99	
Quinclorac + Scoil	16 + 1 qt	93	44	99	99	72	97	96	58	98	
Quinclorac + Scoil	24 + 1 qt	97	67	99	100	94	96	98	80	98	
Nicosulfuron + X-77	1 + 0.5%	34	5	98	72	28	83	53	17	91	
Nicosulfuron + X-77	2 + 0.5%	27	26	98	75	15	81	51	20	89	
Nicosulfuron + Scoil	1 + 1 qt	60	14	85	80	30	86	70	22	86	
Nicosulfuron + Scoil	2 + 1 qt	46	42	87	70	12	74	58	27	81	
Picloram $+ 2,4-D$	8 + 16	88	70	97	82	35	87	85	53	92	
	0,10	50	10	,	02	55	51	55	00		
LSD (0.05)		23	25	NS	14	22	17	14	34	NS	
Picloram plus 2,4-D at 8	+16 oz/A app	lied to the re	ear one-	third of each	plot on Jun	e 22, 199	2.				

Table 2. Leafy spurge control with various herbicides applied September 1991 and 1992 alone, with the back one-third retreated with picloram plus 2,4-D in June 1992 (Lym and Messersmith).

			Hunt	er			Cha	ffee				Mean	
		Ma	ay 93	Au	igust 93]	May 93	A	ugust 93	N	lay 93	Aug	gust 93
		Con-	Retreat-	Con-	Retreat-	Con-	Retreat-	Con-	Retreat-	Con-	Retreat-	Con-	Retreat-
Treatment	Rate	trol	ment ^a	trol	ment ^a	trol	ment	trol	ment	trol	ment ^a	trol	ment
	- oz/A						%						
Imazethapyr+X-77	2+0.5%	33	88	2	5	63	89	10	38	47	88	6	21
Imazethapyr+X-77	4+0.5%	69	99	10	53	77	83	18	21	73	91	14	37
Imazethapyr+Scoil	2+1 qt	61	88	4	49	89	97	35	39	75	92	19	44
Imazethapyr+Scoil	4+1 qt	95	100	22	25	96	100	26	22	95	100	24	23
Imazaquin+X-77	2+0.5%	56	81	2	17	74	93	13	14	. 65	87	7	15
Imazaquin+X-77	4+0.5%	88	100	4	41	71	94	12	40	79	97	8	41
Imazaquin+Scoil	2+1 qt	94	96	6	15	90	99	32	36	92	98	19	25
Imazaquin+Scoil	4+1 qt	99	100	16	18	98	99	25	32	98	99	20	25
Quinclorac+BAS-090		99	100	75	85	100	100	77	78	99	100	76	82
Quinclorac+BAS-090	24+1 qt	100	100	92	99	100	100	81	73	100	100	86	86
Quinclorac+Scoil	16+1 qt	100	100	77	100	99	100	67	73	99	100	71	86
Ouinclorac+Scoil	24+1 qt	100	100	94	100	100	100	92	84	100	100	93	92
Nicosulfuron+X-77	1+0.5%	84	99	19	57	95	98	42	35	90	98	30	46
Nicosulfuron+X-77	2+0.5%	97	100	45	89	87	99	41	54	92	99	43	71
Nicosulfuron+Scoil	1+1 qt	96	99	51	79	94	97	45	49	95	98	48	64
Nicosulfuron+Scoil	2+1 qt	86	91	33	54	93	97	32	34	89	94	32	44
Picloram+2,4-D	8+16	98	99	75	79	95	100	49	48	97	99	62	64
LSD (0.05)		18	13	27	40	15	10	30	36	11	8	20	27

Retreatment: Picloram plus 2,4-D at 8+16 oz/A applied to the rear one-third of each plot on June 22, 1992, the original treatment was reapplied to the whole plot in September 1992.

<u>Comparison of picloram amine, ester, and potassium salt formulations for leafy spurge control</u>. Rodney G. Lym. Picloram formulated as the potassium (K) salt (Tordon 22K) has been the most effective herbicide for leafy spurge control. However, picloram is poorly absorbed into leafy spurge, so relatively high rates are used which means high treatment costs. The purpose of this research was to evaluate an amine and ester formulations of picloram for leafy spurge control.

The liquid picloram formulations evaluated included a triisopropanol amine, isooctyl ester, and K-salt. The amine formulation was commercially combined with 2,4-D triisopropanol amine at a ratio of 1:4 (Tordon 101) and the ester was commercially combined with triclopyr butoxyethyl ester at 1:2 (Access). Previous research at North Dakota State University has shown that triclopyr does not control leafy spurge so any control from the ester combination was assumed to be from only picloram.

A series of experiments was established during the true-flower, flower- to seed-set, and fall- regrowth growth stages of leafy spurge. Treatments were applied on June 8, 1992 near Valley City, June 26 near West Fargo, and September 9 near Hunter, ND for the true-flower, early-seed-set, and fall-regrowth growth stages, respectively. Treatments were reapplied on a similar date in 1993. Treatments were applied with a tractor-mounted sprayer delivering 8.5 gpa at 35 psi. The experiments were in a randomized complete block design with four replications, and plots were 10 by 30 ft. Treatments were evaluated visually based on percent stand reduction as compared to the control.

Table. Comparison of picloram amine, ester, and potassium salt formulations for leafy spurge control, applied at three leafy spurge growth stages in 1992 (Lym).

			th stage						
		Months after first treatment							
		Flower*			Seed-set		Fall		
Treatment	Rate	3	12	15	2	11	9	12	
	— oz/A —		ine besterne state and state of the	%	control				
Picloram amine $+ 2,4-D^{b} + X-77$	4 + 16 + 0.5%	96	76	97	96	12	82	2	
Picloram amine $+ 2,4-D^{b} + X-77$	8 + 32 + 0.5%	99	92	97	98	6	94	25	
Picloram ^c + 2,4-D amine + X-77	4 + 16 + 0.5%	92	69	93	95	9	87	2	
Picloram ^c + 2,4-D amine + X-77	8 + 32 + 0.5%	98	80	97	98	9	97	49	
Picloram ester + triclopyr ^d + picloram ^c	1 + 2 + 3	93	64	96	93	5	74	2	
Picloram ester + triclopyr ^d + picloram ^c	1+2+7	97	81	95	96	7			
Picloram ester + triclopyr ^d + picloram ^c	2 + 4 + 6	98	83	94	95	3	97	19	
Picloram ester + triclopyr ^d + picloram ^c + 2,4-D									
amine	1 + 2 + 3 + 16	96	92	90	90	3	93	20	
Picloram ^c	4	99	83	94	88	6	70	3	
Picloram ^e	8	98	79	96	92	• 3	84.	6	
LSD (0.05)		NS	17	NS	5	NS	20	20	

Treatments were reapplied in June 1993.

^bPicloram triisopropanol amine plus 2,4-D triisopropanol amine (1:4) - Tordon 101.

Picloram potassium salt - Tordon 22K.

^dPicloram isooctyl ester plus triclopyr butoxyethyl ester (1:2) - Access.

Leafy spurge control 12 months after treatment tended to be better with picloram amine plus 2,4-D than picloram K-salt plus 2,4-D when applied at the true flower growth stage (Table). However, control was similar with picloram amine or K-salt formulations when applied at the early-seed-set or fall-regrowth growth stages. Previous research at North Dakota State University has shown that picloram ester at 4 to 8 oz/A kills leafy spurge topgrowth rapidly and provides only short-term control. Picloram ester at 1 or 2 oz/A was applied with picloram K-salt in this study in an attempt to reduce initial leaf injury but still increase absorption and thus long-term control. However, leafy spurge control with treatments containing picloram ester were either similar to or less than treatments that contained picloram K-salt or amine formulations. (Published with approval of the Agric. Exp. Stn., North Dakota State Univ., Fargo).

<u>Comparison of liquid and powder picloram formulations applied alone or with glyphosate or</u> <u>adjuvants for leafy spurge control</u>. Rodney G. Lym. Previous research at North Dakota State University has shown that the liquid picloram K-salt formulation provided better leafy spurge control than water-soluble powder (WSP) formulations. However, control from the picloram WSP formulations was improved when applied with 2,4-D or adjuvants compared to the dry formulation alone. The purpose of this research was to further evaluate various formulations of picloram alone and with additives for improved leafy spurge control compared to the picloram K-salt formulation.

A series of experiments was established in the spring or fall of 1992 at various locations in North Dakota. All treatments were applied with a tractor-mounted sprayer delivering 8.5 gpa at 35 psi either in June or September when the plants were in the true-flower or fall- regrowth growth stages, respectively. The spring treatments were reapplied in June 1993. All experiments were in a randomized complete block design with four replications, and plots were 10 by 30 ft. Treatments were evaluated visually based on percent stand reduction as compared to the control.

The first experiment evaluated picloram formulated as the K-salt, an acid WSP (XRM-5255), or a K-salt WSP (XRM-5173) applied either alone or with Scoil (a methylated crop oil adjuvant) or 2,4-D. Picloram K-salt applied as a liquid formulation provided better leafy spurge control than the acid WSP and tended to be better than the K-salt WSP (Table 1). Control with the K-salt liquid averaged over rates was 71 and 84% 12 and 15 months after the first treatment (MAFT), compared to 53 and 65% for XRM-5255, respectively, and 64 and 72% for XRM-5173, respectively. XRM-5255 or XRM-5173 at 0.5 lb/A applied with Scoil, or 2,4-D at 0.25 lb/A provided control similar to the comparable picloram K-salt liquid formulation treatment.

The second experiment evaluated the various picloram formulations applied alone or with various liquid or powder formulations of 2,4-D at two locations in North Dakota. In general, picloram liquid and powder formulations provided similar leafy spurge control at comparable rates (Table 2). However, leafy spurge control with picloram plus 2,4-D tended to be higher when at least one of the herbicides was a liquid formulation, compared to when both were WSP formulations. The 1993 retreatments at West Fargo were delayed by wet conditions until mid-July and all treatments provided near 100% control in September (data not shown).

Picloram liquid K-salt, acid powder (XRM-5255), and K-salt powder (XRM-5173) applied in the late-flower to early-seed-set growth stage provided similar leafy spurge control when applied with 2,4-D LVE or 2,4-D amine or a seed-oil adjuvant (Table 3). Glyphosate plus 2,4-D applied at 4 + 7 oz/A provided the most consistent control at both locations. Control averaged 78 and 99% 3 and 15 MAFT applied alone or with picloram. Retreatments were delayed by wet conditions at West Fargo and were not evaluated in 1993. There was no grass injury at either location.

Glyphosate plus 2,4-D at 4 + 7 oz/A applied in September did not provide satisfactory leafy spurge control the following growing season (Table 4). Control was similar with all picloram formulations, whether applied alone or with 2,4-D or a seed-oil adjuvant. No treatment provided satisfactory control 12 months after treatment.

In summary, picloram K-salt formulation provided better leafy spurge control than the acid powder formulation when applied in mid-June during the true-flower growth stage but all formulations applied later in the growing season provided similar control. XRM-5255 or XRM-5173 provided similar leafy spurge control as liquid picloram K-salt when applied with 2,4-D or a seed-oil adjuvant. Glyphosate plus 2,4-D provided good leafy spurge control when applied in late June but not when fall-applied (Published with approval of the Agric. Exp. Stn., North Dakota State Univ., Fargo 58105).

Table 1. Comparison of picloram liquid and water-soluble powder formulations for leafy spurge control applied in June 199	2
and 1993, established near Valley City, ND. (Lym).	

		Months after first treatment				
Treatment	Rate	3	12	15		
and the second second	— lb/A —		—— % control —			
Picloram*	0.25	67	48	68		
XRM-5255 ^b	0.25	36	45	61		
XRM-5173°	0.25	51	38	52		
Picloram [*]	0.5	96	73	85		
XRM-5255 ^b	0.5	46	37	57		
XRM-5173°	0.5	85	70	71		
Picloram [*]	1	100	92	98		
XRM-5255 ^b	1	97	78	76		
XRM-5173°	1	99	84	92		
XRM-5255 ^b + Scoil	0.5 + 1 qt	98	88	75		
XRM-5173° + Scoil	0.5 + 1 qt	97	88	83		
Picloram ^a + 2,4-D	0.25 + 1	90	64	89		
XRM-5255 ^b + 2,4-D	0.25 + 1	91	57	93		
XRM-5173° + 2,4-D	0.25 + 1	91	48	93		
				I P W TINK S		
LSD (0.05)		17	25	13		
ID: I I I I I	0.017	and a state of the				

Picloram K-salt liquid - Tordon 22K.

^bPicloram acid formulated as a water-soluble powder.

Picloram K-salt formulated as a water-soluble powder.

Table 2. Comparison of picloram water-soluble acid powder, K-salt powder, and liquid K-salt formulations alone and with liquid and powder 2,4-D formulations for leafy spurge control when applied in June 1992 and 1993 at Valley City and West Fargo, ND.

Months after first treatment							
			Valley C	City	West	Fargo	Mean
Treatment	Rate	3	12	15	3	12	3
	— lb/A —	Contraction of the local division of the loc		%	control -		
VDM 50554							
XRM-5255*	0.25	69	13	60	31	8	50
XRM-5173 ^b	0.25	90	24	74	38	9	64
Picloram ^c	0.25	82	19	76	28	4	55
XRM-5238 ^d	1	56	6	62	44	9	50
2,4-D amine WSP ^e	1	41	3	63	45	6	43
2,4-D amine liquid ^f	1	48	5	58	46	5	47
XRM-5255 ^a + XRM-5238 ^d	0.25 + 1	78	23	93	52	6	65
XRM-5173 ^b + XRM-5238 ^d	0.25 + 1	68	17	88	60	12	64
Picloram ^c + XRM-5238 ^d	0.25 + 1	90	37	95	63	9	76
Picloram ^e + 2,4-D amine WSP ^e	0.25 + 1	83	20	95	62	19	72
Picloram ^e + 2,4-D amine liquid ^f	0.25 + 1	91	26	96	77	19	84
XRM-5255 ^a + 2,4-D amine WSP ^e	0.25 + 1	90	30	96	68	18	78
XRM-5173 ^b + 2,4-D amine WSP ^e	0.25 + 1	93	31	95	68	15	80
LSD (0.05)		22	12	18	17	9	27

*Picloram acid formulated as a water-soluble powder.

^bPicloram K-salt formulated as a water-soluble powder.

Picloram K-salt liquid - Tordon 22K.

^d2,4-D amine water-soluble powder 85%.

*80% WSP (Savage)

^fDimethylamine (Weedar 64)

				Month	after fir	st treatn	ent	
		S	Sheyenne			Fargo	Mean	
Treatment	Rate	3	12	15	3	12	3	
	— oz/A —	-		9	6 contro	1		
Glyphosate + 2,4-D ^a + X-77	4+7+0.5%	99	69	99	91	80	74	
Glyphosate + 2,4-D ^a + picloram + X-77	4+7+4+0.5%	99	87	97	96	76	81	
XRM-5255 ^b	4	97	42	26	18	12	27	
XRM-5255 ^b + 2,4-D LVE	4+16	97	36	98	85	21	28	
XRM-5255 ^b + 2,4-D amine	4+16	99	60	99	92	13	36	
XRM-5173°	4	96	48	29	40	7	28	
XRM-5173° + 2,4-D LVE	4+16	99	47	97	91	19	33	
XRM-5173 ^e + 2,4-D amine	4+16	99	41	78	96	22	32	
Picloram ^d	4	99	60	51	74	12	39	
Picloram ^d + 2,4-D amine	4+16	99	53	74	92	14	33	
Picloram ^d + 2,4-D LVE	4+16	100	55	99	92	13	34	
Picloram ^d + BAS-090	4+1 qt	100	63	99	95	28	45	
Picloram ^d + 2,4-D + BAS-090	4+16+1 qt	99	56	99	90	12	31	
Picloram ^d + Scoil	4+1 qt	99	41	96	90	17	29	
Picloram ^d + 2,4-D + Scoil	4+16+1 qt	99	48	98	91	23	35	
LSD (0.05)		2	NS	18	16	14	15	

<u>Table 3</u>. Comparison of various picloram formulations alone or with additives and glyphosate plus 2,4-D applied during the late-flower to early seed set growth stage at Sheyenne and West Fargo, ND (Lym).

^aCommercial formulation - Landmaster BW.

^bPicloram acid formulated as a water-soluble powder.

^cPicloram K-salt formulated as a water-soluble powder.

^dPicloram K-salt liquid - Tordon 22K.

Table 4. Comparison of various picloram formulations alone or with additives and glyphosate plus 2,4-D applied in September 1992 near Hunter, ND (Lym).

		Months after	Months after treatment			
Treatment	Rate	9	12			
and the second	— oz/A —	<u> </u>	ntrol ——			
Glyphosate + 2,4-D ^a + X-77	4+7+0.5%	30	0			
Glyphosate + 2,4-D ^a + picloram + X-77	4+7+8+0.5%	98	32			
XRM-5255 ^b	8	92	15			
XRM-5255 ^b + 2,4-D LVE	8+16	96	33			
XRM-5255 ^b + 2,4-D amine	8+16	96	22			
XRM-5173°	8	99	62			
XRM-5173° + 2,4-D LVE	8+16	98	40			
XRM-5173° + 2,4-D amine	8+16	95	33			
Picloram ^d	8	83	11			
Picloram ^d + 2,4-D amine	8+16	83	6			
Picloram ^d + 2,4-D LVE	8+16	84	6			
Picloram ^d + BAS-090	8+1 gt	87	20			
$Picloram^{d} + 2,4-D + BAS-090$	8+16+1 qt	90	31			
Picloram ^d + Scoil	8+1 gt	86	5			
Picloram ^d + 2,4-D amine + Scoil	8+16+1 qt	92	25			
LSD (0.05)		14	35			

Commercial formulation - Landmaster BW.

^bPicloram acid formulated as a water-soluble powder.

Picloram K-salt formulated as a water-soluble powder.

^dPicloram K-salt liquid - Tordon 22K.

<u>Comparison of various liquid and powder 2,4-D formulations for leafy spurge control</u>. Rodney G. Lym and Calvin G. Messersmith. The most cost-effective treatment for leafy spurge control is picloram plus 2,4-D. Previous research at North Dakota State University has shown that leafy spurge control is increased 15 to 25% when 2,4-D at 1 lb/A is applied with picloram at 0.5 lb/A or less compared to picloram alone. Control has been similar regardless of the 2,4-D formulation applied with picloram. Soon several formulations of 2,4-D will no longer be available because they will not be reregistered with the EPA. Also, several powder formulations of 2,4-D have been formulated to decrease the cost of container shipment and disposal. The purpose of this research was to evaluate several formulations of 2,4-D applied alone or with other herbicides for leafy spurge control.

The first experiment was established on June 7, 1990 near Valley City. Herbicides were applied using a tractor-mounted sprayer delivering 8.5 gpa at 35 psi. Retreatments were applied in 1991 and 1992. All plots were 10 by 30 ft in a randomized complete block design with four replicates. Evaluations were based on visible percent stand reduction as compared to the control.

Leafy spurge control was similar with picloram plus 2,4-D regardless of 2,4-D formulation (Table 1). Control gradually increased as the number of retreatments increased. Picloram at 0.25 lb/A provided better leafy spurge control than either 2,4-D formulation alone even when 2,4-D was applied at 4 lb/A. Control was similar at equal 2,4-D rates applied with picloram regardless of 2,4-D formulation.

The second experiment was established September 9, 1991 near Valley City using the same methods previously described. Leafy spurge was in the fall regrowth stage with red stems and leaves.

As in the previous experiment with spring-applied treatments, leafy spurge control was similar with picloram plus 2,4-D regardless of 2,4-D formulation (Table 2). No treatment provided satisfactory control 12 months after treatment including picloram plus 2,4-D at 0.5 plus 1 lb/A, the standard fall-applied treatment for leafy spurge. Control increased with all picloram plus 2,4-D treatments following a second treatment. However, picloram plus 2,4-D at 0.5 + 1 lb/A provided 73% control, which was better than picloram applied with 2,4-D at 2 lb/A which averaged 52% control averaged across all picloram rates. Previous research has shown that picloram plus 2,4-D at 0.5 + 1 lb/A will provide 90% or better leafy spurge control following 3 to 4 annual retreatments.

The third experiment was established June 8, 1992 near Valley City, ND when leafy spurge was in the yellow bract to flowering growth stage with lush growth and 18 to 24 inches tall. The 2,4-D formulations were added to water immediately prior to application and no surfactants were used.

The water soluble powder CL-782 provided only 68% topgrowth control 1 month after the first treatment (MAFT) compared to 97% or better for all other 2,4-D formulations (Table 3). Control was similar for all 2,4-D formulations 3 and 12 MAFT, including CL-782, and averaged 20 and 13%, respectively. 2,4-D butoxyethyl ester following a second treatment in June 1993 tended to provide better leafy spurge control 15 MAFT than the other 2,4-D formulations.

A fourth experiment was established August 27, 1992 near Chaffee when leafy spurge was in the fall regrowth stage. Picloram plus 2,4-D dimethylamine provided better leafy spurge control than picloram plus 2,4-D mixed amine 12 MAFT (Table 4). Imazaquin or imazethapyr applied at 4 oz/A with Scoil (methylated crop oil adjuvant) provided control similar to picloram plus 2,4-D. Control was not improved when 2,4-D mixed amine was applied with either imazaquin or imazethapyr.

In general, leafy spurge control was similar with all 2,4-D formulations. Control was enhanced when 2,4-D was applied with picloram but not with imazethapyr or imazaquin. (Published with approval of the Agric. Exp. Stn., North Dakota State University, Fargo 58105).

	1992 for leary spi					
Traatment			Months a	after first	treatmen	nt
Treatment	Rate	3	12	24	36	39
	- 1b/A -			% contro	ol ———	
2,4-D mixed amine ^a	1	27	0	0	2	00
2,4-D mixed amine ^a	2	33		0	3	20
2,4-D mixed amine ^a	4		0	0	27	36
2,4-D alkanolamine		29	0	6	47	34
2,4-D mixed amine ^a + picloram	4	43	0	8	44	39
	2 + 0.25	59	18	29	92	53
2,4-D alkanolamine + picloram	2 + 0.25	58	13	33	93	52
2,4-D mixed amine ^a + picloram	2 + 0.5	83	50	79	99	79
2,4-D alkanolamine + picloram	2 + 0.5	78	47	77	99	78
Picloram	0.25	62	4	22	88	45
Picloram	0.5	79	35	65	97	70
Picloram	1	96	89	100	100	99
2,4-D alkanolamine + picloram	1 + 0.5	77	29	78	99	
1	1 1 0.0	,,	27	10	77	75
LSD (0.05)		18	22	22	19	17
*Mixed amine salts of 2,4-D (2:1 v/v dimet	hylamine:diethand	olamine)	-HiDep.			

Table 1. Comparison of 2,4-D amine and mixed amine formulations applied alone and with picloram in June 1990 and 1991 and July 1992 for leafy spurge control (Lym and Mess

Table 2. Comparison of 2,4-D mixed amine and alkanolamine applied in September 1991 and 1992 for leafy spurge control (Lym and Messersmith).

Treatment Rate 9 12 21 24										
Rate	9	12	21	24						
— 1b/A —		% co	ntrol ——							
1	16	0	20	3						
2	15	0	15	8						
4	20	0	12	9						
2 + 0.25	67	5	94	28						
2 + 0.5	94	11	98	56						
2 + 0.5	97	9	97	47						
1 + 0.25	66	0	95	22						
1 + 0.5	96	35	99	73						
	30	6	15	20						
	$ \begin{array}{c} 1 \\ 2 \\ 4 \\ 2 + 0.25 \\ 2 + 0.5 \\ 2 + 0.5 \\ 1 + 0.25 \\ 1 + 0.25 \\ 1 + 0.5 \\ \end{array} $	Rate 9 $-1b/A -$ 1 1 16 2 15 4 20 2 + 0.25 67 2 + 0.5 94 2 + 0.5 97 1 + 0.25 66 1 + 0.5 96	Rate 9 12 $-1b/A -\%$ co 1 16 0 2 15 0 4 20 0 2 + 0.25 67 5 2 + 0.5 94 11 2 + 0.5 97 9 1 + 0.25 66 0 1 + 0.5 96 35	Rate91221 $-1b/A - $ $\%$ control1160202150154200122 + 0.25675942 + 0.59411982 + 0.5979971 + 0.25660951 + 0.5963599						

dietnanolamine)-H1-Dep.

			Month	s after	
		first treatment			common 1
Treatment	Rate	1	3	12.	15
	Ib/A		- % co	ntrol —	
2,4-D dimethylamine (Weedar 64)	2	98	20	19	46
2,4-D dimethylamine + diethanolamine (Hi-Dep)	2	98	13	11	56
2,4-D butoxyethyl ester (Weedone LV4)	2	100	18	22	57
2,4-D acid + butoxyethyl ester (Weedone 638)	2	99	18	13	75
2,4-D isooctyl(2-ethylhexyl)ester (Esteron 99)	2	99	18	10	47
2,4-D triisopropanolamine + diethylamine (Formula 40)	2	97	17	6	43
2,4-D dimethylamine 80% WSP (CL-782)	2	68	28	13	53
2,4-D dimethylamine 8.5% WSP (Savage)	2	99	26	11	47
Picloram	0.5	99	89	65	94
LSD (0.05)		11	27	17	25

Table 3. Comparison of various 2,4-D formulations applied in June 1992 and 1993 for leafy spurge control (Lym and Messersmith).

Table 4. Comparison of 2,4-D formulations applied with imazaquin or imazethapyr in the fall near Chaffee, ND (Lym and Messersmith).

	Months after treatment			
Treatment	Rate	9	12	
	— oz/A —	—— % c	control —	
2,4-D mixed amine ^a	32	81	8	
Picloram	. 8	95	27	
Picloram + 2,4-D mixed amine ^a	8 + 16	98	39	
Picloram + 2,4-D dimethylamine	8 + 16	99	61	
Imazaquin + Scoil	2 + 1 qt	93	23	
Imazethapyr + Scoil	2 + 1 qt	93	18	
Imazaquin + Scoil	4 + 1 qt	98	43	
Imazethapyr + Scoil	4 + 1 qt	85	50	
2,4-D mixed amine ^a + imazaquin + Scoil	8 + 2 + 1 qt	97	15	
2,4-D mixed amine ^a + imazethapyr + Scoil	8 + 2 + 1 qt	97	43	
LSD (0.05)		14	24	

*Mixed amine salts of 2,4-D (2:1 dimethylamine:diethanolamine) - Hi-Dep.

Evaluation of several herbicides for fringed sagebrush control. Lym, Rodney G. Fringed sagebrush (*Artemisia frigida*) is the most widely distributed and abundant species of the *Artemisia* genus. It is found from Mexico throughout the western United States to Alaska in high plains, valleys, mountains, and grasslands. Fringed sagebrush is resistant to drought and overgrazing, and increased rapidly in North Dakota mixed- and short-grass rangelands following severe drought conditions in 1988. The purpose of this research was to evaluate imazethapyr, clopyralid and metsulfuron for fringed sagebrush control.

The experiment was established near Jamestown, ND in grazed pastureland on May 30, 1991. Fringed sagebrush was in the vegetative growth stage and actively growing. Herbicides were applied using a tractor-mounted sprayer delivering 8.5 gpa at 35 psi. The plots were 10 by 35 ft in a randomized complete block design with three replications. Fringed sagebrush control evaluations were based on a visual estimate of percent stand reduction as compared to the untreated check.

	Months after treatment				t
Treatment	Rate	3	12	15	24
	– oz/A –		% (control —	
2,4-D LVE	8	56	33	28	20
2,4-D LVE	12	67	45	53	53
2,4-D LVE	16	78	79	93	85
2,4-D amine	12	41	37	30	30
2,4-D mixed amine ^a	12	44	51	56	54
Imazethapyr+Sun-It II	2+1 qt	3	5	3	3
Picloram	4	28	33	33	37
Picloram+2,4-D LVE	2+8	81	72	76	73
Picloram+2,4-D LVE	4+8	84	90	94	89
Picloram+2,4-D amine	4+8	58	60	73	79
Dicamba+X-77	8+0.25%	35	41	32	33
Dicamba+X-77	16+0.25%	70	79	47	64
Clopyralid+2,4-D	1.5+8	83	77	85	62
Clopyralid+2,4-D	3+16	92	95	98	93
Metsulfuron+X-77	0.10+0.25%	4	9	3	3
Metsulfuron+X-77	0.30+8+0.25%	17	24	23	23
Metsulfuron+2,4-D LVE+X-77	0.10+8+0.25%	65	45	53	43
LSD (0.05) *Mixed amine salts of 2.4-D (2:1.d.		23	34	45	43

^aMixed amine salts of 2,4-D (2:1 dimethylamine:diethanolamine)-Hi-Dep.

Imazethapyr and metsulfuron did not control fringed sagebrush (Table). Clopyralid plus 2,4-D provided excellent long-term control especially when applied at 3 + 16 oz/A which averaged 93% control 24 months after treatment. However, 2,4-D LVE at 16 oz/A provided 85% control and would cost only \$3 to \$4/A compared to over \$25/A for clopyralid plus 2,4-D. Fringed sagebrush control at the same 2,4-D rate was better with the LVE and mixed amine formulations than with 2,4-D amine. Picloram plus 2,4-D LVE at 4 + 8 oz/A provided similar control to 2,4-D LVE at 16 oz/A alone but would have to maintain control much longer than 2,4-D LVE alone to be cost-effective. Dicamba provided similar control to 2,4-D amine. (Published with approval of the Agric. Exp. Stn., North Dakota State University, Fargo 58105).

<u>Evaluation of various grass species to control leafy spurge.</u> Rodney G. Lym and Dwight Tober. Traditionally, herbicides have been used to control leafy spurge. Control has been relatively successful following a long-term program. However, the high cost of herbicides, potential for groundwater contamination and because of environmentally sensitive areas where herbicides cannot be used, non-chemical methods for control must be established. Recent research at the University of Wyoming has shown that several grass species are competitive with leafy spurge and have reduced the infestation density. The purpose of this research was to evaluate several grass species that may be competitive with leafy spurge in North Dakota.

The first experiment was established in a dense stand of leafy spurge (74 stems/m²) on the NDSU experiment station at Fargo. The soil was a Fargo silty clay (fine, montmorillonitic, frigid, Vertic Haplaquolls; 3.5% organic matter and pH 8.0). Plots were 10 by 45 ft., and treatments were replicated four times in a completely random design. Initial leafy spurge stand counts were recorded on May 23, 1990, immediately before the first herbicide treatment. Glyphosate plus 2,4-D at 0.4 plus 0.6 lb/A was applied to all plots when leafy spurge was in the flowering growth stage and again on July 27, 1990, to regrowth that was reflowering. The glyphosate plus 2,4-D alone treatment was applied in September 1990 through 1993.

The soilbed was prepared for seeding on August 6 and 28, 1990, and the grass was planted on August 29. The experimental site was irrigated with 1 inch of water on September 13 and 25, 1990, and 1.25 inches of rain fell on October 7. Initial grass stand establishment was estimated by counting seedlings in three 20-cm by 1-m quadrats placed over the rows on October 30, 1990.

Leafy spurge and grass species density were recounted in May 1991 through 1993. Bromoxynil plus 2,4-D at 0.25 plus 0.75 lb/A were applied in May 1991 and 1992, to control annual broadleaf weeds. The plots were harvested in mid-July 1991 through 1993 by clipping four 0.25-m² quadrats per plot. Herbage was separated into seeded grass species, weedy grass species, leafy spurge, and forbs; then oven-dried at 140 F. Herbage data are reported on a dry weight basis.

'Arthur' Dahurian wildrye, 'Bozoisky' Russian wildrye, 'Hycrest' crested wheatgrass and 'Reliant' intermediate wheatgrass established rapidly despite the dry conditions in Fall 1990 (data not shown). 'Killdeer' sideoats grama was the only species that failed to have at least a 10% stand prior to winter.

'Hycrest' crested wheatgrass had the highest stand density counts in May 1991 and reduced the leafy spurge stand equal to the herbicide treatment 1 yr after planting (Table 1). 'Killdeer' sideoats grama failed to establish. All established grass species tended to reduce leafy spurge production compared to the control 1 yr after planting (Table 2). 'Reliant' intermediate wheatgrass had the highest grass production at 2290 lb/A.

All established grass species reduced leafy spurge production compared to the control 2 yr after planting and the reduction was similar to the herbicide treatment with all species except 'Rodan' western wheatgrass and T-17596 mountain rye (Table 2). 'Arthur' Dahurian wildrye, 'Rebound' smooth brome and 'Reliant' intermediate wheatgrass produced the most herbage

and averaged 2830 lb/A. 'Rebound' smooth brome, 'Bozoisky' Russian wildrye, 'Arthur' Dahurian wildrye, and 'Hycrest' crested wheatgrass increased in production from 1991 to 1992.

'Rebound' smooth brome, 'Rodan' western wheatgrass, and 'Bozoisky' and 'Arthur' wildrye provided the highest leafy spurge control in 1993 and averaged 70, 60, 60 and 55%, respectively (Table 1). 'Rodan' western wheatgrass had the highest yield at 2560 lb/A (Table 2). Also, 'Rodan' western wheatgrass and 'Reliant' intermediate wheatgrass reduced leafy spurge production similar to the glyphosate plus 2,4-D treatments.

A second experiment was established near the Pipestem dam north of Jamestown to evaluate competitive grass species in a soil type more typical of North Dakota than Fargo clay. The initial leafy spurge stand counts were recorded on May 26, 1993 and averaged 83 stems/m². Glyphosate plus 2,4-D at 0.4 + 0.6 lb/A was applied to all plots but the control in June and again in July. The soilbed was then prepared for seeding and the grass was planted on August 24. No irrigation was necessary. The grass species planted were similar to the first study except 'Killdeer' sideoats grama and T-17596 intermediate wheatgrass were not reevaluated (Table 3). 'Pryor' slender wheatgrass, 'Lodorm' green needlegrass and 'Mankota' Russian wildrye were added to the evaluations.

All grass species evaluated at Fargo could be considered to be competitive with leafy spurge except 'Killdeer' sideoats grama. However, based on both herbage yield and leafy spurge reduction 'Rebound' smooth brome, 'Arthur' Dahurian wildrye and 'Reliant' intermediate wheatgrass would be the best species to plant into a leafy spurge infestation in a clay soil. Evaluations at Jamestown will indicate if the same species are competitive in a sandier soil.

Stand count [®]					
cies/" Leafy spurge					
1990	1991	1992	1993	reduction	
	no/0	.25m ² —	%		
45	55	25	15	70	
		30		60 .	
40	60	25	15	60	
45	70	30	20	55	
40	50	35	30	25	
40	50	35	30	25	
45	45	35	25	45	
40	70			0	
40	45	1	1	98	
40	100	65	40	0	
NS	24	12	12	26	
	45 40 40 45 40 40 45 40 40 40 40 NS	Leafy 1990 1991 45 55 40 70 40 60 45 70 40 50 40 50 40 50 40 50 40 50 40 50 40 70 40 45 40 70 40 45 40 100	$\begin{tabular}{ c c c c c c } \hline $Leafy spurge \\ \hline 1990 & 1991 & 1992 \\ \hline $no/0.25m^2$ \\ \hline 45 & 55 & 25 \\ 40 & 70 & 30 \\ 40 & 60 & 25 \\ 45 & 70 & 30 \\ 40 & 50 & 35 \\ 40 & 50 & 35 \\ 40 & 50 & 35 \\ 40 & 50 & 35 \\ 40 & 50 & 35 \\ 40 & 50 & 35 \\ 40 & 70 & $$ \\ 40 & 45 & 1 \\ 40 & 100 & 65 \\ \hline NS & 24 & 12 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c } \hline \hline Leafy spurge \\ \hline \hline 1990 & 1991 & 1992 & 1993 \\ \hline \hline 1990 & 1991 & 1992 & 1993 \\ \hline \hline no/0.25m^2 & \hline \hline \\ 45 & 55 & 25 & 15 \\ 40 & 70 & 30 & 15 \\ 40 & 60 & 25 & 15 \\ 45 & 70 & 30 & 20 \\ 40 & 50 & 35 & 30 \\ 40 & 50 & 35 & 30 \\ 40 & 50 & 35 & 30 \\ 45 & 45 & 35 & 25 \\ 40 & 70 & & \\ 40 & 45 & 1 & 1 \\ 40 & 100 & 65 & 40 \\ \hline \end{tabular}$	

Table 1. Evaluation of various grass species competitive with leafy spurge at Fargo (Lym and Tober).

^aBromoxynil + 2,4-D at 0.25 + 0.75 lb/A applied to all plots 24 May 91 and 26 May 92.

^bFour 0.25 m² quadrats counted per plot in May of each year.

Change in leafy spurge stand count from May 1990 until May 1993.

Table 2. Competitive grass species and leafy spurge production at Fargo (Lym and Tober).

						Yi	ield °					
the left of the			15	and the second second second							Proportion	
Grass species/ ^a	Grass			Leafy spurge				Total		leafy spurge		
herbicide	1991	1992	1993	1991	1992	1993	1991	1992	1993	1991	1992	1993
					— lb/A -						%	
'Rebound' smooth brome	510	3070	2120	290	45	190	2035	3170	2420	14	2	8
'Rodan' western												
wheatgrass	945	3260	2560	270	140	600	1990	3440	3280	14	4	18
'Bozoisky' Russian												
wildrye	540	1260	1170	230	95	440	1915	1630	1770	12	8	25
'Arthur' Dahurian wildrye	1180	3240	1400	220	65	580	2045	3350	2460	11	2	24
'Reliant' intermediate												
wheatgrass	2290	2180	1560	215	40	210	2700	2225	1950	8	2	11
T-17596 mountain rye	355	250	410	145	130	570	1810	830	1490	8	16	38
'Hycrest' crested												
wheatgrass	1100	1740	1060	210	95	390	2075	1935	1810	10	5	22
'Killdeer' sideoats grama ^e	1			320			2005			16		
Glyphosate + 2,4-D	0	0	0	505	10	10	2380	1100	1020	21	1	1
Control	0	0	0	505	235	630	1330	965	1480	38	24	43
LSD (0.05)	770	1415	1015	NS	85	330	NS	1420	1110	17	8	15

Bromoxynil + 2,4-D at 0.25 + 0.75 lb/A applied to all plots 24 May 91 and 26 May 92.

 $^{\mathrm{b}}\mathrm{Four}$ 0.25 m² quadrats harvested per plot 23-24 July 91 and July 92.

Total yield includes weedy grasses and forbs.

^dPercent of component in total yield.

"Killdeer' sideoats grama did not establish and was not harvested in 1992.

Table 3. Evaluation of various grass species competitive with leafy spurge near Jamestown (Lym and Tober).

	Plants	
Grass species/cultivar	seeded	
	– 1b/A –	
'Rebound' smooth brome	10.5	
'Rodan' western wheatgrass	18	
'Bozoisky' Russian wildrye	11.3	
'Arthur' Dahurian wildrye	15	
'Mankota' Russian wildrye	11.3	
'Reliant' intermediate wheatgrass	15	
'Hycrest' crested wheatgrass	10.5	
'Pryor' slender wheatgrass	9.8	
'Lodorm' green needlegrass	10.7	
'Manska' pubescent wheatgrass	15	

LSD (0.05)

Three 20-cm by 1-m cluadrats were counted on.

