1992 NORTH DAKOTA WEED CONTROL RESEARCH

Weed Research Projects, Department of Crop and Weed Sciences NORTH DAKOTA STATE UNIVERSITY Fargo, N.D. 58105

. i.

SUMMARY OF 1992 WEED CONTROL EXPERIMENTS

Crop and Weed Sciences Department North Dakota State University Fargo, North Dakota

W. H. Ahrens R. G. Lvm C. G. Messersmith J. D. Nalewaia

R. K. Zollinger - Crop and Weed Sciences Department - Extension A. G. Dexter - Crop and Weed Sciences Department - Extension North Dakota State University - University of Minnesota

Technicians

Graduate Research Assistants

K. M. Christianson M. G. Ciernia J. A. Kapaun J. L. Luecke R. F. Roach J. D. Stromberg

D. E. Bruns M. El-Antri G. J. Endres J. D. Hurbour P. J. Isakson

A. Obeidat T. W. Roebke L. J. Verwest

B. D. Kuehl

Experiments conducted in cooperation with: John Lukach, Langdon Research Center Neil Riveland, Williston Research Center Blaine Schatz, Carrington Research/Extension Center Steve Zwinger, Carrington Research/Extension Center Tom Teigen, Agronomy Seed Farm at Casselton Ben Hoag, North Central Res/Ext Center at Minot Anthony Thilmony, North Central Res/Ext Center at Minot Eric Eriksmoen, Hettinger Research Center Mark Bredehoeft, Southern Minnesota Beet Sugar Cooperative Patrick Carr. Dickinson Research Center Glenn Martin, Dickinson Research Center

Reference to commercial products or trade names is made with no intended endorsement and failure to mention products or trade names is done with no intended discrimination by North Dakota State University. Experiments with pesticides on non-labelled crops or target species does not imply endorsement of non-labelled uses of pesticides by North Dakota State University.

White Section: Experiment titles, climatic, edaphic and general information.

	I
General weed control in crops, titles	II
Weed control in reduced tillage systems	IV
Perennial weed control, titles	V
Climatic data, Carrington	VI
Climatic data, Casselton V	II
Climatic data, Crookston VI	
Climatic data, Dickinson	IX
Climatic data, Fargo	X
Climatic data, Hettinger	XI
	II
Climatic data, Minot XI	II
Climatic data, Olivia X	IV
	XV
Soil characteristics X	VI
Key to abbreviations XV	II
	IX
Gold Section: Sugarbeet Weed Control Pa	ge

Gold	Section:	Sugarbeet	Weed	Control		diave etc.

Soil applied herbicides, Danube	1
Postemergence herbicides for broadleaf weeds, Clara City	2
Postemergence herbicides for broadleaf weeds, Danube	3
Postemergence herbicides for broadleaf weeds, DeGraff	4
Postemergence herbicides for broadleaf weeds, Fairfax	5
Postemergence herbicides for broadleaf weeds, Hallock	6
Postemergence herbicides for broadleaf weeds, Cavalier	7
Postemergence herbicides for broadleaf weeds, Halstad	8
Postemergence herbicides for broadleaf weeds, Mooreton	9
Postemergence herbicides split applied, Crookston	10
Lanceleaf sage control with postemergence herbicides, Wendell	12
Common and venice mallow control with postemergence herbicides, Fargo	13
Multiple application of postemergence herbicides, Glyndon	14
Multispecies screening of postemerge sugarbeet herbicides, Fargo (NW 22)	16
Sethoxydim plus Bivert and time of application, Fargo	18
Bivert and herbicide antagonism, Fargo	19
Sethoxydim plus additives, Fargo	20
Additives with desmedipham, Glyndon	21
Desmedipham plus insecticides, St. Thomas	22
Desmedipham plus insecticides, Fargo	23
Herbicides on hand weeded sugarbeet, Fargo	24
Date of thinning and sugarbeet yield, Fargo	25
Interaction of desmedipham with Lorsban insecticide, Crookston	26
Interaction of soil applied herbicides and Lorsban insecticide, Crookston	28
Insecticide influence on simulated spray drift, Fargo	29
Time of cultivation, Fargo	30
Herbicide soil residual, Fargo (NW section 22)	31
Carryover of soybean herbicides, Fargo (NW section 22)	32
Multispecies screening of herbicides, Fargo (NW section 22)	33

Ι

Green section: General Weed Control in Crops

Green section: General Weed Control in Crops		
	Page	
Wild oat control in wheat, Fargo	1	W01
Wild oat control in wheat, Carrington	2	W010
Wild oat control in wheat, Hettinger	3	W02
Wild oat control in wheat, Minot	4	W03
Wild out control in wheats with soon in the terret to the	5	W04
Preemergence wild oat control in wheat, Fargo	6	W05
Tiller® mixtures for wild oat control, Fargo	7	W06
Imazamethabenz for wild oat and broadleaf weed control in wheat, Fargo .	8	W07
Imazamethabenz-SG with adjuvant volume, Fargo	9	W08
Adjuvants with Imazamethabenz (LC) for wild oat control, Fargo	10	W09
V (A and a second s		
Broadleaf and grass control in small grains, Fargo	11	WH1
Broadleaf and grass control in small grains, Carrington	12	WH2
Broadleaf and grass control in small grains, Dickinson	13	WH3
Broadleaf and grass control in small grains, Hettinger		WH4
Broadleaf and grass control in small grains, Langdon	15	WH5
Broadleaf and grass control in small grains, Minot	16	WH6
Broadleaf and grass control in small grains, Williston		WH7
Herbicide evaluations for broadleaf weeds in wheat, Fargo		WH10
Bromoxynil for broadleaf weed control in wheat, Fargo	19	WH11
Triasulfuron for broadleaf weeds in wheat, Fargo	20	WH12
Kochia control with herbicides plus adjuvants in wheat, Fargo	21	WH13
Foxtail control in wheat. Fargo	22	WH15
Imazamethabenz plus grass control herbicides, Fargo	23	WH16
Thifensulfuron and tribenuron for foxtail control in wheat, Fargo	24	WH17
Difenzoquat for weed control in wheat, Fargo	25	WH18
Propanil formulations for foxtail control in wheat, Fargo	26	WH20
Wheat cultivar response to difenzoguat, Langdon	27	Drstr
Wheat cultivar response to wild oat control herbicides, Langdon	28	Lang
organes norbieldes split applied, Grocksten		
Time of grass control with nicosulfuron in corn, Casselton	29	C01
Nicosulfuron mixture with bromoxynil in corn, Casselton	30	C02
Nicosulfuron with dicamba in corn, Casselton	31	C03
Postemergence weed control in corn, Casselton	32	C04
Commercial adjuvants with nicosulfuron, Fargo	33	COSP5
Nicosulfuron plus salts in corn, Fargo	34	COSP6
Nicosulfuron with EE and/or ME in corn, Fargo	35	COSP7
Emulsifier with MS in corn, Fargo	36	COSP8
Comparison of ME/EE with Nicosulfuron, Fargo	37	COSP9
Nicosulfuron plus adjuvants, Minot	38	COSP10
Grass control with nicosulfuron plus dicamba, Fargo	39	REREP.DR
Nicosulfuron plus dicamba and adjuvant volume, Casselton	40	CO26RR
Nicosulfuron with dicamba in corn, Casselton	41	REREP.CAS
Nicosulfuron with dicamba in corn, Wyndmere	42	REREP.WYD
Weed control in corn from preplant incorporated herbicides, Lasselton	43	
Weed control in corn from preemergence acetanilide herbicides, Lasselton	44	
Weed control from nicosulfuron with herbicides and adjuvants, Casselton	45	
Weed control in corn, Carrington	46	
Wild proso millet control in corn, Leonard	47	

Green section: General Weed Control in Crops. (continued)

Postemergence grass and broadleaf weed control, Casselton Imazethapyr plus bentazon in soybeans, Casselton Bentazon plus sethoxydim in soybeans, Casselton Bentazon plus thifensulfuron in soybeans, Casselton Weed control in soybeans from preplant herbicides, Casselton Weed control from imazethapyr with lactofen and adjuvants, Casselton Weed control in soybeans, Mooreton Lanceleaf sage control from imazethapyr and lactofen in soybeans, Oriska	49 50 51 52 53 54 55	SB1 SB2 SB3 SB4
Weed control in dry edible beans, Cavalier		
Imazamethabenz in weed free sunflower, Fargo		SF1
Weed control in flax, Fargo		
Weed control in seedling alfalfa from imazethapyr, Fargo	59	
Nonionic surfactant with glyphosate (Honcho), Fargo Nonionic surfactant with glyphosate (Honcho), Carrington Nonionic surfactant with glyphosate (Honcho), Dickinson Nonionic surfactant with glyphosate (Honcho), Hettinger Nonionic surfactant with glyphosate (Honcho), Minot Nonionic surfactant with glyphosate (Honcho), Williston Salt surfactant with glyphosate (Honcho), Fargo Salt surfactant with glyphosate (Honcho), Carrington Salt surfactant with glyphosate (Honcho), Dickinson Salt surfactant with glyphosate (Honcho), Hettinger Salt surfactant with glyphosate (Honcho), Hettinger Salt surfactant with glyphosate (Honcho), Williston Salt surfactant with glyphosate (Honcho), Williston Salt surfactant with glyphosate (Honcho), Minot Salt surfactant with glyphosate (Honcho), Minot Salt surfactant with glyphosate (Honcho), Williston	60 61 62 63 64 65 66 67 68 69 70 71	SP1 SP6 SP7 SP8 SP10 SP11 SP2 SP12 SP13 SP14 SP16 SP17
Fargo Quizalofop (Pantera) plus adjuvants Experiment 1, Fargo Quizalofop (Pantera) plus adjuvants Experiment 2, Fargo Comparison of ME/EE with broadleaf herbicides, Fargo Comparison of ME/EE with Imazethapyr, Casselton Mon-12037 response to oils, Fargo Mon-12037 response to surfactants, Fargo Mon-12037 response to salts, Fargo	72 73 74 75 76 77 78 79 80	SP3 SP4 SP5 SP18 SP19 RR01 RR02 RR03 RR04

Blue Section: Weed Control in Reduced Tillage Systems Synergistic Interactions with Herbicides

	Page	File	
Fall-applied trifluralin granules in no-till wheat, Carrington	1	WH3	
Fall-applied trifluralin granules in no-till wheat, Minot	2	WH4	
Fall-applied quinclorac for field bindweed control, Minot	3	WH1	
Postemergence foxtail and broadleaf weed control in wheat, Minot	4	WH5	
Longterm multi-crop quinclorac carryover study, Fargo	5	WH10	
Summer-applied quinclorac for field bindweed control, Minot 1991/92	9	FA5	
Economics of Detectspray in full season fallow, West Fargo	10	FA6	
Economics of Detectspray in full season fallow, Fargo		FA7	
Effect of travel speed on Detectspray efficacy, Fargo		FA8	
Postharvest treatments with Detectspray, West Fargo		FA10	
Soil-applied grass control in corn, Fargo		CO1	
Fall-applied trifluralin and ethalfluralin granules in no-till			
sovbeans. Fargo	26	SB1	
Fall-applied trifluralin and ethalfluralin granules in conservation-	1010		
till soybeans, Carrington	27	SB3	
Fall-applied trifluralin and ethalfluralin granules in conservation-	10.135	000 De	
till soybeans, Minot	29	SB4	
Spring-applied trifluralin and ethalfluralin granules in no-till	122	0.0.5	
soybeans, Fargo	31	SB5	
PPI treatments for drybeans, Carrington		DB1	
Bentazon injury and drybean growth stage, Fargo		DB2	
Herbicides and cultivation for drybeans, Carrington		DB3	
Bentazon-insecticide interactions in drybeans, Fargo		DB4	101
Postemergence herbicide treatments for crambe, Minot		CB5	
Postemergence herbicide treatments for crambe, Prosper		CB7	
PPI herbicide treatments for crambe, Prosper	41	CB6	

Comparison of ME/EE will intervelopyet structure ango Mon-1203/ response to oils, Fargo Mon-1203/ response to surfactants, Fargo Mon-1203/ response to salts, Fargo Mon-1203/ response to commercial addiviants, Fargo

Prov.

Leafy spurge control with quinclorac applied with various adjuvants 1
Leafy spurge control with imazethapyr, imazaquin, quinclorac, and nicosulfuron 2-3
Leafy spurge control with sulfometuron and/or picloram plus 2,4-D in a 3 yr rotation 4-5
Comparison of 2,4-D formulations with picloram or glyphosate spring- or fall-applied
for leafy spurge control 6-8
Comparison of various picloram formulations applied alone and with adjuvants for leafy
spurge control
Various spray additives applied with picloram and 2,4-D in an annual treatment
program for leafy spurge control
Leafy spurge control and forage production with various fall-applied herbicide
treatments
Evaluation of various grass species to control leafy spurge
Picloram plus 2,4-D applied annually for 10 years to control leafy spurge 21-22
Long-term leafy spurge control with herbicides followed by insect biocontrol
agents
Evaluation of several herbicides for fringed sagebrush control
Quackgrass control in cropland with various spring-applied herbicides 26-27

				ģ	ģ	CLIMA	ATIC DA	ATA - C	CARRIN	GTON	, 1992	e e	(C))	<u>o</u>	2 10			1
		1. (1. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Precipi	tation			Aŗ	oril	M	ay	Ju	ne	Ju	ly	Aug	gust	Septe	mber
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max.	Min
1				.62		.87	39	15	81	49	84	46	64	46	83	54	65	48
2				101			52	20	68	26	80	51	69	48	76	46	71	49
3		Т	.06	.02		Т	54	20	73	29	79	59	63	45	72	43	69	46
4		1	.00	.02	.22	1.10	60	26	70	31	84	42	69	40	72	43	74	46
5			.01	9		8 . g.	69	31	73	35	76	40	72	45	76	40	71	55
				.20	8	.57	58	32	89	49	70	39	74	50	76	41	55	44
6 7	.05			.02		.01	58	29	89	53	65	33	70	50	85	59	55	4
	.05			.02	.22	.01	54	29	86	48	65	42	83	55	89	61	63	3
8				.11		8 O	52	22	91	48	73	42	83	55	90	64	61	4
9	.30	.17		.04	S :	.01	41	23	86	45	79	45	83	53	85	49	65	4
10	.30	.17		.04	5 · · ·	.01	33	18	71	43	85	57	82	41	80	50	82	4
11				.02	8	- <u>1</u>	33	8	68	42	89	53	82	46	79	44	76	4
12				.02	.11	.12	45	24	61	37	89	54	78	52	80	54	71	5
13			.03	3	.11	.12	57	31	76	44	89	56	79	53	83	56	66	3
14			.03	.05	<u>a</u>	.01	57	34	77	39	80	51	89	52	86	54	77	4
15			.25	.05	3 .	.30	54	38	76	51	70	53	77	54	92	56	77	4
16		.11	.35	.11	Т	.50	-	33	65	43	78	59	79	53	.91	60	66	4
17	10		.16	.03	13		6	-	82	38	76	57	72	45	85	45	64	3
18	.13		.01	.03	ĝ	- 8 <u>e</u>	16	32	88	52	73	46	81	45	88	55	77	4
19			.00	.02	ă. I	5 8	32	21	90	56	64	38	68	43	86	62	84	4
20				3	1	1. A.	30	22	90	53	77	41	75	41	77	46	75	5
21		40	.06	9.		- 16 - 16 -	34	22	83	47	72	45	75	45	77	62	59	2
22	.04	.42	.00	35	3	5 0	36	28	53	30	89	48	78	49	84	52	79	3
23	.02	20	10	5	1.46	2 2	40	31	51	37	84	56	78	58	55	47	88	4
24		.30	.10	.09	.11	.06	48	25	55	33	83	46	77	58	63	41	82	5
25		.18	.02	.09	.06	.00	55	23	64	33	83	44	78	51	69	37		2
26		.02			.00	3 2	66	31	70	35	82	51	84	52	75	46	57	3
27			07	02	3 00	B. 5	80	47	74	44	88	57	86	48	81	51	60	2
28			.07	.03	1	~ 것	78	47	80	51	83	43	75	49	79	50	79	3
29	Т		.01	.15		ē 2	93	43	80	46	68	47	75	48	61		84	3
30		120	.20	.01	.44		25		80	40	00		80	47	66	38		1
31											<u> </u>	1		1				

 $I \land$

28			1000	1.14		CLIN	MATIC	DATA	CASS	ELTON	, 1992							
3.9	1		Precip	oitation	34		Aj	pril	М	ay	Ju	ine	Ju	ıly	Au	gust	Septe	ember
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
1				2.60			39	17	95	55	79	45	54	49	86	54	68	47
2	105	1 . 79		1 78	Т	.48	42	15	78	41	79	46	65	53	86	48	62	56
3				.01	- 25		54	24	69	27	81	54	58	48	75	46	76	42
4		1.10	.45		1 1 1	Т	58	19	68	35	81	48	64	45	73	47	72	53
5	1	32	198	1 300	1.10	.16	58	19	67	30	70	48	68	47	73	44	79	55
6	Т		.02		104		75	38	68	32	68	42	74	50	79	45	75	47
.7	1 13			Т	1.50	.99	57	28	89	49	62	36	74	50	78	64	63	48
8	1.32			1 wet			48	22	92	49	62	41	84	57	83	60	53	35
9	- 705		1 1	1 10			61	25	85	55	75	48	80	54	91	60	62	51
10			1.03	.12	i - 10	00	44	27	90	60	80	52	80	51	90	54	64	48
11		.25	1 1 78	108		193	34	25	75	42	85	53	70	53	82	53	67	41
12		.10	112	.33	.20	101	34	11	80	47	87	55	70	53	73	48	79	42
13		.03	.01			Т	37	26	64	35	89	56	77	60	71	47	73	53
14		.02				13	52	26	58	37	88	59	73	53	75	48	74	41
15		00	.15	1.03		Т	48	37	77	37	86	56	. 70	60	78	48	70	41
16		.49	2.29	.06	66	.03	58	40	83	57	61	56	73	54	79	51	76	52
17		.16	1.78	.01		.89	60	30	67	42	78	60	73	54	82	60	57	36
18	.22		1.54	109		.02	58	38	70	42	66	59	73	53	80	50	59	41
19	.10		.09	- 710		3.5	59	46	78	56	79	49	78	58	80	48	59	37
20			Т	Т	30	198	59	30	94	45	59	39	71	46	83	48	71	42
21	Т			.03	Т	1.12	33	24	89	59	66	46	72	47	89	56	78	57
22	Т	.88	.09	Т			30	24	89	39	67	50	75	55	76	56	67	28
23		.18	.59				36	26	47	24	77	50	74	48	89	60	57	31
24			.02	1.	2.27		39	30	50	33	77	56	75	55	65	50	78	44
25			.18		.17		40	32	52	33	73	52	73	61	56	50	82	53
26		I		183		22	44	28	57	38	68	42	75	53	68	40	74	42
27	Sec. 1	and a	10%	100	water		58	26	65	37	70	48	83	54	68	42	63	31
28				1.20	Assessed	Services	65	33	70	40	75	55	89	55	72	54	67	22
29			.01	T	.33		84	41	71	46	81	42	75	50	82	53	57	30
30	Т		Т		.12		82	41	81	45	69	44	74	52	66	50	75	38
31				.05		CITRA	V.SIG 1	ATA -	83	50	1002		76	52	66	47		

ΙIΛ

				12		CLIM	ATIC D	ATA -	CROOK	STON,	1992		-28	- 23	89 ·]	92		
30			Precipi	tation	38		Aj	oril	М	ay	Ju	ne	Ju	ly	Aug	gust	Septe	mber
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Mir
		T		.02		.93	36	19	80	44	82	54	58	52	78	47	61	54
1		1	118	.02			47	28	59	28	75	58	68	56	72	45	74	44
2			.26	.20 T	335		50	25	60	30	82	50	62	46	69	44	71	4'
3		.01	.20	•			51	32	60	28	67	47	67	44	75	43	78	5
4		.01	.00				68	34	66	40	64	43	73	49	78	55	68	3
5	Т		100	Т	.24	.55	60	30	83	51	56	45	68	55	77	61	55	4
6	1				.24	.48	41	28	90	52	65	42	84	57	80	70	50	3:
7	1.00		1.00	.08	.20	.40	53	24	84	57	72	44	76	52	91	74	60	3
8			128	.08		.02	36	24	89	64	73	56	76	51	86	55	62	4
9	12	.50		.00		.02	37	23	75	50	84	61	71	50	79	44	65	4
10	.13	.50			.04	.12	26	-11	77	51	88	55	72	53	73	45	74	4
11		.04	12	1000			36	13	56	33	87	58	79	58	70	47	74	5
12		.04 T		1.11		.12	49	30	60	39	84	57	74	54	76	50	71	4
13			.11				45	33	73	42	80	52	77	58	79	53	68	4
14			1.13	.17	1000	.01	55	36	75	53	61	51	76	54	77	56	73	4
15		.66	1.15	.06		.45	56	31	69	44	73	58	72	52	82	60	53	3
16		.00	1.05	.00	.80	.06	55	38	65	46	63	59	69	48	75	48	58	4
17	.02		1.05 T	.13	.00		49	44	77	54	67	49	75	59	78	52	56	3
18 19	.02		1	.03			50	31	87	64	60	39	66	43	81	58	68	4
	.55			.05	100	- 65	32	22	87	69	70	43	68	46	88	51	79	5
20	.15		.07	.05	.04		29	23	84	38	66	52	74	46	77	58	60	2
21	10 T	.25	.07	.01	.42	38	31	26	44	33	66	49	77	50	85	59	53	3
22 23		.25	.05 T	.01	1.17	1	36	28	52	31	73	50	76	54	61	48	71	4
		.15			.02		35	30	50	40	70	52	66	58	57	49	81	5
24 25	.02	.36		.13		12	40	31	59	41	66	37	81	49	66	37	73	4
	.02	.50		.15			53	28	64	37	70	51	71	48	68	41	60	3
26 27		-		Т	1		62	36	70	45	80	59	85	52	71	46	61	2
	(along	Vessy 1	Jerri -		.21	Subtanto	74	39	70	49	72	38	69	39	78	57	55	2
28	Т				.34		73	47	78	54	68	42	73	44	63	50	68	3
29	Т	1.2	.84				87	56	81	58	62	49	76	51	65	49	79	3
30			.04	.04		CER		12.9 -	83	60	2666		85	50	65	43		
31		-		.04	-		1	1	1	1	1	1			1	1		- I

VIII

						CLI	MATIC	DATA	- DICK	INSON,	1992							
30			Precip	oitation	1 32		A	oril	M	lay	Ju	ine	Ju	ly	Au	gust	Septe	ember
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
1		13	.15	.55	10.00	Т	39	10	83	42	66	50	51	42	87	42	72	39
2		10		Т		.17	45	15	64	34	72	47	61	44	88	48	78	50
3		. 35	130		Т		66	25	67	30	82	50	64	40	69	43	73	39
4			10		.03		71	37	73	34	72	41	70	41	73	47	82	43
5	Т		- 60		.24	.11	74	36	75	36	68	38	72	52	66	51	68	43
6		25	15	.97	Т	Sec.	56	27	79	49	63	29	77	52	72	52	73	47
7	.02	- 96	193	Т	.28	.16	54	25	89	40	64	38	80	51	70	52	51	36
8			.46	.05		.05	47	22	92	41	72	44	80	49	90	55	53	37
9	- 30			.35	Т	Т	54	21	81	45	76	47	78	47	100	57	73	38
10	.18	.58	1.84	1.16		1. 11	36	21	72	40	81	54	75	47	85	44	57	32
11	Т	Т	-32	Т	T	28	36	15	68	42	87	57	63	48	81	49	72	34
12	Т	Т	535	.17		Т	31	14	64	34	90	57	63	50	76	40	82	39
13	Т			.03		.06	27	18	54	35	90	57	70	52	77	46	76	43
14		.02	1.62	0.5		Т	62	23	60	38	84	51	77	55	83	50	65	30
15		- 50	.37	- 68			69	29	72	36	67	48	86	48	88	53	68	32
16		.35	.38	102 1		Т	56	24	75	44	60	50	69	48	97	58	83	44
17	- 80 -	.15	Т	.15		1.2	59	34	55	32	75	52	66	49	92	58	67	43
18	.21		.02	205			69	41	73	43	75	52	75	52	82	47	66	29
19	.12		Т			1212	51	36	88	53	78	48	81	54	87	52	59	32
20	.21					120	41	19	90	58	65	44	68	42	95	60	67	46
21	Т		2.5		22.0	12	29	20	93	51	65	47	73	48	75	47	78	34
22		Т				62	44	20	59	37	77	47	69	48	78	50	62	37
23			130-1				43	24	57	30	83	48	70	49	75	43	75	38
24	.13	Т	31				48	30	58	33	81	48	69	53	50	42	95	38
25	т	Т		101		.54	48	31	66	31	79	40	87	50	55	32	92	47
26		Т				Т	57	22	53	24	75	46	80	47	61	35	65	50
27		Sent.		-			62	37	62	30	81	52	85	58	72	39	54	43
28	1.000	Number of Street, or other	Jacob	.06	1000000	Septembry .	75	40	68	37	90	57	87	48	82	50	65	22
29			Reserved.	.03			77	43	77	38	75	48	77	49	82	43	67	23
30			.28	.07			80	40	78	43	62	45	66	45	63	36	85	32
31		т				CINENCY	RC D1	$L Y \leq E$	80	46	1 1003		76	44	65	35	05	52

ХΙ

84		-				CLIMA	TIC DA	TA - F	ARGO ·	NW 22	2 - 1992		28	47	68	12		
			Precipi	itation			Aŗ	oril	М	ay	Ju	ne	Ju	ly	Aug	gust	Septe	mber
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Mir
Daic	April	Iviay	June		8	.30	40	18	78	54	84	58	62	53	82	53	62	52
1				01			51	14	66	34	78	54	58	54	72	50	75	50
2	1	1.1		.01			56	27	66	26	84	58	64	50	70	45	72	42
3	- 17 -		.24				54	20	62	34	68	52	68	47	72	53	79	59
4			.70			05	74	43	69	30	68	44	71	47	79	50	74	50
5		i de				.05	63	36	84	47	57	44	73	54	78	63	64	4
6	3		.02		.55	.45	45	30	92	55	63	39	84	60	83	64	52	40
7	- 31				.01	.26	45 59	27	89	54	74	42	78	60	91	65	62	3
8	.26					.04		29	91	62	81	54	80	57	90	66	63	5
9	- 51		35	.08			43	29	76	50	86	58	68	54	80	54	67	4
10	.10	.17	1.			.05	35	16	80	48	88	62	70	56	72	52	80	4
11		.02	- 38	.03		L	33	1.1.1		37	89	60	76	58	70	59	74	5
12		.05		.07			37	11	61	36	85	59	74	62	77	50	74	5
13		.16	1.63	.03		V	51	30	58	43	84	58	78	56	78	50	71	5
14	. J			.08		10.6	47	34	75	43	66	56	78	58	77	51	78	5
15	. L.	L	2.07	.09		1.	59	41	81		74	57	72	57	82	55	67	4
16	- 3-	.34	.25	.05	da -	.58	59	35	69	48	66	60	70	52	77	51	61	3
17	12	Т	1.61	1.14		.11	56	36	65	43		52	78	52	80	46	57	3
18	.30			128	de -	3.	51	46	79	48	74	45	70	50	82	55	71	4
19			.01	101		195	57	32	95	60	56 67	45	72	45	88	61	82	4
20	.02	.06	.02	.02	138	16	35	28	90	64		40	76	51	74	57	65	3
21		.57	.02	Т	.46		30	23	87	54	66		75	58	88	67	57	2
22	1.		.09		.12	3.3	34	27	54	40	72	53	76	50	72	53	79	4
23			.01		1.49		39	30	52	34	75	56		56	56	51	83	5
24		.35	.30		3.0		37	29	53	34	73	55	69			44	76	4
25		.10		1.		10	40	33	29	38	66	47	82	58	66 70	44	62	
26		.12	12	1.12		1 1	56	29	65	37	71	56	77	54			66	
27						-	64	29	70	39	80	53	87	58	71	44	56	2
28	- Aspest	NOA!	.04	1065	1.000000	Construction of the second	81	45	73	46	76	50	71	56	80	58		
20 29			- Suntak	10,000	.39		80	42	79	48	67	43	74	47	65	55	73	
30			1.81				94	54	82	52	55	48	74	57	64	51	80	4
31						CPE	1911C	314.7.4	81	58	992		85	55	67	52		

 \times

					10 1				1		0.0				1		r	
50			Precip	itation			Aj	pril	M	ay	Ju	ine	Ju	ıly	Au	gust	Septe	ember
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
1		193		.11	.37	.02	38	8	87	45	63	42	51	44	80	52	73	48
2			-				45	15	65	35	69	42	56	48	86	48	74	48
3							65	32	69	35	72	41	62	40	76	50	73	40
4		1000	- 22				73	35	73	35	77	40	68	49	71	52	85	45
5	94		520		149	.03	72	38	74	38	73	38	77	53	65	53	85	46
6					.40		61	31	78	50	65	28	75	57	67	55	67	41
7					.18	.21	56	23	78	49	66	43	79	59	72	53	51	39
8	-16				.30		51	27	93	53	70	45	77	51	85	53	54	38
9				10	.03	Т	55	25	83	56	73	45	76	48	95	60	73	42
10	.13	1.30			.09	0.0	42	27	77	44	79	54	72	50	84	49	60	32
11	.04				100	01	43	18	69	45	86	55	60	48	77	46	72	39
12	Т	1.1		121	.49		27	18	68	36	88	58	65	53	74	42	84	42
13	Т	.03			.06		25	18	58	40	87	57	66	56	74	43	88	45
14				2.13		- 14	59	24	57	40	79	53	74	56	78	51	67	31
15				.15		. 7	66	32	73	39	67	53	81	54	80	49	70	38
16	222	.17		.88	Т		64	35	74	39	58	50	72	51	87	60	85	47
17		.17					52	39	52	30	76	54	66	48	82	52	68	46
18	.14				10	-	69	41	70	43	73	54	72	49	79	49	71	30
19	.14					13	46	36	85	56	78	47	83	55	82	54	61	35
20	.06						40	21	87	60	68	48	70	41	88	56	78	43
21	100			1.1			28	23	90	58	65	49	71	56	79	52	81	53
22		.31					45	25	66	40	76	48	59	49	70	58	68	42
23				.06	.37	202	50	30	57	32	81	59	62	51	82	45	77	37
24		.03	100	10	.11		43	34	56	39	81	52	64	53	50	43	94	43
25						.13	49	28	66	34	75	42	82	56	52	32	91	49
26		- A - 1		1.0			57	20	48	24	73	48	74	51	60	37	66	39
27				23	.27		59	33	58	33	78	49	80	55	66	44	58	40
28	Visig]	1922	1000	.04	walker	gabroorpes.	73	46	65	35	84	62	85	50	85	44	56	20
29				.14			78	41	76	42	78	52	78	54	83	37	68	33
30			Parenting	.83			82	44	77	36	57	47	63	53	59	36	85	35
31		.12							78	51	51	/	74	48	66	40	60	23

IΧ

31						CLI	MATIC	DATA	- LANC	GDON 1	1992		14	1	81	- 20		
			Precip	oitation	*		Aj	oril	М	ay	Ju	ine	Ju	ıly	Aug	gust	Septe	ember
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
1				.77	377		28	16	84	49	76	54	56	47	81	53	63	41
1 2		Т		.19			35	20	69	40	79	51	53	49	71	46	65	51
23				.13			45	26	60	27	75	57	53	47	68	42	63	38
1.0			.23	.12	11.		42	26	64	29	79	48	56	41	64	45	71	43
4			.25	.12	37	.34	48	30	53	35	53	43	63	43	73	43	72	43
5		31	.50			.51	56	30	70	42	57	39	73	49	74	52	59	37
6	.01			.03		.34	54	27	84	51	49	41	61	55	75	59	52	38
7		1		.05		.51	36	23	81	42	60	41	74	55	77	59	54	31
8	.04			.03		.13	48	16	65	45	71	47	71	50	95	63	62	38
9	04	Т		.05	.10	.21	27	17	86	45	76	53	68	45	82	49	55	43
10	.04 .09	.45		.19	.10	.21	29	14	55	42	83	58	63	41	74	44	61	43
11	.09	.45			.02		22	7	67	40	86	54	67	41	66	39	70	4
12		00		52	.02	.14	31	10	47	25	81	55	72	52	67	45	73	4
13		.02		.34		.01	43	27	57	34	74	48	71	55	75	47	65	3
14	1	103		.34	38	.01	41	32	67	37	70	50	76	52	80	51	60	4
15	01	15	.11	.24	543		44	36	65	43	66	52	67	50	81	57	73	4
16	.01	.15 .65	.11	.17	.21	.01	46	35	52	34	69	51	71	53	86	52	53	3:
17	1.13	CO.			.21	.01	55	38	60	43	62	55	70	48	73	45	53	3
18	10			.10	103	.09	48	39	79	53	59	43	71	49	78	50	52	3:
19	.10			.10	- 725 -		39	20	90	62	63	38	63	46	83	58	71	4
20	.11			.01	.01	- 31	24	19	87	63	65	45	65	43	77	42	76	4
21	.02	1.2	20	.07	.01		28	19	82	32	60	49	70	45	74	54	54	2
22	.14	1.3	.36		.40	102	29	21	41	31	73	52	74	48	76	50	55	2
23		.02	.27		.40		40	27	48	31	71	47	73	54	52	45	73	4
24	_	0.5		.40	.10		35	27	42	30	67	47	71	57	52	41	79	5
25	Т	.25	.23		.10	.03	40	26	57	37	61	38	72	48	60	36	68	3
26		.03		.06	33	.05	50	30	64	39	68	49	70	53	68	42	52	3
27	when	-	1010	.01	0	.04	59	35	68	42	85	54	75	46	65	47	52	1
28				A second	.02	.04	72	45	71	51	65	36	64	40	75	48	54	2
29			6.003	nitaero e	10		65	43	75	50	66	43	71	44	56	46	73	3
30					.10		00	44	74	50	00	43	74	48	58	45	15	
31				.02		CD1	14.110	1.1	14	51	1003		1 1-1	40	50	175	L	1

ΙIX

;

						CL	IMATIO	C DATA	- MIN	OT, 199	2		72 1	40 J	28	15		
33			Precip	oitation	201		Aj	pril	М	ay	Ju	ne	Ju	ly	Au	gust	Septe	ember
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Mi
1		Т	.14	.64	Т		35	11	85	49	78	49	52	44	87	58	69	36
2		- 49		.16	.06	Т	42	16	66	41	78	52	57	48	74	47	74	47
3				.02	.03		60	31	64	41	80	56	60	43	74	44	66	43
4				.26		1.1.1	57	27	71	39	71	46	64	43	75	45	74	44
5	.22	101	Т	12		.01	63	31	72	42	63	42	74	50	76	48	73	44
6	Т		.02	.12		Т	59	30	80	49	52	41	74	55	76	50	65	44
7	.01			.02	.02		55	29	91	53	58	36	76	55	72	53	49	35
8	130		103	.23			42	26	89	42	73	49	80	55	88	59	55	37
9		.01	32	.04	.08	.02	56	19	72	45	79	51	76	53	99	59	67	43
10	.22	.66	1:58	.35			36	19	83	41	83	. 55	76	51	86	48	57	43
11	.01	.03	36	28 1	1.1		32	16	65	40	87	62	66	46	79	52	66	42
12	18			34	Т		29	. 8	64	40	91	60	69	46	79	40	78	43
13		.03	102	.04			35	16	51	32	89	55	74	57	75	42	75	48
14			.04		1	Т	51	27	60	37	84	53	79	58	81	55	64	37
15			.04	.07	30		67	33	73	43	71	52	87	52	87	59	62	38
16		.03	.42	.08			46	36	68	46	73	52	69	52	94	57	67	42
17	10.5	Т	Т	.08	30		49	31	54	43	75	55	68	53	91	57	56	39
18	.31		.02	.12		0	65	31	71	45	69	54	72	51	78	50	65	34
19	.21		.16	.06			52	39	87	56	72	44	78	53	87	51	54	34
20	.37		Т	.02	.12		39	19	95	59	59	42	68	44	92	62	77	47
21			22		.01	19	24	19	95	54	68	41	72	43	71	45	78	45
22		Т	Т		.04	34 1	37	21	59	37	78	48	76	49	78	48	56	30
23					.44	14 I I	33	26	54	28 [.]	83	57	78	49	78	47	65	39
24	.01	Т	.02		.48		36	29	58	36	81	50	78	53	49	44	85	39
25		.19		.01	128 - 1	Т	44	31	41	31	79	43	86	55	51	42	88	56
26				33		.13	52	26	59	34	72	43	86	55	51	43	65	36
27	which .	Color I	-			.23	59	30	68	39	81	54	87	56	71	47	58	37
28			.21		sector 1	in the second second second	67	38	71	44	88	55	87	48	82	52	50	24
29		Т	.01	plan	.15		79	47	79	48	67	43	76	50	82	46	62	27
30			.11		.01		80	47	82	48	67	45	70	52	57	45	80	43
31				.09		CERN	110.1	V307	82	50			77	52	59	36	00	CF.

XIIX

						CL	IMATI	C DAT.	A - OLI	VIA, 19	92		1 7		3 3	0	81	
32		1. 1.	Precip	itation	112		Aj	pril	М	ay	Ju	ine	Ju	lly	Aug	gust	Septe	mber
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Mir
1		· ·		.22		1.08	35	22	90	54	82	52	69	53	77	51	70	43
1 2		112		1.67	.58	.05	39	19	88	48	75	52	78	56	86	54	65	56
2	07	1	1 123	1.07	.01	100	45	22	69	36	77	56	64	51	74	53	77	48
4					.01	.14	59	25	72	42	86	56	70	47	72	49	77	48
5					100	.23	53	25	67	40	74	51	71	49	69	51	78	58
1000			.22			.10	68	42	64	36	80	50	74	50	74	55	74	46
6 7	31		.22	103	1.39		57	34	76	47	66	40	75	50	75	61	72	47
8	137		.31	100	1.57		53	29	84	48	66	51	81	60	80	60	70	42
o 9	.02			13		.03	53	29	86	55	62	53	80	57	86	63	64	30
10	.02	1.1	1	.03	.20		47	32	87	57	76	57	77	59	90	62	65	3
11	.02	.47	1	.05			39	33	84	61	82	58	73	53	75	52	63	42
12	.05	.47	101	.46	.10		42	17	73	54	87	61	71	62	76	48	74	44
12			194				36	20	69	37	90	51	75	56	70	49	72	5:
14		113	.03	1.01			41	30	59	48	90	65	66	51	69	44	77	5
15	.18			.06	1		52	30	75	52	89	62	76	57	71	44	76	50
16	.02	.14	.95	.38		.55	42	37	77	58	84	61	73	54	71	48	78	6
17	.02	.05	1.29	32			51	33	79	48	79	62	75	55	74	49	85	5
18			.06	101	.50	105	48	37	69	46	70	60	76	54	75	52	64	4:
19	1.30		.03	54			54	45	76	52	78	60	76	59	77	49	64	39
20	.13			105	201		60	33	88	60	62	39	73	51	75	55	67	4:
21	.83		103	1 13		L L	48	32	90	56	66	42	73	48	80	58	78	4'
22	.22	.01	.18	.45		- 101	42	30	82	67	66	49	70	51	76	61	76	3
23				.26			39	30	76	42	65	51	70	51	81	62	60	3
24				182	38		40	33	65	39	77	57	66	54	83	57	75	5
25		.60		1.198	1.12	1 1	48	32	59	41	75	55	68	54	61	56	73	4
26		.54		1. 164	.42		45	32	47	36	69	45	78	56	62	47	75	5
27	- Andrew	Date:	C. numer	The second	1	- Contraction	47	31	65	40	70	48	79	54	65	47	64	3
28			1	1	1		58	33	70	41	77	53	83	54	70	47	70	3
29			- Pros	hangen	.02		78	45	70	41	84	56	76	55	74	52	54	3
30							81	49	75	50	71	57	71	56	74	50	70	3
31	-						C 3396 V.	126.197	78	52	1000		72	47	68	42		

۸IX

			818	8		CLIN	IATIC I	DATA -	WILLI	STON 1	992	2 0	<u>e a</u>		1	0		
			Preci	pitation			Aŗ	oril	M	ay	Ju	ine	J	uly	Aug	gust	Septe	ember
Date	April	May	June	July	August	September	Max	Min	Max	Min	Max	Min	Ma	Min	Max	Min	Max	Mi
1		Т	.04	.37	.05		46	19	77	47	70	51	58	43	88	57	80	50
2	문니			.03	.39		73	23	68	37	81	50	61	50	75	56	81	53
3	18		Т			.08	72	34	71	39	81	51	67	43	74	49	76	46
4	13 19	1.100.1	8 12	· 18	사망 문장 문	.13	70	35	76	40	64	47	75	48	75	54	76	46
5	.50		.03	.09	12 13 1		65	34	82	46	61	37	76	51	79	48	69	49
6	Т			.03	1 1 1		51	38	88	50	60	39	81	57	79	54	67	39
7	Т	141	in from	194	T	Т	51	28	90	51	75	39	81	53	90	53	55	36
8			1 9	1111	1.1.1.1	.02	55	27	91	43	83	48	78	55	98	59	70	38
9	Т	.49			.09	.09	55	17	75	48	86	52	78	50	90	61	66	40
10	.23	.15		.02			36	23	66	39	90	55	69	49	82	50	71	36
11	100		8 (R	.04	6 2 1	12 2 2	33	16	65	48	94	63	66	52	82	54	79	48
12		.03		.60			32	17	65	38	93	62	74	50	76	44	78	51
13						.50	61	23	60	33	90	61	79	52	85	48	78	46
14		.01	.43	.04			71	35	72	40	88	50	82	58	90	49	63	35
15		(a)	.39	.06		送	70	31	73	40	69	48	81	52	95	51	68	44
16			.37	.04	18.1	.02	55	33	65	45	72	55	69	55	95	60	65	42
17	.01	13.1	12	9 6	.12		69	40	78	33	77	55	78	50	90	57	63	46
18	1.19	181	.09	& 18.	2 3 1		62	40	88	47	78	57	80	53	90	50	57	31
19	.36	Т				in a spectrum of the second	40	29	91	52	68	49	79	52	97	62	77	39
20	.05		18	8	.10		32	22	92	61	71	44	73	45	96	59	77	46
21		.29		21			48	24	85	43	80	55	77	47	76	49	72	42
22		Т	1.2		.53		48	23	64	37	80	56	75	46	71	55	74	39
23	.01		18 1	1	.72		48	28	57	36	81	51	78	51	58	43	92	43
24	.10	.05	.02		.12	Т	54	32	58	43	81	50	87	57	50	43	93	65
25			181			.08	59	32	58	27	76	46	82	54	60	38	88	51
26	1.13	12 1	2 1 1	0 10		170	63	30	65	33	83	47	88	54	75	39	60	37
27	2 2	la l		212	121	.04	80	39	72	37	93	55	88	59	81	58	60	40
28	13 13	121	.15	Т	18 13 13		80	49	76	44	92	57	80	50	81	54	67	27
29	15 19	.05		.23	.14		78	48	80	45	69	44	75	51	77	46	83	41
30	12 12	.12	1.03	.03	2 18 1		82	55	79	55	68	48	78	53	64	39	87	43
31	Sector Sector	.42			Second Second Second		- Andrews	a sind and a	70	49	J L	1.1.1	88	52	71	38		

٧X

CO.C.C.R.M. S.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.					Ib/A	
	Soil Texture	Organic matter	pН	N	Р	к
Camp Grafton (Goat)	Sandy loam	4.7	7.2	3	3	180
Camp Grafton (Insect)	Loamy sand	2.8	7.0	3	3	98
Carrington, ND	Loam	3.6	7.2	Fertilized	by test	
Casselton, ND (Dalrymple)	Silty clay	5.0	7.9	Applied 8	DIDN	
Cavalier, ND	Silty clay	5.7	7.0	166	26	710
Chaffee, ND	Fine sandy loam	6.7	7.4	20	36	950
Ćrookston, MN	Loam	4.1	8.1	77	20	390
Cuba, ND		7.0	8.2	3	4	100
Danube, MN	Silt Ioam	4.5	7.5	105	95	425
Fargo, ND (Sec. 22)	Silty clay	6.0	7.5	190	26	1095
Fargo (date of thinning, hand weeded sugarbeet, herbicide drift,grass control experiment)	Clay	5.4	7.4	355	63	660
Fargo (desmedipham plus insecticides, time of cultivation)	Silty clay	5.8	7.2	127	40	668
Fargo (Sec. 22) Multispecies screening	Clay	4.5	7.8	118	41	1060
Fargo (Sec. 22) Residue experiments	Clay	4.0	7.7	117	30	950
Hallock, MN	Clay loam	4.6	7.8	107	28	700
Hendrum, MN	Silty clay loam	5.2	7.9	226	23	480
Hunter, ND	Sand	7.4	6.8	14		
Langdon, ND	Clay loam	4.6	7.8	Fertilized	by test	
Minot, ND	Loam	2.7	7.0	Fertilized	by test	
Mooreton, ND	Clay loam	5.7	7.1	183	50	900
Sheyenne ND, Grassiands (Goat)	Sandy loam	6.2	7.5	8	4	85
Sheyenne ND, Grasslands (Insect)	Loamy sand	2.5	6.9	3	7	125
St. Thomas, ND	Loam	4.6	7.9	87	46	990
Valley City, ND	Stony loam	9.4	6.7	5	5	141
West Fargo, ND	Silty clay	3.6	7.2	8	42	146
Williston, ND	Loam	2.3	6.8	Fertilized	by test	

KEY TO ABBREVIATIONS AND EVALUATIONS

Crop injury, crop stand and weed control ratings are based on a visual estimate using a scale of 0 to 100 with 0 = no effect and 100 = complete kill.

All preplant incorporated or preemergence treatments were applied in 17 gpa water at 35 psi through 8002 nozzle tips and all postemergence treatments were applied in 8.5 gpa water at 35 psi through 8001 nozzle tips except where stated otherwise.

All treatments were applied with a bicycle wheel-type plot sprayer unless otherwise stated. Preplant incorporation was by field cultivator + harrow or as stated in table and preemergence incorporation was by harrowing twice.

Treatments with a + indicate tank mixtures, with an & indicate formulation mixtures and with a / indicate a separate application.

ENOIS IN BUILD	Species	 Dry forestle
Abww = Absinth wormwood	KOCZ = Kochia	Tumu = Tumble mustard
Amaz = Amaranth	Latu = Ladysthumb	Tymu = Tame yellow mustard
Barl, Bar = Barley	Lent = Lentils	Vowh = Volunteer wheat
Bdlf = Broadleaf	Lesp = Leafy spurge	Vele = velvetleaf
Bygr = Barnyardgrass	Lisa = Lanceleaf sage	Wesa = Western salsify
Cath = Canada thistle	Mael = Marshelder	Wht = Wheat
Cano = Canola	Mesa = Meadow salsify	Wibw = Wild buckwheat
Cocb = Common cocklebur	Mil, Ftmi = Foxtail millet	Wimu = Wild mustard
Colq = Common lambsquarters	Nabe = Navy beans	Wioa = Wild oats
Coma = Common mailow	Nfcf = Nightflowering catchfly	Wipm = Wild proso millet
Copu = Common purslane	Pest = Perennial sowthistle	Yeft = Yellow foxtail
Cosf = Volunteer sunflower	Pesw = Pennsylvania smartweed	estantis granutas
Cram = Crambe	Pnto = Pinto bean	 Indimographic = [=
Dobr = Downy brome	Powe = Pondweed	
Duru = Durum wheat	Prie = Prickly lettuce	
Ebns = Eastern black nightshade	Prmi = Proso millet	w State, sire - Parcant
Fach = False chamomile	Prpw = Prostrate pigweed	
Fibw = Field bindweed	Qugr = Quackgrass	
Fipc = Field pennycress	Rrpw = Redroot pigweed	NGRED (1405) + 1
Flwe, Flix = Flixweed	Ruth = Russian thistle	federal and the Little
Foba = Foxtail barley	Sabu, Fisb = Sandbur	
Fomi = Foxtail millet	Safi, Saff = Safflower	bidd Y ==
Fota, fxtl = Foxtail species	Soyb, Sobe = Soybean	
Grft = Green foxtail	Spkw = Spotted knapweed	
Gfpw = Greenflower pepperweed	Sugb, Sgbt = Sugarbeet	
Girw = Giant ragweed	Sunfl, Sufl, Cost = Sunflower	
Howe = Horseweed	Tabw = Tame buckwheat	
Hrsw = Hard red spring wheat	Tamu = Tansy mustard	
KOCZ = Kochia	Taoa = Tame oats	

METHODS

PPI = Preplant incorporated PEI = Preemergence incorporated PRE, PE = Preemergence P, PO, POST = Postemergence

MISCELLANEC	DUS
DF = Dry flowable	alk = alkanolamine
F = Fall	bee = Butoxyethyl ester
FL = F = Flowable	dea = diethanolamine
S = Spring	dma = Dimethylamine
L = Liquid	ioe = isooctyl ester
LC = Liquid concentrate	EE = ethylated seed oil
WP = Wettable powder	MS, MSO, ME = methylated seed oil
G = Granules or gallon/A	PO, OC = Petroleum oil
SG = Soluble granules	concentrate (17% emulsifier)
Inc = I = Incorporation	SURF = S = Surfactant
%ir = inju = Percent injury rating	NIS = nonionic surfactant
%sr = %std, strd = Percent stand reduction	28N = 28% liquid nitrogen fertilizer
HT = Plant height	AMS = ammonium sulfate
SPK = Spike stage	AMN = ammonium nitrate
Tswt = TW = Test weight	X-77 = Surfactant by Valent
Yld = Yield	
Sectorization -	

XVIII

AcetMonsanto7.5 lb/galHarnessAcifBASF2 lb/gal E,SBlazerAlacMonsanto4 lb/gal E 4 lb/gal MT, 15% GLassoAtraVarious80% WP, 90% DF, 4 lb/gal FNumerous 4 lb/gal FAAS-527-16BAS527BASFMonsantoBentazonBentBASF4 lb/gal E 4 lb/gal EBuctrilBromoxynilBroxRhone-Poulenc2 lb/gal E 10 lb/gal L 10% GBuctrilSutylate + SafenerButyICI6.7 lb/gal L 10% G 2 lb/gal ESutan+ChorimuronClimDuPont25% DF 2 lb/gal EClassicClethodimCletValent2 lb/gal ECommandClopyralidClpy, ClopDow Elanco0.38 + 2 lb/gal SStingerClopyrazineCyanDuPont80% WP, 90% DF 4 lb/gal FBladex 4 lb/gal FClopyrazineCyanDuPont80% WP, 90% DF 4 lb/gal FBladex 4 lb/gal FClopyrazineCyanDuPont80% WP, 90% DF 4 lb/gal FBladex 6 lb/gal FCycloateCyclICI6 lb/gal ERo-NeetDevelancoAlb/gal FBladex 4 lb/gal FBladexCycloateCyclICI6 lb/gal ERo-NeetDevelancoAlb/gal FBladexAlb/gal FBladexCycloateCyclICI6 lb/gal ERo-NeetDevelancoAlb/gal FBladexAlb/gal FBladexChorderDevelancoApplied in combinatio	Common Name or Code Name	Abbre- viation	Company	Formulation	Trade Name
ActifBASF2 lb/gal E,SBlazerJacchiorAlacMonsanto4 lb/gal E,SLassoAtraVarious80% WP, 90% DF, 4 lb/gal FNumerousAAS-527-16BASS27BASFNoneBentBASF4 lb/gal SBasagranBromoxynilBroxRhone-Poulenc2 lb/gal EBuctrilButylate + SafenerButyICl6.7 lb/gal L10% GSutan +ChorimuronClimDuPont25% DFClassicCommandClopyralidCley, ClopDowElanco3 lb/gal SStingerClopyralid+2,4-DClpy, ClopDowElanco0.38 + 2 lb/gal SCurtailCyanazineCyanDuPont80% WP, 90% DF, 4 lb/gal FBladexClopyralid+2,4-DClpy&ClopDowElanco3 lb/gal SStingerCyclateCyclICl6 lb/gal FBladexCyclateOyelICl6 lb/gal ERo-NeetDesediphamDesemNor-Am1.3 lb/gal EBetanixDesemedipham + PhenmediphamDicaSandoz4 lb/gal FBanvel	AC-182227	AC-182227	American Cyanamid	75%	None
JachiorAlacMonsanto4 lb/gal E 4 lb/gal MT, 15% GLassoAtraVarious80% WP, 90% DF, 4 lb/gal FNumerous 4 lb/gal FNumerous 4 lb/gal FAAS-527-16BAS527BASFNoneBentazonBentBASF4 lb/gal SBasagran BuctrilBromoxynilBroxRhone-Poulenc2 lb/gal EBuctrilButylate + SafenerButyICI6.7 lb/gal L 10% GSutan+ChorimuronClimDuPont25% DFClassicClethodimCletValent2 lb/gal ECommandClopyralidClpy, ClopDowElanco3 lb/gal SStingerClopyralid+2,4-DClpy&2,4-DDow Elanco0.38 + 2 lb/gal SCurtailDyaazineCyclICI6 lb/gal FBladexDyckoateCyclICI6 lb/gal ERo-NeetDyckoateDesmNor-Am1.3 lb/gal EBetanexDesmedipham + PhenmediphamDes&PhenNor-Am0.65+0.65 lb/gal EBetanexDicambaDicaSandoz4 lb/gal SBanvel	Acetochlor	Acet	Monsanto	7.5 lb/gal	Harness
AtraVariousAtry at Ibygal MT, 15% GAtraVarious80% WP, 90% DF, 4 Ibygal FNumerous 4 Ibygal FAS-527-16BAS527BASFNoneBentazonBentBASF4 Ib/gal SBasagranBromoxynilBroxRhone-Poulenc2 Ib/gal EBuctrilButylate + SafenerButyICI6.7 Ib/gal L 10% GSutan+ChorimuronClimDuPont25% DFClassicClethodimCletValent2 Ib/gal ECommandClomazoneClomFMC4 Ib/gal SSelectClomazoneClomFMC4 Ib/gal SStingerClopyralidClpy, ClopDow Elanco0.38 + 2 Ib/gal SCurtailClopyralid+2,4-DClpy&2,4-DDow Elanco0.38 + 2 Ib/gal SCurtailClopyralidCyclICI6 Ib/gal FRo-NeetClocateCyclICI6 Ib/gal ERo-NeetDesmediphamDesmNor-Am1.3 Ib/gal EBetanexDesmedipham + PhenmediphamDes&PhenNor-Am0.65+0.65 Ib/gal EBetanixDicaSandoz4 Ib/gal SBanvel	cifluorfen	Acif	BASE	2 Ib/gal E,S	Blazer
AAS-527-16 BASS27 BASF None Bentazon Bent BASF 4 lb/gal S Basagran Bromoxynil Brox Rhone-Poulenc 2 lb/gal E Buctril Butylate + Safener Buty ICI 6.7 lb/gal L 10% G Sutan+ Chorimuron Clim DuPont 25% DF Classic Clethodim Clet Valent 2 lb/gal E Command Clopyralid Clopy, Clop DowElanco 3 lb/gal S Stinger Clopyralid+2,4-D Clpy&Clop DowElanco 0.38 + 2 lb/gal S Curtail Cycloate Cycl ICI 6 lb/gal E Ro-Neet De-498 DE498 DowElanco 0.38 + 2 lb/gal S Stinger Cycloate Cycl ICI 6 lb/gal E Ro-Neet De-498 DE498 DowElanco Applied in combination Broadstrike De-2498 Desemedipham Nor-Am 1.3 lb/gal E Betanex Desemedipham + Phenmedipham + Phenmedipham Des&Phen Nor-Am 0.65+0.65 lb/gal E Betamix	Alachlor	Alac	Monsanto		Lasso
BentazonBentBASF4 lb/gal SBasagranBroxRhone-Poulenc2 lb/gal EBuctrilButylate + SafenerButyICI6.7 lb/gal L 10% GSutan +ChorimuronClimDuPont25% DFClassicClethodimCletValent2 lb/gal ECommandClomazoneClomFMC4 lb/gal ECommandClopyralidClpy, ClopDowElanco3 lb/gal SStingerClopyralid+2,4-DClpy&2,4-DDow Elanco0.38 + 2 lb/gal SCurtailCyanazineCyclICI6 lb/gal ERo-NeetDE-498DE-498DowElancoApplied in combinationBroadstrikeDesmedipham + PhenmediphamDes&PhenNor-Am0.65+0.65 lb/gal EBetamixDicaSandoz4 lb/gal SBanvel	Atrazine	Atra	Various	· · · · · · · · · · · · · · · · · · ·	Numerous
BromoxynilBroxRhone-Poulenc2 lb/gal EBuctrilButylate + SafenerButyICI6.7 lb/gal L 10% GSutan +ChlorimuronClimDuPont25% DFClassicClethodimCletValent2 lb/galSelectClomazoneClomFMC4 lb/gal ECommandClopyralidClpy, ClopDowElanco3 lb/gal SStingerClopyralid+2,4-DClpy&2,4-DDow Elanco0.38 + 2 lb/gal SCurtailCyanazineCyanDuPont80% WP, 90% DF 4 lb/gal FBladex 4 lb/gal FBladexCycloateCyclICI6 lb/gal ERo-NeetDE-498DE498DowElancoApplied in combinationBroadstrikeCosmedipham + 	BAS-527-16	BAS527	BASF		None
Butylate + SafenerButyICI6.7 lb/gal L 10% GSutan +ChorimuronClimDuPont25% DFClassicClethodimCletValent2 lb/galSelectClomazoneClomFMC4 lb/gal ECommandClopyralidClpy, ClopDowElanco3 lb/gal SStingerClopyralid+2,4-DClpy&2,4-DDow Elanco0.38 + 2 lb/gal SCurtailCyanazineCyanDuPont80% WP, 90% DF 4 lb/gal FBladexCycloateCyclICI6 lb/gal ERo-NeetDE-498DE498DowElancoApplied in combinationBroadstrikeCosmedipham + PhenmediphamDes&PhenNor-Am0.65+0.65 lb/gal EBetamixDicaSandoz4 lb/gal SBanvel	Bentazon	Bent	BASF	4 lb/gal S	Basagran
ChlorimuronClimDuPont25% DFClassicClethodimCletValent2 lb/galSelectClomazoneClomFMC4 lb/gal ECommandClopyralidClpy, ClopDowElanco3 lb/gal SStingerClopyralid+2,4-DClpy&2,4-DDow Elanco0.38 + 2 lb/gal SCurtailCyanazineCyanDuPont80% WP, 90% DFBladexCycloateCyclICl6 lb/gal ERo-NeetDesmediphamDesmNor-Am1.3 lb/gal EBetanexDicambaDicaSandoz4 lb/gal SBanvel	Bromoxynil	Brox	Rhone-Poulenc	2 lb/gal E	Buctril
ClethodimCletValent2 lb/galSelectClomazoneClomFMC4 lb/gal ECommandClopyralidClpy, ClopDowElanco3 lb/gal SStingerClopyralid+2,4-DClpy&2,4-DDow Elanco0.38 + 2 lb/gal SCurtailCyanazineCyanDuPont80% WP, 90% DF 4 lb/gal FBladexCycloateCyclICl6 lb/gal ERo-NeetDE-498DE498DowElancoApplied in combinationBroadstrikeDesmedipham + PhenmediphamDes&PhenNor-Am0.65+0.65 lb/gal EBetamixDicambaDicaSandoz4 lb/gal SBanvel	Butylate + Safener	Buty		6.7 lb/gal L 10% G	Sutan+
ClomazoneClomFMC4 lb/gal ECommandClopyralidClpy, ClopDowElanco3 lb/gal SStingerClopyralid+2,4-DClpy&2,4-DDow Elanco0.38 + 2 lb/gal SCurtailCyanazineCyanDuPont80% WP, 90% DF 4 lb/gal FBladexCycloateCyclICl6 lb/gal ERo-NeetDE-498DE498DowElancoApplied in combinationBroadstrikeDesmedipham + PhenmediphamDes&PhenNor-Am1.3 lb/gal EBetamixDicaSandoz4 lb/gal SBarvel	Chlorimuron	Clim	DuPont	25% DF	Classic
ClopyralidClpy, ClopDowElanco3 lb/gal SStingerClopyralid+2,4-DClpy&2,4-DDow Elanco0.38 + 2 lb/gal SCurtailCyanazineCyanDuPont80% WP, 90% DF 4 lb/gal FBladexCycloateCyclICl6 lb/gal ERo-NeetDE-498DE498DowElancoApplied in combinationBroadstrikeDesmediphamDesmNor-Am1.3 lb/gal EBetanexDesmedipham + PhenmediphamDicaSandoz4 lb/gal SBarvel	Clethodim	Clet	Valent	2 lb/gal	Select
Clopyralid+2,4-DClpy&2,4-DDow Elanco0.38 + 2 lb/gal SCurtailCyanazineCyanDuPont80% WP, 90% DF 4 lb/gal FBladexCycloateCyclICI6 lb/gal ERo-NeetDE-498DE498DowElancoApplied in combinationBroadstrikeDesmediphamDesmNor-Am1.3 lb/gal EBetanexDesmedipham + PhenmediphamDes&PhenNor-Am0.65+0.65 lb/gal EBetamixDicaSandoz4 lb/gal SBanvel	Clomazone	Clom	FMC	4 lb/gal E	Command
CyanazineCyanDuPont80% WP, 90% DF 4 lb/gal FBladex 4 lb/gal FCycloateCyclICI6 lb/gal ERo-NeetDE-498DE498DowElancoApplied in combinationBroadstrikeDesmediphamDesmNor-Am1.3 lb/gal EBetanexDesmedipham + PhenmediphamDes&PhenNor-Am0.65+0.65 lb/gal EBetamixDicambaDicaSandoz4 lb/gal SBanvel	Clopyralid	Clpy, Clop	DowElanco	3 lb/gal S	Stinger
4 lb/gal F Cycloate Cycl ICI 6 lb/gal E Ro-Neet DE-498 DE498 DowElanco Applied in combination Broadstrike Desmedipham Desm Nor-Am 1.3 lb/gal E Betanex Desmedipham + Phenmedipham Des&Phen Nor-Am 0.65+0.65 lb/gal E Betamix Dicamba Dica Sandoz 4 lb/gal S Banvel	Clopyralid+2,4-D	Clpy&2,4-D	Dow Elanco	0.38 + 2 lb/gal S	Curtail
DE-498DE498DowElancoApplied in combinationBroadstrikeDesmediphamDesmNor-Am1.3 lb/gal EBetanexDesmedipham + PhenmediphamDes&PhenNor-Am0.65+0.65 lb/gal EBetanixDicambaDicaSandoz4 lb/gal SBanvel	Cyanazine	Cyan	DuPont		Bladex
DesmediphamDesmNor-Am1.3 lb/gal EBetanexDesmedipham + PhenmediphamDes&PhenNor-Am0.65+0.65 lb/gal EBetamixDicambaDicaSandoz4 lb/gal SBanvel	Cycloate	Cycl	ICI	6 lb/gal E	Ro-Neet
Desmedipham + Phenmedipham Des&Phen Nor-Am 0.65+0.65 lb/gal E Betamix Dicamba Dica Sandoz 4 lb/gal S Banvel	DE-498	DE498	DowElanco		Broadstrike
Phenmedipham Des&Phen Nor-Am 0.65+0.65 lb/gal E Betamix Dicamba Dica Sandoz 4 lb/gal S Banvel	Desmedipham	Desm	Nor-Am	1.3 lb/gal E	Betanex
Phenmedipham Des&Phen Nor-Am 0.65+0.65 lb/gal E Betamix Dicamba Dica Sandoz 4 lb/gal S Banvel	Steenendurss (
ANDE-A		Des&Phen	Nor-Am	0.65+0.65 lb/gal E	Betamix
Dichlorprop Dich Rhone-Poulenc 4 lb/gal EC 2,4-DP	Dicamba	Dica	Sandoz	4 lb/gal S	Banvel
	Dichlorprop	Dich	Rhone-Poulenc	4 lb/gal EC	2,4-DP

Common Name or Code Name	Abbre- viation	Company	Formulation	Trade Name
Diclofop	Difp	Hoechst-Roussel	3 lb/gal E	Hoelon
Diethatyl	Diet	Nor-Am	4 lb/gal E	Antor
Difenzoquat	Dife	American Cyanamid	2 lb/gal S	Avenge
DPX-66037	DPX-66	DuPont	50% DF	Upbeet
DPX-A7881	DPX-A7	DuPont	75% DF	Muster
Endothall	Endo	Pennwait	3 ib/gal S	Herbicide 273
EPTC	EPTC	ICI	7 lb/gal E 25% G	Eptam
Ethalfluralin	Etha	DowElanco	3 lb/gal E 10% G	Sonalan
Ethofumesate	Etho	Nor-Am	4 ib/gal F 1.5 lb/gal E	Nortron
F6285		FMC	4 lb/gal F	None
Fenoxaprop Fenx & 2,4-D & MCPA	Fenx	Hoechst-Roussel Hoechst-Roussel	1.5 lb/gal E 2.71 lb/gal E	Whip Tiller
Fenx & MCPA Fenx & MCPA & Thifensulfuron & Tribenuron		Hoechst-Roussel Hoechst-Roussel	0.67+4 lb/gal E 1.6:7.6:0.187:0.092	Dakota Cheyenne
Fluazifop-P	Flfp-P	ICI	1 lb/gal E	Fusilade 2000
Flumetsulam + Metolachlor	Flum & Meto NAF2	DowElanco	7.66 lb/gal	Broadstrike/Dua
Flumetsulam + Trifluralin	Flum & Trif XRM-5313	DowElanco	3.65 lb/gai	Broadstrike/Trefis
Fluroxypyr	Flox	Dow Elanco	1.7 lb/gal	Starane
Glyphosate	Glyt	Monsanto	3 lb/gal S	Roundup, Honch
Glyphosate & 2,4-D	Glyt & 2,4-D	Monsanto	0.9 + 0.8 lb/gal S	Landmaster II
Glyphosate & dicamba	Glyt & Dica	Monsanto	1.1 + 0.5 lb/gal S	Fallowmaster
ICIA-5676	ICIA5676		6.4 lb/gal	Surpass
Imazaquin	Imqn	American Cyanamid	1.5 lb/gal	Scepter
Imazethapyr	Imep	American Cyanamid	2.0 lb/gai	Pursuit

Common Name or Code Name	Abbre- viation	Company	Formulation	Trade Name
Imazamethabenz	immb	American Cyanamid	2.5 lb/gal E	Assert
Lactofen	Lact	Valent	2 lb/gal S	Cobra
MCPA	MCPA	Rhone-Poulenc	4 lb/gal E, S	Several
Metolachior	Meto	Ciba-Geigy	8 ib/gal E	Dual
Metribuzin	Metr	Mobay DuPont	4 lb/gal F, 75% DF 4 lb/gal F, 75% DF	Sencor Lexone
Metsulfuron	Mets	DuPont	60% DF	Ally/Escort
Mon-12000	MON12037 MON12041	Monsanto	75% DF 15% DF	Permit Battalion
Mon-13200	MON13200	Monsanto	2 lb/gal	None
Mon-8421	MON8421	Monsanto	4 Ib/gal F	None
Nicosulfuron	Nico	DuPont	75% DF	Accent
Oryzalin	Oryz	DowElanco	4 lb/gal F	Surfian
Paraquat	Para	ICI	1.5 lb/gal S 2 lb/gal S	Gramoxone Supe Cyclone
Pendimethalin	Pend	American Cyanamid	4 lb/gal E 3.3 lb/gal E	Prowl
Picloram	Picl	DowElanco	2 Ib/gal S	Tordon 22K
Primisulfuron	Prim	Ciba Geigy	75% DF	Beacon
Propachlor	Prcl	Monsanto	4 lb/gal F	Ramrod
Propanil & MCPA	Pml & MCPA	Rohm & Haas	3 + 1.4 lb/gal E	Stampede CM
Pyrazon	Pyra	BASF	4.2 lb/gal F	Pyramin
Quinclorac	Qucr BAS-514-34	BASF	75% WP 50% DF	Facet Impact
Quizalofop-P	Qufp	DuPont	0.75 lb/gal EC	Assure
Quizalofop-UB	Qufp-UB	Uniroyal	1 lb/gai	Pantera
Rimsulfuron	Rims	DuPont	25% DF	None
SAN-582	SAN582	Sandoz	7.5 lb/gal	Frontier
Sethoxydim	Seth, Sth	BASF	1.5 lb/gal E 1.0 lb/gal E	Poast Poast-plus

Common Name or Code Name	Abbre- viation	Company	Formulation	Trade Name
Sulfometuron	Sume	DuPont	75% DF	Oust
Thifensulfuron	Thif	DuPont	25% DF	Pinnacle
Thifensulfuron &				
Tribenuron	Thif & Trib	DuPont	75% DF (2:1)	Harmony Extra
Tribenuron	Trib	DuPont	75% DF	Express
Triallate	Tria	Monsanto	4 lb/gal E, 10% G	Far-go
Triasulfuron	Tria	Ciba-Geigy	75% DF	Amber
Triclopyr	Тгср	DowElanco	4 lb/gal	Garlon
Tridiphane	Trid	DowElanco	4 lb/gal E	Tandem
Trifluralin	Trif	DowElanco	4 lb/gal E 10% G	Treflan
VCC-4243	VCC4243	Uniroyal	0.83 lb/gal E	None
2,4-D	2,4-D	Various	Various E, S	Numerous
2,4-DB	2,4-DB	Various	2 lb/gal	Numerous

^a Abbreviations in the tables may consist of only the first one, two, or three listed letters when space was limited. Abbreviations of numbered compounds vary with available space, but usually use the first letters and numbers.

.

Soil applied herbicides, Danube, 1992. Preplant incorporated herbicides were applied in 17 gpa water at 40 psi to the center four rows of six row plots 1:30 pm May 7 when the air temperature was 82F, soil temperature at six inches was 55F, relative humidity was 34%, wind velocity was 22 mph, and soil moisture was fair. Incorporation was with a rototiller set four inches deep for treatments containing EPTC and cycloate and two inches deep for all other PPI treatments. 'ACH-194' sugarbeet was seeded in 22 inch rows May 8. Yellow foxtail, redroot pigweed, common lambsquarters, and sunflower control and sugarbeet injury were evaluated June 27.

<u>Treatment</u> (1b/A		Yeft cntl	Rrpw cntl (%) -	Colq cntl	Suf1 cnt1
Cycloate EPTC+Cycloate 2+. EPTC+Cycloate 0.88+2. EPTC+Cycloate 0.88+2. EPTC+Cycloate 0.88+2. EPTC+Cycloate 1.5+2.5 EPTC+Cycloate 2+2.5 Diethatyl 2 Ethofumesate 3 EPTC+Cycl+Diet 0.88+2.5+3 Cycl+Ethofumesate 3+3	5 9 3 7 4 11 5 11 5 20 4 3 9 24	100 100 99 99 99 100 100 85 73 100 100	50 70 76 64 75 83 75 75 86 93 96 98	38 76 78 74 82 81 76 79 15 76 90 90	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HIGH MEAN LOW MEAN EXP MEAN C.V. % LSD 5% LSD 1% # OF REPS	40 0 13 74 13 18 4	100 73 96 5 8 10 4	98 50 78 11 12 17 4	90 15 71 11 11 15 4	0 0 0 NS NS 4

Summary

EPTC+cycloate at 2+2.5 lb/A, EPTC+cycloate+diethaty1 at 0.88+2.5+3 lb/A, and cycloate+ethofumesate at 3+3 lb/A caused significant sugarbeet injury. Diethatyl at 4 1b/A and ethofumesate at 3 1b/A gave less control of yellow foxtail than the other treatments. Only EPTC+cycloate+diethatyl at 0.88+2.5+3 1b/A and cycloate+ethofumesate at 3+3 1b/A gave 90% or greater control of both redroot pigweed and common lambsquarters. None of the treatments affected common sunflower.

Postemergence herbicides for broadleaf weeds, Clara City, 1992. 'KW 2398' sugarbeet was seeded in 22 inch rows May 3. The first half of split treatments was applied 2:00 pm May 21 when the air temperature was 75F, relative humidity was 65%, wind velocity was 15 mph, soil moisture was good, sugarbeet was in the 2 leaf stage, and wild buckwheat was 1 to 2 inches tall. The second half of split treatments was applied 4:00 pm May 25 when the air temperature was 70F, relative humidity was 70%, wind velocity was 5 to 10 mph, soil moisture was good, sugarbeet was in the 4 leaf stage, and wild buckwheat was 1 to 3.5 inches tall. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Wild buckwheat was evaluated June 10.

buckwheat was evaluated to		Wild
		Buckwheat
	Rate	control
Treatment*	(1b/A)	(%)
Desmedipham/Desmedipham 0.25+0.09// Desmed+Clopyralid/Desmed+Clopyralid 0.25+0.09// Desmedipham+Clopyralid/Des&Phen+Clopyralid 0.25+0.09// Desmedipham+Endothall/Desmedipham+Endothall 0.25+0.025// Desmed+DPX-66037/Desmed+DPX-66037 0.25+0.0156/0. DPX-66037+X-77/DPX-66037+X-77 0.0156+.25%/0. DestClpy+DPX-66/Des+Clpy+DPX-66 0.25+0.09+0.0156/0.33+0. Desmed+DPX-66037/Desmed+Clopyralid 0.25+0.031/ NA307/NA307 0.45+0.09, NA307+Clopyralid/NA307+Clopyralid 0.45+0.09, NA307+DPX-66037/NA307 0.45+0.0156/0 DPX-66+Clopyralid/DPX-66+Clopyralid 0.0156+0.09/0 HIGH MEAN LOW MEAN EXP MEAN C.V. % LSD 5% 5%	0.33+0.09 0.33+0.33 33+0.0156 0156+.25% 09+0.0156 /0.33+0.19 0.45/0.45 /0.45+0.09 .45+0.0156	64 74 90 88 66 63 70 72 85 95 89 66 95 63 77 16 17 23 4
LSD 1% # OF REPS		4

* NA307 = desmedipham+phenmedipham+ethofumesate, 1:1:1 X-77 = non-ionic surfactant from Valent

Summary

NA307 + clopyralid gave 95% control of wild buckwheat which was similar to control from desmedipham&phenmedipham + clopyralid, desmedipham + endothall, NA307, and NA307 + DPX-66037.

Postemergence herbicides for broadleaf weeds, Danube, 1992. sugarbeet was seeded in 22 inch rows May 8. The first half of split treatments was applied 2:30 pm May 22 when the air temperature was 65F, relative humidity was 57%, wind velocity was 15 to 20 mph, sugarbeet was in the cotyledon to 2 leaf stage, common sunflower, redroot pigweed, and common lambsquarters were in the cotyledon stage. The second half of split treatments was applied 5:00 pm May 27 when the air temperature was 77F, relative humidity was 72%, wind velocity was 10 mph, sugarbeet was in the 2 to 4 leaf stage, common sunflower was 2 to 3 inches tall, redroot pigweed was in the cotyledon stage to 2 inches tall, and common lambsquarters was 1 to 2 inches tall. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sugarbeet injury and common sunflower and redroot pigweed control were evaluated June 17 and June Common lambsquarters control was evaluated June 17. Yellow foxtail control was evaluated June 27.

		Jun	e 17					
Treatment*	Sgbt	Cosf	Rrpw	Colq	Cabt	Jun	e 27	
Kate	inj	cnt1	<u>cnt1</u>	cnt1	Sgot	Cosf	Yeft	Rrpw
Desmediphon/Dec. 1: (1b/A)				(%	<u>1n</u>]	<u>cntl</u>	cnt1	cnt1
Desmedipham/Desmedipham				(%)			
0.25/0.33 Desm+Clopyralid/Desm+Clopyralid	25	25	76	59	14	22	66	69
0.25+0.09/0.33+0.09 Des&Phen+Clpy/Des&Phen+Clpy	25	91	84	69	11	100	70	78
0.25+0.09/0.33+0.09 Desm+Endothal1/Desm+Endothal1	25	91	80	79	13	100	74	68
0.25+0.25/0.33+0.33 Desm+DPX-66037/Desm+DPX-66037	30	10	71	51	25	30	64	66
0.25+0.0156/0.33+0.0156 DPX-66037+X-77/DPX-66037+X-77	26	91	82	61	10	40	81	86
0.0156+.25%/0.0156+.25% Des+C1py+DPX-66/Des+C1py+DPX-66	0	86	35	25	0	46	31	21
0.25+0.09+0.0156/0.33+0.09+0.0156 Desm+DPX-66037/Desm+Clopyralid	38	98	88	71	21	100	70	81
0.25+0.031/0.33+0.19 NA307/NA307	38	96	79	69	15 1	.00	86	95
0.45/0.45 NA307+Clopyralid/NA307+Clpy	51	81	97	97	28	27	86	83
0.45+0.09/0.45+0.09 NA307+DPX-66037/NA307+DPX-66037	51	97	98	98	24 1	00	68	79
0.45+0.0156/0.45+0.0156 DPX-66037+Clopyralid/DPX-66+Clpy	50	98	98	98	31	55	80	90
0.0156+0.09/0.0156+0.09 C.V. %	0	98 4	45 :	23	0 1	00 ;	24	18
	11	6	7					
LSD 5% LSD 1%	5	7	7 7				1]	15
							0 1	5
# OF REPS			4				4 2	0
* NA307 = desmedipham+phenmedipham+etho	fumes	ato	4	4	4	4	4	4

ipham+ethofumesate, 1:1:1 X-77 = non-ionic surfactant from Valent

SUMMARY: Sugarbeet injury was less on June 27 than on June 17 reflecting sugarbeet recovery from the injury. On June 17, treatments that included NA307 gave greater sugarbeet injury than other treatments. Treatments that included clopyralid gave complete control of common sunflower on June 27. Treatments with DPX-66037 gave 86 to 98% control of sunflower on June 17 but the plants had recovered significantly by June 27. DPX-66037 and DPX-66037+clopyralid gave the least control of yellow foxtail, redroot pigweed and

3

Postemergence herbicides for broadleaf weeds, DeGraff, 1992. 'ACH 198' sugarbeet was seeded in 22 inch rows May 5. The first half of split treatments was applied 3:00 pm May 14 when the air temperature was 70F, relative humidity was 65%, wind velocity was 5 to 10 mph, soil moisture was good, and sugarbeet, eastern black nightshade, common lambsquarters, and redroot pigweed were in the cotyledon stage. The second half of split treatments was applied 5:00 pm May 20 when the air temperature was 75F, relative humidity was 75%, wind velocity was 15 mph, soil moisture was good, sugarbeet was in the cotyledon stage, eastern black nightshade was 1 to 2 inches tall, and common lambsquarters and redroot pigweed were in the cotyledon stage to 1 inch tall. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Common lambsquarters, redroot pigweed, and eastern black nightshade control were evaluated June 12.

Ebns

D

Wele evaluation	Colq	Rrpw	EDIIS
Rate	cntl	cntl	cntl
Treatment* (1b/A)		(%) -	
Desmed ipham/Desmed ipham 0.25/0.33 Desm+Clopyralid/Desm+Clopyralid 0.25+0.09/0.33+0.09 Des&Phen+Clpy/Des&Phen+Clpy 0.25+0.25/0.33+0.33 Desm+Endothall/Desm+Endothall 0.25+0.25/0.33+0.33 Desm+DPX-66037/Desm+DPX-66037 0.25+0.0156/0.33+0.0156 DPX-66+X-77 0.0156+.25%/0.0156+.25% De+Clp+DPX66/De+Clp+DPX66 .25+.09+.0156/.33+.09+.0156 Desm+DPX-66037/Desm+Clopyralid 0.25+0.031/0.33+0.19 NA307/NA307 0.45+0.09/0.45+0.0156 NA307+Clopyralid/NA307+Clpy 0.45+0.0156/0.45+0.0156 NA307+DPX-66/NA307+DPX-66 0.45+0.0156/0.45+0.0156 DPX-66+Clopyralid/DPX-66+Clpy 0.0156+0.09/0.0156+0.09 NA307+DPX-66/NA307+DPX-66 0.45+0.0156/0.45+0.0156 DPX-66+Clopyralid/DPX-66+Clpy 0.0156+0.09/0.0156+0.09 HIGH MEAN LOW MEAN EXP MEAN C.V. % LSD 5% LSD 1%	64 72 65 67 73 38 81 84 91 95 95 59 95 59 95 38 73 6 6 8 4	73 76 70 60 78 55 84 86 91 95 97 61 97 55 77 61 97 55 77 6 7 9 4	58 79 68 39 91 84 95 96 95 100 84 100 39 82 5 6 9 4

OF REPS

* NA307 = desmedipham+phenmedipham+ethofumesate, 1:1:1

X-77 = non-ionic surfactant from Valent

Summary

Treatments including NA307 gave or tended to give greater control of common lambsquarters and redroot pigweed than the other treatments. Treatments that included NA307 or desmedipham+DPX-66037 gave greater control of eastern black nightshade than other treatments.

Postemergence herbicides for broadleaf weeds, Fairfax, 1992. 'KW 2398' sugarbeet was seeded in 22 inch rows May 2. The first half of split treatments was applied 3:00 pm May 15 when the air temperature was 75F, relative humidity was 65%, wind velocity was 10 mph, sugarbeet was in cotyledon to 2 leaf stage, and velvetleaf was in the cotyledon stage. The second half of split treatments was applied 3:00 pm May 20 when the air temperature was 73F, relative humidity was 67%, wind velocity was 10 to 15 mph, sugarbeet was in the 2 to 4 leaf stage, and velvetleaf was in the cotyledon stage to 1.5 inches tall. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Velvetleaf control was evaluated June 10.

Treatment*		Velvetleaf
	Rate	control
	(1b/A)	(%)
Desmedipham/Desmedipham		
Desmed+Clopyralid/Desmed+Clopyralit	0.25/0.33	6
Desar lien+ Lopyral id/DeckPhon+Classed 1.1	0.09/0.33+0.09	13
Desmed Ipham+Endothall/Desmodiate in the	0.09/0.33+0.09	5
- Comed DIA-0003//Desmod IDDV_66037	0.25/0.33+0.33	0
DPX = 6603 / + X = 77 / DPX = 66037 + X = 77	56/0.33+0.0156	73
Des+Clpy+DPX-66/Des+Clpy+DPX-66 0 25 0 00190+22	5%/0.0156+.25%	81
Desmed+DPX-66037/Desmed+Clopyralid 0.25+0.09+0.0156/0.3	3+0.09+0.0156	95
NASU//NASU/	031/0.33+0.19	96
NA307+Clopyralid/NA307+Clopyralid 0.45+0	0.45/0.45	74
MA307 + DPX - 66037 / NA307 + DPX - 66027	.09/0.45+0.09	81
DPX-06+Clopyralid/DPV (6) of the second se	6/0.45+0.0156	100
	9/0.0156+0.09	74
HIGH MEAN		
LOW MEAN		100
EXP MEAN		0
C.V. %		58
LSD 5%		10
LSD 1%		9
# OF REPS		12
* NA307 = document's t		4

* NA307 = desmedipham+phenmedipham+ethofumesate, 1:1:1 X-77 = non-ionic surfactant from Valent

Summary

Desmedipham+DPX-66037 followed by desmedipham+clopyralid; desmedipham + clopyralid+DPX-66037; and NA307+DPX-66037 gave greater control of velvetleaf than the other treatments.

Postemergence herbicides for broadleaf weeds, Hallock, 1992. 'Seedex Monohikari' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 13. Lorsban 15G at 13 pounds product per acre was applied modified in-furrow at planting. The first half of split treatments was applied 2:00 pm June 2 when the air temperature was 80F, soil temperature at six inches was 59F, relative humidity was 41%, wind velocity was 17 mph, soil moisture was good and sugarbeet was in the 2 leaf stage. The second half of split treatments was applied 11:45 am June 8 when the air temperature was 70F, soil temperature at six inches was 56F, relative humidity was 52%, wind velocity was 11 mph, soil moisture was good and sugarbeet was in the 2 to 4 leaf stage. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. The entire plot area was treated with sethoxydim + oil June 2. Sugarbeet injury was evaluated June 25.

+ oil June 2. Sugarbeet injery	Rate	Sugarbeet in jury
freatment*	(1b/A)	(%)
Desm+Clopyralid/Desm+Clopyralid 0.25 Des&Phen+Clpy 0.25 Desm+Endothall/Desm+Endothall 0.25 Desm+DPX-66037/Desm+DPX-66037 0.25+0.0 DPX-66037+X-77/DPX-66037+X-77 0.0156+0.2 Desm+DPX-66037/Desm+DPX-66037+X-77 0.0156+0.2 Dest+Clpy+DPX66/Des+Clpy+DPX66 0.25+0.09+0.0156/0 Desm+DPX-66037/Desm+Clopyralid 0.25+ NA307+Clopyralid/NA307 0.45 NA307+Clopyralid/NA307+Clopyralid 0.45+0.0 NA307+DPX-66037/NA307+DPX-66037 0.0156+0.2 DPX-66037+Clpy/DPX-66037+Clpy 0.0156+0.2	0.25/0.33 +0.09/0.33+0.09 +0.09/0.33+0.09 +0.25/0.33+0.33 156/0.33+0.0156 5%/0.0156+0.25% 0.33+0.09+0.0156 -0.031/0.33+0.19 0.45/0.45 5+0.09/0.45+0.09 0156/0.45+0.0156 0.09/0.0156+0.09	78 48
HIGH MEAN LOW MEAN EXP MEAN C.V. % LSD 5% LSD 1% # OF REPS		5 34 11 5 7 4

* NA307 = desmedipham+phenmedipham+ethofumesate, 1:1:1 ratio. X-77 = non-ionic surfactant from Valent

Summary

Desmedipham, desmedipham+clopyralid and desmedipham&phenmedipham + clopyralid gave similar sugarbeet injury. Desmedipham+endothall gave less sugarbeet injury than other treatments that included desmedipham. Desmedipham +clopyralid+DPX-66037 gave more sugarbeet injury than desmedipham + clopyralid or desmedipham+DPX-66037. NA307+clopyralid gave more injury than any other treatment.

Postemergence herbicides for broadleaf weeds, Cavalier, 1992. 'Bush Johnson BJ 1320' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 12. Lorsban 15G at 13 pounds product per acre was applied in a 2-inch band and drag chain incorporated at planting. The first half of split treatments was applied 3:15 pm June 2 when the air temperature was 81F, soil temperature at six inches was 61F, relative humidity was 45%, wind velocity was 10 mph, soil moisture was good, sugarbeet was in the 2 leaf stage, wild buckwheat was in the cotyledon to 2 leaf stage, redroot pigweed was in the cotyledon to 2 leaf stage, and nightflowering catchfly was in the 2 leaf stage. The second half of split treatments was applied 1:30 pm June 8 when the air temperature was 72F, soil temperature at six inches was 57F, relative humidity was 53%, wind velocity was 21 mph, soil moisture was good, and sugarbeet, wild buckwheat, redroot pigweed, and nightflowering catchfly were in the 2 to 4 leaf stage. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. The entire plot area was treated with sethoxydim + Dash at 0.3 lb ai/A + 1 quart/A June 9. Sugarbeet injury and wild buckwheat, redroot pigweed, and nightflowering catchfly control were evaluated June 24. Sugarbeet injury and nightflowering catchfly control were

		Jur	ne 24		Ju	ly 1
Treatment*	Sgbt	Wibw	Rrpw	Nfcf	Sebt	Nfcf
Rate	inj	cnt1	cntl	cnt1		cnt1
(1b/A)				7/ \		CIICI
Desmedipham/Desmedipham 0.25/0.22						
D_{0} $cm + (1 - 1) - (2 - 1) - ($	20	56	94	27	9	
Dest Phon+Clay $0.25+0.09/0.33+0.09$	24	99	99	36		11
Des&Phen+Clpy/Des&Phen+Clpy 0.25+0.09/0.33+0.09 DesmtEndothall/Des	25	100	95		15	19
-0.5 -0.5	10	93	93	20	14	20
$2 c_{3} m \cdot b_{1} \Lambda^{-} 0 0 / Desm + 0 P \Lambda^{-} 6 6 0 25 + 0 01 F C / 0 00 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 $	25	76		26	1	13
-2 -1 -1 -1 -1 -1 -1 -1 -1	6		99	84	13	48
-2.01 $D_{1}A/De+01+0PX$ $-75+00+0156/22$		45	68	88	5	85
$-20 \text{ m} \cdot D_{1} \text{ r}$ 000 J/ Desm+0 1 Dy 0 25 0 021 /0 20	30	98	100	90	15	68
NA307/NA307	26	98	100	92	13	33
	41	97	97	65	28	63
NA307+DPX66/NA307+DPX66 0 45+0 0156 0	41	100	99	62	31	55
DPX-66+C1py/DPX-66+C1py 0.0156+0.09/0.0156+0.09	39	99	100	97	26	83
0.0100-0.09/0.0156+0.09	14	97	82	88	1	78
C.V. %					1	10
LSD 5%	26	6	6	17	45	35
LSD 1%	9	7	8	16	9	24
# OF REPS	12	10	11	21	12	
	4	4	4	4	4	33
* NA207 - 1				-	4	4

NA307 = desmedipham+phenmedipham+ethofumesate, 1:1:1 ratio. X-77 = non-ionic surfactant from Valent

Summary

Sugarbeet injury and nightflowering catchfly control generally was less on July 1 than June 24 reflecting plant recovery from herbicide injury. Based on the June 24 evaluation: desmedipham+clopyralid+DPX-66037 gave more sugarbeet injury than desmedipham; DPX-66037+X-77, desmedipham and desmedipham + DPX-66037 gave less wild buckwheat control than other treatments; DPX-66037 and DPX-66037+clopyralid gave less redroot pigweed control than other treatments; and treatments that included DPX-66037 gave better control of nightflowering catchfly than other treatments. Treatments including NA307 gave greater sugarbeet injury than other treatments at both evaluation dates.

Postemergence herbicides for broadleaf weeds, Halstad, 1992. 'Bush Johnson BJ 1320' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 8. Lorsban 15G at 13 pounds product per acre was applied in a 2-inch band and drag chain incorporated at planting. The first half of split treatments was applied 3:15 pm May 26 when the air temperature was 65F, soil temperature at six inches was 52F, relative humidity was 36%, wind velocity was 12 mph, soil moisture was good, sugarbeet was in cotyledon to early 2 leaf stage and redroot pigweed was in the cotyledon to 2 leaf stage. The second half of split treatments was applied 3:45 pm June 1 when the air temperature was 85F, soil temperature at six inches was 65F, relative humidity was 31%, wind velocity was 4 mph, soil moisture was good and sugarbeet and redroot pigweed were in the 2 to 4 leaf stage. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sugarbeet injury and redroot pigweed control were evaluated June 8 and July 3.

redroot pigweed off	Jur	ne 8	July 3		
	Sgbt	Rrpw	Sgbt	Rrpw	
Rate	inj	cntl	cntl	<u>cntl</u>	
Treatment* (1b/A)		(%)		
Desmed ipham/Desmed ipham0.25/0.33Desm+Clpy/Desm+Clpy0.25+0.09/0.33+0.09Des&Phen+Clpy/Des&Phen+Clpy0.25+0.09/0.33+0.09Desm+Endothall/Desm+Endo0.25+0.25/0.33+0.33Desm+DPX-66/Desm+DPX-660.25+0.0156/0.33+0.0156DPX-66+X-77/DPX-66+X-770.0156+.25%/0.0156+.25%De+C1+DPX/De+C1+DPX.25+.09+.0156/.33+.09+.0156Desm+DPX-66037/Desm+C1py0.25+0.031/0.33+0.19NA307/NA3070.45/0.45NA307+C1py/NA307+C1py0.45+0.09/0.45+0.09NA307+DPX66/NA307+DPX660.45+0.0156/0.45+0.0156DPX-66+C1py/DPX-66+C1py0.0156+0.09/0.0156+0.09	21 28 30 28 21 9 35 31 35 41 33 9	100 100 95 94 100 78 100 100 100 100 100 60	6 10 15 8 11 0 13 10 16 19 13 0	93 97 90 76 98 73 99 99 99 96 97 98 54	
HIGH MEAN	41 9	100 60	19 0 10	99 54 89	
LOW MEAN	27	94 5	52	4	
EXP MEAN	15	7	7	5	
C.V. % LSD 5%	6 8	9	10	7	
LSD 3% LSD 1% # OF REPS	0 4	4	4	4	

* NA307 = desmedipham+phenmedipham+ethofumesate, 1:1:1 ratio.

X-77 = non-ionic surfactant from Valent

Summary

Sugarbeet injury and redroot pigweed control generally were less on July 3 than on June 8 reflecting plant recovery from herbicide injury. A11 treatments except desmedipham + endothall, DPX-66037 + X-77 and DPX-66037 + clopyralid gave over 90% redroot pigweed control on July 3. DPX-66037+X-77 and DPX-66037+clopyralid gave less sugarbeet injury than other treatments.

Postemergence herbicides for broadleaf weeds, Mooreton, 1992. 'Bush Johnson BJ 1320' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 6. Lorsban 15G at 13 pounds product per acre was applied modified in-furrow at planting. The first half of split treatments was applied 4:45 pm May 25 when the air temperature was 53F, soil temperature at six inches was 50F, relative humidity was 58%, wind velocity was 9 mph, soil moisture was good, sugarbeet was in the cotyledon to 2 leaf stage, common lambsquarters was in the 2 to 4 leaf stage, and redroot pigweed was in the cotyledon to 4 leaf stage. The second half of split treatments was applied 6:00 pm May 31 when the air temperature was 80F, soil temperature at six inches was 64F, relative humidity was 32%, wind velocity was 9 mph, soil moisture was good, sugarbeet was in the cotyledon to 4 leaf stage, common lambsquarters was in the 2 to 8 leaf stage, and redroot pigweed was in the cotyledon to 6 leaf stage. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. The entire plot area was treated with sethoxydim + Dash at 0.25 lb ai/A + 1 quart/A May 29. Sugarbeet injury was evaluated June 10, June 20, and July 4. Redroot pigweed and common lambsquarters control were evaluated June 20 and July 4.

J	unel0		June	20		July	
				qRrpw	Soh	tCol	aBrow
Treatment* Rate	inj	in	icnt	lcntl			lcntl
(1b/A)							TCHLI
Decendial (D							
Desmedipham/Desmedipham 0.25/0.33	24	24	.100	98	8	95	92
Desm+C1py/Desm+C1py 0.25+0.09/0.33+0.09	24	26	100	99	10	100	
Des&Phen+Clpy/Des&Phen+Clpy 0.25+0.09/0.33+0.09	28	31	100	97	15	100	
Desm+Endothall/Desm+Endo 0.25+0.25/0.33+0.33	38	44	100	95	21	89	
Desm+DPX-66/Desm+DPX-66 0.25+0.0156/0.33+0.0156	20	21	99	98	14	96	97
DPX-66+X-77/DPX-66+X-77 0.0156+.25%/0.0156+.25%	9	12	50	82	5	49	81
De+C1+DPX/De+C1+DPX .25+.09+.0156/.33+.09+.0156	29	30	100	100	13	100	100
Desm+DPX-66037/Desm+Clpy 0.25+0.031/0.33+0.19 NA307/NA307	26	33	100	99	16	100	98
	44	46	100	98	33	99	94
NA307+C1py/NA307+C1py 0.45+0.09/0.45+0.09 NA307+DPX66/NA307+DPX66 0.45+0.0156/0.45+0.0156	44	40	100	99	28	100	99
DPX-66+Clpy/DPX-66+Clpy 0.0156+0.09/0.0156+0.09	43	44	100	100	31	100	99
00.01997D1x-00+0199 0.0156+0.0970.0156+0.09	10	9	68	84	4	51	84
HIGH MEAN							
LOW MEAN	44	46	100	100	33	100	100
EXP MEAN	9	9	50	82	4	49	81
C.V. %	28	30	93	96	16	90	93
LSD 5%	15	17	6	3	39	10	3
LSD 1%	6	7	8	5	9	13	5
# OF REPS	8.4	10	11	6	12	17	6
	4	4	4	4	4	4	4

* NA307 = desmedipham+phenmedipham+ethofumesate, 1:1:1 ratio. X-77 = non-ionic surfactant from Valent

Summary

Evaluations of sugarbeet injury and weed control tended to be lower on July 4 than on June 20 reflecting plant recovery from herbicide injury. Treatments that included NA307 or endothall gave or tended to give more sugarbeet injury than the other treatments. All treatments gave over 90% control of common lambsquarters and redroot pigweed except desmedipham + endothall, DPX-66037+X-77, and DPX-66037+clopyralid. Postemergence herbicides split applied, Crookston, 1992. 'Seedex Monohikari' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 5. Lorsban 15G at 13 pounds product per acre was applied modified in-furrow at planting. first half of split application treatments was applied 12:30 pm May 26 when the air temperature was 65F, soil temperature at six inches was 48F, relative humidity was 36%, wind velocity was 8 mph, soil moisture was good, sugarbeet was in the cotyledon stage, prostrate pigweed was in the cotyledon to 4 leaf stage, wild buckwheat was in the cotyledon to 2 leaf stage, and kochia was in the cotyledon stage to 0.25 inch rosette diameter. The second half of split applications and single application treatments were applied 12:45 pm June 1 when the air temperature was 85F, soil temperature at six inches was 65F, relative humidity was 31%, wind velocity was 5 mph, soil moisture was good, sugarbeet was in the 2 leaf stage, prostrate pigweed was in the 2 to 6 leaf stage, wild buckwheat was in the 2 to 5 leaf stage, and kochia had a 0.25 to 0.75 inch rosette diameter. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. The entire plot area was treated with sethoxydim + Dash at 0.2 lb ai/A + 1 quart/A May 21. Sugarbeet injury and prostrate pigweed and wild buckwheat control were evaluated June 11 and July 3. Kochia control was evaluated July 3.

were evaluated June II and July 5. Rochia concrete	Jur	ne 11			July	3	
	Saht	row	VibwK	loczS	SgbtW	ibwP	rpw
Rate	injo	ntlo	ntlc	ent1	injc	ntlc	ntl
Treatment* (1b/A)				(%)			
							- 1
DPX66+X-77/DPX66+X-77 0.0156+0.25%/0.0156+0.25%	0	61	25 1		0	28	51
	24	98	84 1		16	88	96
DFAUU+Dedi II/Dimot Dedi I	19	100	80	100	13	71	97
DrAuurbesmi Dimos	1	45	86	82	0	89	50
DPX66+C1py/DPX66+C1py 0.0156+0.09/0.0156+0.09	36	100	98	99	19	94	97
DPX+DP+C1p/DPX+DP+C1p.0156+.33+.09/.0156+.33+.09 $(DPX+DP+C1p/DPX+DP+C1p.0156+.33+.09/.0156+0.75)$	6	50	46	0	0	66	48
/DPX-0003/+Endochart	1	61	44	100	0	43	53
/DIA 00057 00001 0000 100	0	58	43	100	0	40	43
/DIA00 QUIDUTOF 0 10/0 10	9	87	55	62	3	63	91
Des&Phen/Des&Phen	24	97	76	53	9	73	93
Des&Phen/Des&Phen	29	96	90	37	19	75	95
Des&Phen/Des&riten	20	97	89	37	14	86	94
NA307/NA307	35	99	95	81	18	91	96
NA30//NA30/	41	100	100	77	25	95	96
NA307/ NA307 0 28/0 28	26	96	89	68	10	78	91
NA308/ NAS06 0 45/0 45	41	99	99	82	25	92	95
NA3U8/NA3U8	56	100	100	73	34	96	97
NA308/NA300	29	94	89	63	20	80	93
	36	98	96	82	25	90	96
	38	99	98	85	28	95	97
	31	93	85	23	23	76	89
/Desmed 1phamar nenmed 1pham	45	99	100	80	40	96	97
/NA307	59	100	100	92	41	96	97
/NA308	68	100	100	77	50	95	97
/Desmedarnenmed+Henordmesdere	0	14	89	0	0	89	35
Clopyralid/Clopyralid 0.09/0.09	25	98	97	43	10	94	96
Des&Phen+Clpy/Des&Phen+Clpy 0.33+0.09/0.33+0.09							
	23	5	7	22	50	8	7
C.V. %	9				12	9	8
LSD 5%	11					12	10
LSD 1%	4				4	4	4
<pre># OF REPS * X-77 = non-ionic surfactant from Valent; NA307</pre>			08 =	des	med+	phen	med +
* y 77 = non-ionic surfactant from valent; MASO							

* X-77 = non-ionic surfactant from valent; hASO7 and hasoco define proethofumesate, 1:1:1 ratio; Scoil = methylated seed oil from Agsco.

(experiment continued on next page)

Summary

All treatments including DPX-66037 gave nearly total kochia control except DPX-66037+clopyralid which suggests that clopyralid antagonized kochia control from DPX-66037. However, DPX-66037 + clopyralid + desmedipham & phenmedipham gave 99% kochia control so the addition of the desmedipham & phenmedipham overcame most of the antagonism. NA307, NA308, and desmedipham & phenmedipham+ethofumesate-SC gave or tended to give more sugarbeet injury than desmedipham&phenmedipham without ethofumesate. Averaged over rates and evaluation times, desmedipham&phenmedipham gave 18% sugarbeet injury while treatments including ethofumesate gave 34% injury. Averaged over rates, wild buckwheat, prostrate pigweed, and evaluation times; desmedipham&phenmedipham gave 83% weed control while treatments including ethofumesate gave 95% weed control. NA308 gave greater sugarbeet injury and similar weed control to NA307. The best overall control of wild buckwheat, prostrate pigweed, and kochia was from DPX-66037+desmedipham&phenmedipham+clopyralid.
Lanceleaf sage control with postemergence herbicides, Wendell, Experimental test plots 30 feet long and 11 feet wide were established in a commercial wheat field with a moderate population of lanceleaf sage. first half of split applications was applied 11:30 am May 28 when the air temperature was 67F, soil temperature at six inches was 55F, relative humidity was 46%, wind velocity was 11 mph, and lanceleaf sage was in the cotyledon to 4 leaf stage. The second half of split applications was applied 1:30 pm June 4 when the air temperature was 65F, soil temperature at six inches was 66F, relative humidity was 66%, wind velocity was 18 mph, soil moisture was good, and lanceleaf sage was in the cotyledon to 6 leaf stage. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center seven eleven foot plots. Lanceleaf sage was evaluated June 26.

1992.

feet of eleven loot process	Lanceleaf sage
Rate	control
	(%)
Treatment* (1b/A) Desmed ipham/Desmed ipham 0.25/0.33 Desmed + Clopyral id/Desmed + Clopyralid 0.25+0.09/0.33+0.09 Desmed + Endothal 1/Desmed + Endothal1 0.25+0.09/0.33+0.09 Desmed + Endothal 1/Desmed + Endothal1 0.25+0.09/0.33+0.09 Desmed + Endothal 1/Desmed + Endothal1 0.25+0.09/0.33+0.09 Desmed + PX - 66037/Desmed + DPX - 66037 0.25+0.0156/0.33+0.0156 DPX - 66037 + X - 77 / DPX - 66037 + X - 77 0.0156+0.25% / 0.0156 + 0.25% Des + Clpy + DPX / Des + Clpy + DPX 66 0.25+0.09+0.0156 / 0.33+0.09+0.0156 0.25+0.031 / 0.33+0.19 Desmed ipham + DPX - 66037 / Desmed ipham + Clpy 0.25+0.031 / 0.33+0.19 NA307 / NA307 0.45/0.45 NA307 + DPX - 66037 / NA307 + Clopyralid 0.45+0.0156 / 0.45+0.09 NA307 + DPX - 66037 / NA307 + DPX - 66037 0.45+0.0156 / 0.45+0.0156 0.45 + 0.0156 / 0.45 + 0.09 0.156 + 0.09 / 0.0156 + 0.09 HIGH MEAN HIGH MEAN HIGH MEAN	(%) 23 85 85 35 33 38 79 86 71 83 84 49 86 23 62
LOW MEAN EXP MEAN	32 29
C.V. % LSD 5% LSD 1%	39 4
# OF REPS	

* X-77 = non-ionic surfactant from Valent NA307 = desmedipham+phenmedipham+ethofumesate, 1:1:1

Summary

Treatments that included clopyralid or NA307 gave over 70% control of lanceleaf sage except DPX-66037+clopyralid, suggesting an antagonism between Desmedipham+clopyralid gave control similar to desmedipham&phenmedipham+clopyralid. NA307+clopyralid tended to give better control than NA307 alone. Desmedipham+clopyralid gave much better control than desmedipham alone.

Common mallow and venice mallow control with postemergence herbicides, Fargo, 1992. Experimental test plots eleven feet wide and thirty feet long were established in a field with natural stands of common mallow and venice mallow. The first half of treatments was applied 5:30 pm August 17 when the air temperature was 79F, soil temperature at six inches was 68F, relative humidity was 41%, wind velocity was 15 mph, soil moisture was fair, and common mallow and venice mallow were just emerging to the cotyledon stage. The second half of treatments was applied 3:00 pm August 21 when the air temperature was 73F, soil temperature at six inches was 67F, relative humidity was 48%, wind velocity was 10 mph, soil moisture was fair, common mallow was in the cotyledon to 1 leaf stage, and venice mallow was in the 1 leaf stage. same experiment excluding three treatments was established in a new location in the same field August 31. The first half of treatments was applied 4:30 pm August 31 when the air temperature was 67F, soil temperature at six inches was 64F, relative humidity was 50%, wind velocity was 0 to 5 mph, soil moisture was good, and common mallow and venice mallow were in the cotyledon stage. The second half of treatments was applied 4:30 pm September 10 when the air temperature was 66F, soil temperature at six inches was 58F, relative humidity was 45%, wind velocity was 3 mph, soil moisture was good, and common mallow and venice mallow were in the cotyledon to 1 leaf stage. All herbicide treatments were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center seven feet of eleven foot plots. Common mallow and venice mallow control were evaluated August 31 in the first experiment and September 26 in the second experiment.

Treatment*RateVemaComaComaVemaBAS119-45H+DashHC/BAS45+DashHC 1+0.1256/1+0.12563522068BAS119-45H+Sylgard/BAS45+Sylgard 1+0.256/1+0.2563522068BAS119-45H+OC/BAS45+OC1+0.256/1+0.25630BAS119-45H+Dash/BAS45+Dash1+0.256/1+0.25630BAS119-45H+Dash/BAS45+Dash1+0.256/1+0.56158BAS119-45H+Dash/BAS16+Dash1+0.256/1+0.56158BAS119-16+Dash/BAS16+Dash1+0.256/1+0.56158Desmed ipham/Desmed ipham0.25/0.33630Desm+Clpy/Desm+Clpy0.25+0.09/0.33+0.091113Desm/Desm+Clpy0.25+0.0156+0.25%25122315DesmPX-664X-77/DPX66+X-770.0156+0.25%25151780DesmPX66/Desh+DPX660.25+0.0156/0.33+0.0156151780DesmPX66/Desh+DPX660.25+0.0156/0.33+0.015623133533DesmPX66/Desh+DPX660.25+0.0156/0.33+0.01562313530DesmPX66/Desh+DPX660.25+0.0156/0.33+0.015623133533DesmPX66/Desh+DPX660.25+0.031/0.33+0.0156151855DesmHEtho-SC/Desm+Etho-SC0.25+0.25/0.33+0.3313133745Desm+Etho-SC/Desm+Etho-SC0.25+0.25/0.33+0.3391708DPX66+Clpy/DPX66+Clpy		Augu	st 31	Septem	ber 26
KateBAS119-45H+DashHC/BAS45+DashHC 1+0.125G/1+0.125G3522068BAS119-45H+Sylgard/BAS45+Sylgard 1+0.25%/1+0.25%83BAS119-45H+Dash/BAS45+Dash1+0.25G/1+0.25G30BAS119-45H+BCH74902S/BAS45+BCH1+0.5G/1+0.5G158BAS119-16+Dash/BAS16+Dash1+0.25G/1+0.5G3126063Desmedipham/Desmedipham0.25/0.336300Desmedipham/Desmedipham0.25/0.33+0.09821528Desme/Desm+C1py0.25+0.0156/0.33+0.09821528DeshPesm+C6037/DeshDFX660.25+0.0156/0.33+0.09821528DeshPesm+C1p/DeshDFX660.25+0.0156/0.33+0.0156151780DeshPesm+C6/DeshP+DPX660.25+0.0156/0.33+0.0156151780DeshPeshPX66/DeshP+DPX660.25+0.0156/0.33+0.0156151780DeshPeshPX66/DeshP+DPX660.25+0.015/0.33+0.0156151850DeshPEX61/DeshPEx60/DeshPEx600.25+0.03/0.33+0.0156151850DeshPEX61/DeshPEx60/DeshPEx600.25+0.25/0.33+0.3313133745DeshPEX61/DeshPEx60/DeshPEx600.25+0.25/0.33+0.3313133745DeshPEX60/DeshPEx60/DeshPEx600.25+0.25/0.33+0.3391708DeshPEX60/DeshPEx60	Treatment*	Vema	Coma		
ASS119-45H+DashHC/BAS45+DashHC 1+0.1256/1+0.12563522068BAS119-45H+Sy1gard/EAS45+Sy1gard 1+0.257/1+0.25783BAS119-45H+DC/BAS45+DC1+0.256/1+0.25630BAS119-45H+Dash/BAS45+Dash1+0.256/1+0.25630		<u>cnt1</u>	<u>cntl</u>	cnt1	
BAS119-45H+0C/BAS45+Bylgard 1+0.25%/1+0.25% BAS119-45H+0C/BAS45+0C 1+0.256(1+0.256 3 0 BAS119-45H+BCH74902S/BAS45+BCH 1+0.256/1+0.256 25 15 0 0 BAS119-45H+BCH74902S/BAS45+BCH 1+0.56/1+0.56 15 8 BaS119-16+Dash/BAS16+Dash 1+0.256/1+0.256 31 26 0 63 Desmed ipham/Desmed ipham 0.25/0.33 6 3 0 0 Desmed ipham/Desmed ipham 0.25/0.33 6 3 0 0 Desm/Desm+C1py 0.25+0.09/0.33+0.09 1 1 13 51 Desmed ipham/Desmed ipham 0.25/0.33 6 3 0 0 Desm/Desm+C1py 0.25+0.0156+0.25% 25 12 23 15 Desmbed 0.25+0.0156+0.25% 25 12 23 15 DeshPX-66637/Des+DPX66 0.25+0.0156/0.33+0.0156 15 17 8 0 Desmed/Desmed 0.25+0.0156/0.33+0.0156 23 13 35 33 DeshPXC6/Desh+DPX66 0.25+0.0156/0.33+0.0156 23 13 35 33 DeshPXC6/Desh+DPX66 0.25+0.0156/0.33+0.0156 23 15 18 5 NA307/NA307 0.425+0.031/0.33+0.19 23 15 23 50 DesmetEtho-SC/Desm+Etho-SC 0.25+0.15/0.33+0.15 4 10 0 15 Desm+Etho-SC/Desm+Etho-SC 0.25+0.15/0.33+0.15 4 10 0 15 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.33 13 13 37 45 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.33 9 17 0 8 DPX664C1py/DPX66+C1py 0.0156+0.09/0.0156+0.09 18 13 5 30 DPX664C1py/DPX66+C1py 0.0156+0.09/0.0156+0.09 10 20 0 0 De+Et-SC+C1p/De+Et-SC+C1p.25+.25+.09/.33+.33+.09 18 14 3 10 DPX664C1py/DPX66+C1py 0.0156+0.09/0.33+.33+.0156 15 24 21 28 C.V. % LSD 5% 13 11 22 30 LSD 1% 0F REPS 17 15 29 400			(
BAS119-45H+0ash/36345+0 1+0.25G/1+0.25G 3 0 BAS119-45H+Bash/36345+Dash 1+0.25G/1+0.25G 25 15 0 0 BAS119-45H+BCH749023/BAS45+BCH 1+0.25G/1+0.25G 31 26 0 63 Desmedipham/Desmedipham 0.25/0.33 6 3 0 0 Desm+C1py/Desm+C1py 0.25/0.33+0.09 8 2 15 28 Desm/Desm+C1py 0.25/0.33+0.09 8 2 15 28 Desm/Desm+C1py 0.25/0.33+0.09 8 2 15 28 Desm/Desm+C1py 0.25/0.33+0.0156 15 17 8 0 Desmed/Desmed1pham 0.25/0.33+0.0156 15 17 8 0 Desmet/Desm+C1py 0.25/0.33+0.0156 15 17 8 0 Desmed/Desmed 0.25/0.33+0.0156 23 13 35 33 Desmed/Desmed 0.25/0.33+0.0156 15 17 8 0 Desmed/Desmed 0.25/0.33+0.0156 10 0 0 0 DesmetSc/Desm			22	0	68
BAS119-45H+Dash/BAS45+Dash $1+0.25G/1+0.25G$ 25 15 0 0 BAS119-45H+BCH74902S/BAS45+BCH $1+0.25G/1+0.25G$ 25 15 0 0 BAS119-16+Dash/BAS16+Dash $1+0.25G/1+0.25G$ 31 26 0 63 Desmedipham/Desmedipham $0.25/0.33$ 6 3 0 0 Desmedipham/Desmedipham $0.25/0.33+0.09$ 1 1 13 51 Desm+Clpy/Desm+Clpy $0.25+0.09/0.33+0.09$ 1 1 13 51 Desm/Desm+Clpy $0.25/0.33+0.09$ 8 2 15 28 DPX-66+X-77/DPX66+X-77 $0.0156+0.25\%$ 25 12 23 15 Des+DPX-66037/Des+DPX66 $0.25+0.0156/0.33+0.0156$ 15 17 8 0 Desmed/Desmed $0.25/0.33$ 1 10 0 0 Desmed/Desmed $0.25+0.0156/0.33+0.0156$ 23 13 35 33 Desmed/Desmed $0.25+0.0156/0.33+0.0156$ 15 17 8 0 Desmed/Desmed $0.25+0.0156/0.33+0.0156$ 11 15 18 5 Desmed/Desmed $0.25+0.031/0.33+0.019$ 23 15 23 50 Desmed/Desmed $0.25+0.031/0.33+0.019$ 23 15 23 50 Desmed/Desmed $0.25+0.5/0.33+0.33$ 9 17 0 8 Desm+Etho-SC/Desm+Etho-SC $0.25+0.25/0.33+0.33$ 9 17 0 8 Desm+Etho/Desm+Etho-SC $0.25+0.5/0.33+0.53$ 18 <td></td> <td></td> <td>3</td> <td></td> <td></td>			3		
BAS119-45H+BCH74902S/BAS45+BCH 1+0.5G/1+0.5G 25 15 0 0 BAS119-16+Dash/BAS16+Dash 1+0.25G/1+0.25G 15 8 Desmedipham/Desmedipham 0.25/0.33 6 3 0 0 Desm+Clpy/Desm+Clpy 0.25/0.33+0.09 1 1 13 51 Desm/Desm+Clpy 0.25/0.33+0.09 8 2 15 28 DPX-66+X-77/DPX66+X-77 0.0156+0.25% 25 12 23 15 DeshDesmed/Desmed 0.25/0.33+0.0156 15 17 8 0 DesmPX-66037/Des+DPX66 0.25+0.0156/0.33+0.0156 15 17 8 0 Desmed/Desmed 0.25/0.33 1 10 0 0 0 Desmed/Desmed 0.25/0.33 1 10 0 0 0 Desmed/Desmed 0.25+0.031/0.33+0.15 10 0 0 0 21 Desmed/Desmed 0.25+0.031/0.33+0.15 4 10 0 15 8 Desmed/Desmed 0.25+0.25/0.33+0.33 13 13 <	BAS119-45H+Dash/BAS45+Dach	3	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BASI19-45H+BCH74902S/BAS45+BCH	25	15	0	0
Desmed ipham/Desmed ipham 0.25/0.33 6 3 0 63 Desm+C1py/Desm+C1py 0.25+0.09/0.33+0.09 1 1 13 51 Desm/Desm+C1py 0.25/0.33+0.09 8 2 15 28 DPX-66+X-77/DPX66+X-77 0.0156+0.25% 25 12 23 15 Des +DPX-66037/Des+DPX66 0.25+0.0156/0.33+0.0156 15 17 8 0 De&Ph+DPX66/De&PX-C1p+25+.0156+0.9/.33+0.0156 15 17 8 0 Desmed/Desmed 0.25+0.0156/0.33+0.0156 15 17 8 0 Desmed/Desmed 0.25+0.0156/0.33+0.0156 15 17 8 0 Desmed/Desmed 0.25+0.031/0.33+0.0156 23 13 35 33 De+DPX+C1p/De+DPX+C1p+25+.0156+.09/.33+0.15 10 0 0 0 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.33 13 13 37 45 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.33 9 17 0 8 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.33 9 17 0	DASI19-16+Dash/BAS16+Dash	15	8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Desmedinham/Desmediat	31	26	0	
Desm/Desm+C1py 0.25/0.33+0.09 1 1 13 51 DPX-66+X-77/DPX66+X-77 0.0156+0.25%/0.0156+0.25% 25 12 23 15 Des+DPX-66037/Des+DPX66 0.25+0.0156/0.33+0.0156 15 17 8 0 De&Ph+DPX66/De&Ph+DPX66 0.25+0.0156/0.33+0.0156 15 17 8 0 Desmed/Desmed 0.25/0.33 1 10 0 0 Desmbed/Desmed 0.25/0.33 1 10 0 0 Desmbed/Desmed 0.25+0.0156+.09/.33+.0156+.09 11 15 18 5 Desmbed/Desmed 0.25+0.031/0.33+0.19 23 15 23 50 NA307/NA307 0.45/0.455 16 0 2 21 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.33 13 13 37 45 Desm+Etho/Desm+Etho 0.25+0.25/0.33+0.33 9 17 0 8 Desm+Etho/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 Desm+Etho/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30	Desm+Clpy/Desm+Clpy 0.25+0.25/0.55	6	3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Desm/Desm+Clpv	1	1		
De&P+DPX66/De&P+DPX66 0.25+0.0156/0.33+0.0156 15 17 8 0 De&P+DPX66/De&P+DPX66 0.25+0.0156/0.33+0.0156 23 13 35 33 Desmed/Desmed 0.25/0.33 1 10 0 0 Desmed/De+DPX+C1p/De+DPX+C1p.25+.0156+.09/.33+.0156+.09 11 15 18 5 Des+DPX66/Des+C1py 0.25+0.031/0.33+0.19 23 15 23 50 NA307/NA307 0.45/0.45 16 0 2 21 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.15 4 10 0 15 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.33 13 13 37 45 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.33 9 17 0 8 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 DPX66+C1py/DPX66+C1py 0.0156+0.09/0.0156+0.09 10 20 0 0 0 De+Et-SC+C1p/De+Et-SC+C1p.25+.25+.0156/.33+.33+.0156 15 24 21 28 C.V. % ISD 13 11 <td< td=""><td>DPX-66+X-77/DPX66+X-77 0 015610 25% (2003) +0.09</td><td>8</td><td>2</td><td></td><td></td></td<>	DPX-66+X-77/DPX66+X-77 0 015610 25% (2003) +0.09	8	2		
De&Ph+DPX66/De&Ph+DPX66 0.25+0.0156/0.33+0.0156 15 17 8 0 Desmed/Desmed 0.25/0.33 1 10 0 0 Desmed/DetPX+C1p/De+DPX+C1p.25+.0156+.09/.33+.0156+.09 11 15 18 5 Des+DPX66/Des+C1py 0.25+0.031/0.33+0.19 23 15 23 50 NA307/NA307 0.45/0.45 16 0 2 21 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.15 4 10 0 15 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.33 13 13 37 45 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.33 9 17 0 8 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.5 18 13 5 30 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 DPX66+C1py/DPX66+C1py 0.0156+0.09/0.0156+0.09 10	Des+DPX-66037/Des+DPX66 0.25+0.0156+0.25%	25	12		
Desmed/Desmed 0.25/0.33 13 35 33 De+DPX+C1p/De+DPX+C1p.25+.0156+.09/.33+.0156+.09 11 15 18 5 Des+DPX66/Des+C1py 0.25+0.031/0.33+0.19 23 15 23 50 NA307/NA307 0.45/0.455 16 0 2 21 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.15 4 10 0 15 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.33 13 13 37 45 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.33 9 17 0 8 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.5 18 13 5 30 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.5 18 13 5 30 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 Desm+Etho-SC+DPX.25+.25+.09/.33+.33+.0156 15 24 21 2	De&Ph+DPX66/De&Ph+DPX66 0 25+0 0156 0 25+0 0156	and the second	17	8	
De+DPX+C1p/De+DPX+C1p.25+.0156+.09/.33+.0156+.09 1 10 0 0 Des+DPX66/Des+C1py 0.25+0.031/0.33+0.19 23 15 23 50 NA307/NA307 0.45/0.45 16 0 2 21 Desm+Etho-SC/Desm+Etho-SC 0.25+0.15/0.33+0.15 4 10 0 15 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.33 13 13 37 45 Desm+Etho/Desm+Etho 0.25+0.25/0.33+0.33 9 17 0 8 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 Desm+Etho/Desm+Etho 0.0156+0.09/0.0156+0.09 10 20 0 0 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 10 20 0 0 Desm+Etho-SC+DPX.25+.25+.056/.33+.33+.09	Desmed/Desmed	23	13	35	
NA307/NA307 0.25+0.031/0.33+0.19 23 15 23 50 Desm+Etho-SC/Desm+Etho-SC 0.25+0.15/0.33+0.15 16 0 2 21 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.15 4 10 0 15 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.33 13 13 37 45 Desm+Etho/Desm+Etho 0.25+0.25/0.33+0.33 9 17 0 8 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 10 0 0 Desm+Etho-SC+Clp/DetheterSC+Clp.25+.25+.00/.33+.33+.0156 15 24 21 28 C.V. % 13 11 22 30 13 11 22 30 LSD 1% <td< td=""><td>$20.01 \times 10^{-1} \text{ P/De+DPX+C1D} = 25+ 0156+ 00/ 22+ 01-6$</td><td>1</td><td>10</td><td></td><td></td></td<>	$20.01 \times 10^{-1} \text{ P/De+DPX+C1D} = 25+ 0156+ 00/ 22+ 01-6$	1	10		
NA307/NA307 0.45/0.33+0.19 23 15 23 50 Desm+Etho-SC/Desm+Etho-SC 0.25+0.15/0.33+0.15 16 0 2 21 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.15 4 10 0 15 Desm+Etho/Desm+Etho 0.25+0.25/0.33+0.33 13 13 37 45 Desm+Etho/Desm+Etho 0.25+0.25/0.33+0.33 9 17 0 8 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 DPX66+C1py/DPX66+C1py 0.0156+0.09/0.0156+0.09 10 20 0 0 De+Et-SC+C1p/De+Et-SC+C1p.25+.25+.09/.33+.33+.09 18 14 3 10 D+EtSC+DPX/D+EtSC+DPX.25+.25+.0156/.33+.33+.0156 15 24 21 28 C.V. % 13 11 22 30 LSD 5% 65 58 156 90 LSD 1% 13 11 22 30 # OF REPS 17 15 29 <			15	18	
Desm+Etho-SC/Desm+Etho-SC 0.25+0.15/0.33+0.15 16 0 2 21 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.15 4 10 0 15 Desm+Etho/Desm+Etho 0.25+0.25/0.33+0.33 13 13 37 45 Desm+Etho/Desm+Etho 0.25+0.25/0.33+0.33 9 17 0 8 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 DPX66+C1py/DPX66+C1py 0.0156+0.09/0.0156+0.09 10 20 0 0 De+Et-SC+C1p/De+Et-SC+C1p.25+.25+.09/.33+.33+.09 18 14 3 10 D+EtSC+DPX/D+EtSC+DPX.25+.25+.0156/.33+.33+.0156 15 24 21 28 C.V. % 65 58 156 90 LSD 5% 13 11 22 30 # OF REPS 17 15 29 40	NA307/NA307		15		
Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.33 13 13 37 45 Desm+Etho/Desm+Etho 0.25+0.25/0.33+0.33 9 17 0 8 Desm+Etho-SC/Desm+Etho-SC 0.25+0.5/0.33+0.5 18 13 5 30 DPX66+Clpy/DPX66+Clpy 0.0156+0.09/0.0156+0.09 10 20 0 0 De+Et-SC+Clp/De+Et-SC+Clp.25+.25+.09/.33+.33+.09 18 14 3 10 D+EtSC+DPX/D+EtSC+DPX.25+.25+.0156/.33+.33+.0156 15 24 21 28 C.V. % 13 11 22 30 LSD 5% 17 15 29 40	Desm+Etho-SC/Desm+Etho-SC 0.25+0.15/0.45	16	0		
Desm+Etho/Desm+Etho 0.25+0.25/0.33+0.33 13 13 37 45 Desm+Etho-SC/Desm+Etho-SC 0.25+0.25/0.33+0.33 9 17 0 8 DPX66+C1py/DPX66+C1py 0.0156+0.09/0.0156+0.09 10 20 0 0 De+Et-SC+C1p/De+Et-SC+C1p.25+.25+.09/.33+.33+.09 18 14 3 10 D+EtSC+DPX/D+EtSC+DPX.25+.25+.0156/.33+.33+.0156 15 24 21 28 C.V. % 13 11 22 30 LSD 1% 13 11 22 30 # OF REPS 17 15 29 40	Desm+Etho-SC/Desm+Etho-SC 0 2510 2510 2510		10		
Desm+Etho-SC/Desm+Etho-SC 0.25+0.33+0.33 9 17 0 8 DPX66+C1py/DPX66+C1py 0.0156+0.09/0.0156+0.09 10 20 0 0 De+Et-SC+C1p/De+Et-SC+C1p.25+.25+.09/.33+.33+.09 18 14 3 10 D+EtSC+DPX/D+EtSC+DPX.25+.25+.0156/.33+.33+.0156 15 24 21 28 C.V. % 65 58 156 90 LSD 5% 13 11 22 30 # OF REPS 17 15 29 40	Desm+Etho/Desm+Etho		13		
DPX66+C1py/DPX66+C1py 0.0156+0.09/0.0156+0.09 18 13 5 30 De+Et-SC+C1p/De+Et-SC+C1p.25+.25+.09/.33+.33+.09 10 20 0 0 D+EtSC+DPX/D+EtSC+DPX.25+.25+.0156/.33+.33+.0156 15 24 21 28 C.V. % 65 58 156 90 LSD 5% 13 11 22 30 # OF REPS 17 15 29 40	Desm+Etho-SC/Desm+Etho-SC	9	17	0	
De+Et-SC+C1p/De+Et-SC+C1p.25+.25+.09/.33+.33+.09 10 20 0 0 D+EtSC+DPX/D+EtSC+DPX.25+.25+.0156/.33+.33+.0156 15 24 21 28 C.V. % 65 58 156 90 LSD 5% 13 11 22 30 # OF REPS 17 15 29 40	DPX66+C1py/DPX66+C1py = 0.015(10.000)(0.00		13	5	
C.V. % LSD 5% # OF REPS LSD 1% LSD 1% LSD 17 LSD 17	De+Et-SC+C1p/De+Et-SC+C1p, 25+, 25+, 25+, 25+, 25+, 25+, 25+, 25+	10	20		
C.V. % LSD 5% 65 58 156 90 LSD 1% 13 11 22 30 # OF REPS 17 15 29 40	D+EtSC+DPX/D+EtSC+DPX,25+,25+,0156/,23+.33+.09	18	14	3	
C.V. % LSD 5% 65 58 156 90 LSD 1% 13 11 22 30 # OF REPS 17 15 29 40		15	24	21	1
LSD 1% 13 11 22 30 # OF REPS 17 15 29 40	C.V. %				
LSD 1% 13 11 22 30 #_OF REPS 17 15 29 40			58	156	90
# OF REPS 17 15 29 40	LSD 1%		11 -		
* NA307 = desmediphemethonmodich	#_OF REPS		15		
	* NA307 = desmediphemtphonmodich	4	3		

SUMMARY: The late summer application on weed regrowth after tillage was not

Multiple application of postemergence herbicides, Glyndon, 1992. Experimental test plots six rows wide by 30 feet long were established in a commercial sugarbeet field. Herbicide applications were made May 19, May 23, May 28, and

A lightion	INTOTMALION ID		1'+:00	
June 3. Application	1112	Date of Ap	plication	June 3
	<u>May 19</u> 8:00 pm	<u>May 23</u> 3:45 pm	<u>May 28</u> 3:00 pm	9:30 pm 72 F
Time of Day Air Temp.	85 F	54 F 50 F	74 F 62 F	64 F
Soil Temp.	67 F 39%	65%	34% 20 mph	57% 19 mph
Rel. Humidity Wind Velocity	10-15 mph	17 mph good	good	good
Soil Moisture	good emerg-cotyl		2 leaf	2-4 leaf cotyl-1.5" tal

Redroot Pigweed emerg-cotyl cotyl-2 leaf cotyl-4 leaf cotyl-1.5" tall Common Lambsquarters emerg-2 leaf cotyl-4 leaf cotyl-6 leaf cotyl-10 leaf All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sethoxydim+Dash at 0.3 lb ai/A + 1 center four fows of six fow proces. Control yearbeet injury and redroot was broadcast over entire plot area May 30. Sugarbeet injury and redroot were and common lambsquarters control were evaluated June 19.

qt/A was broadcast over energy control	were evaluated June	Cabt	Rrpw	Colq
qt/A was broadcast over energy a pigweed and common lambsquarters control		Sgbt	cnt1	cntl
	Rate	<u>inj</u>		
Treatment*	(1b/A)		80	100
	0.25/0.25/0.25/0.25	26	83	100
Des&Phen/Des&Phen/Des&Phen/Des&Phen	0.16/0.25/0.33/0.5	43		100
ID -CDbon/HAGAPHEIL/Debus mos	//0.5/0.5	40	81	100
/ /p T Dhonmed / Desileudi nermee	//0.33/0.67	40	83	79
//Desmed&Phenmed/Desmedar nermet	0.25/0.33//	15	48	
Dest Phon /Des&Phen//	0.39/0.39/0.39/0.39	35	88	100
NA307/NA307/NA30//NA30/	0.22/0.33/0.45/0.57	40	92	100
NA307/NA307/NA307/NA307	//0.78/0.78	54	93	100
//NA307/NA307	//0.57/1.02	69	94	100
$- \frac{1}{-2} \frac{1}{NA307} \frac{1}{NA307}$	0.39/0.39/0.39/0.39	40	91	100
NA308/NA308/NA308/NA308	0.22/0.33/0.45/0.57	46	89	100
NA308/NA308/NA308/NA308	//0.78/0.78	43	93	100
//NA308/NA308	//0.57/1.02	50	90	100
-/-/NA308/NA308	$(2 - 2)^{-2} (0 - 3)^{-1} (0 $	35	88	100
De&Ph+Etho-SC(4X) 0.26+0.13/0.26+0.12 0.26+0.13/0.22+0.12	3/0.26+0.13/0.26+0.13	33	92	100
0.15+0.07/0.22+0.1	-/0.52+0.26/0.52+0.26	44	92	100
Dear In Den Etho-SC /D&P+Etho-SC/-		34	91	100
-/-/D&P+Etho-SC/D&P+Etho-SC//-D&P+Etho-SC/D&P+Etho-SC/-	-/0.38+0.19/0.68+0.34	4	24	21
//D&P+Etho-SC/D&P+Etho-SC/- DPX66+X-77/DPX66+X-77// 0.0156+0.2	5%/0.0156+0.25%/	19	64	73
DPX66+X-77/DPX66+X-77// 0.0156+0.2 DPX66+De&Ph/DPX66+De&Ph// 0.0156+0 0.0156+0	.25/0.0156+0.33//	18	76	86
$\frac{DPX66+Dex}{DPX66+Des} = 0.0156+ 0.00156+ 0.0$.25/0.0156+0.33//	33	99	100
$\frac{DPX66+Des/DPX66+Des//}{DPX-66037+Des(4X)} 0.0156+.16/.0156+.00156+.00156+.00156+.00156+.00156+.000156+.000000000000000000000000000000000000$	25/.0156+.33/.0150+.5	20	54	96
DPX-6603/+Des(4k) DPX66+C1py/DPX66+C1py// 0.0156+C DPX66+C1py/DPX66+C1py// 0.0156+C	0.09/0.0156+0.09//		85	100
$\frac{DPX66+C1py}{DPX66+C1py} = 0.0156+0.00000000000000000000000000000000000$	9/.0156+.33+.09//	5		89
DPX+DP+CIP(2X)/2=/2	0.09/0.09//	19		100
Clopyralid/Clopyralid// 0.2	5+0.09/0.33+0.09//			14
DeskPh+CIDY/Desar no Py	/0 0156+0./2//			
/DPX-66037+Endothall//	0.0156+0.2+0.196//			
	.0156+0.09+0.19G//		,	
/DPX-66037+Quiz+Scoil///0			1 13	3 9
		3		
C.V. %		1:		
LSD 5%		1	•	4 4
LSD 1%				Statement of the statem
# OF REPS		ate, l	:1:1 r	allo,

* NA307 and NA308 = desmedipham + phenmedipham + ethofumesate, Scoil = methylated seed oil from Agsco

(experiment continued on next page)

Multiple application of postemergence herbicides, Glyndon, 1992. (continued)

Summary

The results of this experiment are difficult to interpret because multiple flushes of redroot pigweed emerged from planting until after the last postemergence application. Observation of the plots suggested than DPX-66037 had soil residual which inhibited emergence of redroot pigweed. This was most evident in the plots where desmedipham+DPX-66037 was applied four times. NA307, NA308, and desmedipham&phenmedipham+ethofumesate-SC gave similar control of redroot pigweed and common lambsquarters but NA307 and NA308 tended to cause more sugarbeet injury than desmedipham&phenmedipham+ethofumesate-SC. On average, treatments that included ethofumesate (NA307, NA308, and des&phen + etho) gave 44% sugarbeet injury and 91% redroot pigweed control while desmedipham&phenmedipham without the ethofumesate at the same rates and timings gave 37% sugarbeet injury and 82% redroot pigweed control. The addition of DPX-66037 to desmedipham&phenmedipham improved control of redroot pigweed but not common lambsquarters. The addition of clopyralid to desmedipham&phenmedipham improved control of both redroot pigweed and common lambsquarters. DPX-66037+desmedipham&phenmedipham+clopyralid gave total control of common lambsquarters and better control of redroot pigweed than the two way tank mixes with desmedipham&phenmedipham.

Multispecies screening of postemergence sugarbeet herbicides, Fargo (NW Section 22), 1992. Canola, crambe, buckwheat, 'BJ 1320' sugarbeet, safflower, 'Neche' flax, 'Morex' barley, 'Valley' oats, 'Gus' wheat, 'Vic' durum, 'IS-343A' corn, 'McCall' soybean, 'Othello' pinto bean, and 'IS-3311' sunflower were seeded in strips across herbicide plots May 19. Kochia and wild mustard populations were natural. The first half of split applications was applied 9:15 am June 12 when the air temperature was 78F, soil temperature at six inches was 66F, relative humidity was 57%, wind velocity was 0 mph, soil moisture was good, wild mustard was in the 2 to 4 leaf stage, kochia was 0.25 inch rosette diameter to 2 inches tall, canola was in the 3 leaf stage (3 inches tall), crambe was in the 2 leaf stage (3 inches tall), tame buckwheat was 3 to 6 inches tall, sugarbeet was in the 2 leaf stage, safflower was 2 to 5 inches tall, flax was 3 inches tall, barley was 7 inches tall, oats, hard red spring wheat, and durum wheat was 6 inches tall, soybean and pinto bean was in the 2 leaf stage, corn was in the 3 leaf stage (3 inches tall) to 5 inches tall, and sunflower was in the 2 leaf stage (3 inches tall). The second half of split applications was applied 4:00 pm June 22 when the air temperature was 70F, soil temperature at six inches was 64F, relative humidity was 72%, wind velocity was 0 to 5 mph, soil moisture was good, wild mustard was 5 to 10 inches tall, kochia was 0.5 inch rosette diameter to 5 inches tall, canola was in the 5 leaf stage (5 inches tall), crambe was in the 4 leaf stage (5 inches tall), tame buckwheat was 7 to 9 inches tall, sugarbeet was in the 4 to 6 leaf stage, safflower was 4 to 7 inches tall, flax was 7 inches tall, barley was 14 inches tall, oats was 12 inches tall, hard red spring wheat and durum wheat were 11 inches tall, soybean was in the first trifolialate stage, pinto bean was in the second trifolialate stage, corn was in the 5 leaf stage (6 inches tall) to 10 inches tall, and sunflower was in the 6 leaf stage(6 inches tall). All treatments were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center seven feet of eleven foot plots. A visual estimate of percent fresh weight reduction compared to the untreated heck adjacent to each plot was taken July 8.

check au jacene et a	LT : mat	Kocz.	Cano	Cram	Tabw	Sgbt
Rate		RUCE	rcent	conti	rol	
Treatment* (1b/A)		pc.				
	89	42	30	30	0	0
Desmed&Phenmed/Desmed&Phenmed 0.25/0.33		33	20	13	3	0
		97	67	73	87	0
Des&Phen+C1py/Des&Phen+C1py 0.25+0.0156/0.33+0.0150 D&P+DPX-66/D&P+DPX-66 0.25+0.0156/0.33+0.0150 D&P+DPX-66/D&P+DPX-66 0.25+0.0156+.25%	99	98	48	53	88	0
		95	47	63	77	0
DP+C1+DPX/DP+C1+DPX .23+.03+.0120, 221 (2.23+0.1		97	38	47	65	0
D&P+DPX-66037/D&P+C1py 0.25+0.031/0.55+0.1		55	38	70	18	0
	6 99	93	55	68	82	0
	9 96	63	8	7	83	0
NA307+DPX66/NA30/+DPX68 0.45+0.0156+0.0 DPX-66+C1py/DPX-66+C1py 0.156+0.09/0.0156+0.0						•
	7	14	32	34	12	0
C.V. %	NS	18	22	28	12	NS
LSD 5%	NS	25				NS 3
LSD 1%	3	3	3	3	3	5
# OF REPS						

* NA307 = desmedipham+phenmedipham+ethofumesate, 1:1:1

X-77 = non-ionic surfactant from Valent

(experiment continued on next page)

<u>Multispecies screening of postemergence sugarbeet herbicides, Fargo (NW</u> <u>Section 22), 1992.</u> (continued)

Treatment*	Pata	121	0.00			
	Rate	Flax	Saff	Barl	Oats	Hrsw
	(1b/A)		- perc	ent co	ntrol	
Desmed&Phenmed/Desmed&Phenmed Des&Phen+Clpy/Des&Phen+Clpy 0.25+0.09/0 D&P+DPX-66/D&P+DPX-66 0.25+0.0156/0.3	0.25/0.33	27 30	7 99	10 7	8 7	7 7
$DPY_{-66} = 77/DPY_{-66} = 0.23 \pm 0.0150/0.$	33+0.0156	72	20	63	10	17
DPX-66+X-77/DPX-66+X-77 0.0156+.25%/0.0 DP+C1+DPX/DP+C1+DPX .25+.09+.0156/.33+.	156+.25%	43	20	75	23	27
DI DI DI VI CONTONNO -20+.0194.0150/.334.	09+.0156	63	99	58	8	13
D&P+DPX-66037/D&P+C1py 0.25+0.031/0 NA307/NA307		70	98	47	12	13
	.45/0.45	68	20	12	20	30
NA307+DPX66/NA307+DPX66 0.45+0.0156/0.4	5+0.0156	75	20	48	18	32
DPX-66+C1py/DPX-66+C1py 0.156+0.09/0.0	0156+0.09	15	99	5	2	0
C.V. % LSD 5%		32	18	21	45	42
LSD 1%		29	17	13	9	12
		40	24	18	13	16
# OF REPS		3	3	3	3	3

* NA307 = desmedipham+phenmedipham+ethofumesate, 1:1:1 X-77 = non-ionic surfactant from Valent

Multispecies screening of postemergence sugarbeet herbicides, Fargo (NW Section 22), 1992. (continued)

Treatment* Rate	Duru	C	Carl		
	Duru	Suf1		Pnto	Corn
(1b/A)		- perc	ent co	ntrol	
Desmed&Phenmed/Desmed&Phenmed 0.25/0.33 Des&Phen+Clpy/Des&Phen+Clpy 0.25+0.09/0.33+0.09 D&P+DPX-66/D&P+DPX-66 0.25+0.0156/0.33+0.0156 DPX-66+X-77/DPX-66+X-77 0.0156+.25%/0.0156+.25% DP+C1+DPX/DP+C1+DPX .25+.09+.0156/.33+.09+.0156 D&P+DPX-66037/D&P+Clpy 0.25+0.031/0.33+0.19 NA307/NA307 0.45/0.45 NA307+DPX66/NA307+DPX66 0.45+0.0156/0.45+0.0156 DPX-66+Clpy/DPX-66+Clpy 0.156+0.09/0.0156+0.09	7 7 42 50 28 47 17 33 3	8 99 97 95 99 99 27 88 99	8 99 72 77 99 99 65 73 99	8 99 62 72 99 33 70 99	3 5 18 60 13 20 7 22 15
C.V. % LSD 5% LSD 1% # OF REPS	23 10 14 3	8 11 15 3	11 14 20 3	12 14 20 3	52 16 23 3

NA307 = desmedipham+phenmedipham+ethofumesate, 1:1:1 X-77 = non-ionic surfactant from Valent Cano=canola, Cram=crambe, Tabw=tame buckwheat, Sgbt=sugarbeet, Saff=safflower, Barl=barley, Hrsw=hard red spring wheat, Duru=durum wheat, Sufl=sunflower, Soyb=soybean, Pnto=pinto bean.

*

Summary

DPX-66037+clopyralid gave less kochia control than DPX-66037+X-77 or desmedipham&phenmedipham+DPX-66037. However, kochia control from DPX-66037 + clopyralid + desmedipham&phenmedipham was similar to the best treatments in the experiment. DPX-66037 injured all species in the experiment except sugarbeet. Sethoxydim plus Bivert and time of application, Fargo, 1992. 'NewDak' oats at 17 lb/A and 'Siberian' foxtail millet at 7.5 lb/A were seeded in 9 foot strips across herbicide plots April 29. 'Maribo 403' sugarbeet was seeded 1.25 inches deep in six 22 inch rows across herbicide plots April 29. Counter 15G was applied at 12 pounds product per acre using a modified in-furrow system at planting. Herbicides and additives were added to the spray solution in groups. Chemicals to the left of the first parenthesis were added first, then chemicals to the left of the second parenthesis, and finally chemicals to the left of the third parenthesis. The spray solution was mixed thoroughly after each group of chemicals was added and allowed to set 15 minutes before adding the next group of chemicals. Herbicide treatments were applied May 29, June

5, June 12, and June 24.		Date	of Ar	plic	ation				
		June		In	ne 12		June	e 24	
	May 29	2:00 p)0 am) am	
Time of Day	12:30 pm	2:00 p 61 F			71 F		60) F	
Air Temp.	77 F	68 F			65 F		64	4 F	
Soil Temp.	56 F	69%			60%		8	9%	
Rel. Humidity	36%				mph			mph	
Wind Velocity	20 mph	8 mpł	1		good			ood	
Soil Moisture	good	good	. <i>E</i>		8 1ea	f		leaf	
	ty1-2 leaf	4-6 lea			2 inc			inch	es
Uals	5-6 inches	6-9 incl			inch			inch	
Foxtail Millet 2	2-4 inches	3-6 incl	nes /		thro	nigh 8	3001 n	ozzle	s to
Foxtail Millet All herbicides were app	lied in 8.5 g	gpa water	at 4	0 psi	ot i	niurv	was	evalu	ated
the center seven feet of	of eleven fo	ot plots.	. Su	igarbe	tod '	Lune 2	3 and	July	4.
the center seven feet of <u>June 23. Oats and foxt</u>	ail millet co	ontrol we	<u>re ev</u>	aluta	iteu .	June 2	3	July	4
								Oats	
					oats	cnt1	ini	cntl	cnt1
Treatment (rate)*					CILL				
			1.	20)	98	100	0	98	99
Sethoxydim+Scoil(0.1+0.	19G)		(May	29)	80	89	14	74	84
Desmed+Sethoxydim+Scoil	(0.5+0.1+0.1)	9G)	(May		18	85	100	13	86
	. 1+() . 19()		(May		76	91	8	73	80
a_{11} $p_{insert}(0, 1+0, 03G) +$	Scoil(0.19G)	+Des(0.5)	(May	29)	24	76	100	14	71
Seth+Bivert $(0.1+0.03G)$ +	Scoil(0.19G)	+Bent(1)	(may	231	24 98	99	0	98	100
Sathowydim+Scoil(0.1+0.	19G)		(June	e .,	61	97	Ő	58	97
Desmed+Sethoxydim+Scoil	(0.5+0.1+0.1	9G)	(June		98	100	Ő	98	100
D	1.1+11.1961		(Jun)		60	95	3	53	91
a_{11} $p_{image} = (0, 1 \pm 0, 03G) \pm (0, 0, 03G) \pm (0, 0, 0)$	-Scoil(0.19G)	+Des(0.5)	Jun	e 5)	29	96	100	10	93
Seth+Bivert(0.1+0.03G)+	Scoll(0.196)	+Bent(1)	(Jun	6 21	51	98	0	84	100
Sethorydim+Scoil(0.1+0.	(19G)		(Jun	e 12/	50	96	8	48	97
Desmed+Sethoxydim+Scoil	1(0.5+0.1+0.1)	.9G)		e 12) e 12)		93	89	15	98
- $ -$	1 + (1 + (1 + 1))					93	8	50	96
a_{11} , p_{12} , p_{1	+Scoil(0.19G)	+Des(0.5)(Jun	e 12)	15	93	90	15	95
Seth+Bivert(0.1+0.03G)	+Scoll(0.196)	+Bent(1)	Jun	E 12)				26	19
Sothowydim+Scoil(0.1+0	.19G)		(Jun	16 27)				38	30
Desmed+Sethoxydim+Scoi	1(0.5+0.1+0.1)	19G)		e 24)				25	25
\mathbf{D} \mathbf{C}	(1 + (1 + 1) + 1)			ie 24)				20	13
a_{11} , b_{12} , b_{1	+Scoil(0.19G))+Des(0.5) (Jun	ie 24))			26	15
<u>Seth+Bivert(0.1+0.03G)</u>	+Scoil(0.19G)+Bent(1)	(Jur	<u>1e 24</u>	11	5	14	16	12
C.V. %					8		7	11	12
LSD 5%					11	9	9	14	17
LSD 1%					4		4	4	4
# OF REPS	la satin	e ingredi	ont	par a				ortion	

* Rates are listed as pounds active ingredient per acre or as the portion of a gallon of product per acre as signified by "G".

gallon of product per acte as significantly Bivert=adjuvant from Wilbur-Ellis; Scoil=methylated seed oil from Agsco SUMMARY: Bivert did not reduce the antagonism between sethoxydim and desmedipham or bentazon.

Bivert and herbicide antagonism, Fargo, 1992. 'NewDak' oats at 17 1b/A and 'Siberian' foxtail millet at 7.5 1b/A were seeded in 9 foot strips across herbicide plots April 29. 'Maribo 403' sugarbeet was seeded 1.25 inches deep in six 22 inch rows across herbicide plots April 29. Counter 15G was applied at 12 pounds product per acre using a modified in-furrow system at planting. Herbicides and additives were added to the spray solution in groups. Chemicals to the left of the first parenthesis were added first, then chemicals to the left of the second parenthesis, and finally chemicals to the left of the third parenthesis. The spray solution was mixed thoroughly after each group of chemicals was added and allowed to set one hour before adding the next group of chemicals. Herbicides were applied 2:00 pm June 5 when the air temperature was 61F, soil temperature at six inches was 68F, relative humidity was 69%, wind velocity was 8 mph, soil moisture was good, sugarbeet was in the 4 to 6 leaf stage, oats was 6 to 9 inches tall, and foxtail millet was 3 to 6 inches tall. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center seven feet of eleven foot plots. and foxtail millet control and sugarbeet injury were evaluated Jur Oats

	in a second seco					
Treatment (Foxtail				
<u>Treatment (rate) *</u>	Oats	Millet	Sugarbeet			
01	control	control	injury			
Clethodim-94+Scoil (0.066+0.19G)		(%) -				
01001m-94+Scoil (0.00000000000000000000000000000000000	100	100	0			
Desm+Clethodim-94 (0.5+0.004)	100	100	0			
$pesurviethod_{1m}-94$ (0 5.0 10c)	98	100				
Desm+0let-94+Scoil (0 510 occ o 1)	99 .	100	0			
Clet94+Bivert(.066+.03G)+Scoil(.19G)+Des(.5) Sethoxydim+Scoil (0.1+0.10C)	98	100	0			
Sethoxydim+Scoil (0.1+0.19G)	98	100	0			
Sethoxydim+Scoil (0.2+0.19G)	98		0			
Desmed in ham S_{a+b}	100	100	0			
Desmedipham+Sethoxydim (0.5+0.2)	76	100	0			
Desmedipham+Sethoxydim (0.5+0.2) Desmedipham+Sethoxydim (0.5+0.3)	94	93	0			
Pesmeulpham+Seth+Secil (o Field		98	0			
	68	95	0			
	68	97	0			
$\sqrt{12a_10100} + 5c_{011} (0, 034+0, 10a)$	71	90	0			
(0.055+0.100)	100	100	0			
P_{CSM} V_{U} I_{Z} I_{Z} I_{C} I_{C	100	100	õ			
pesm+Quizalofop (0.5,0.0(a))	80	90	0 0			
Desm+Quip+Scoil (0.5+0.024+0.100)	96	97	0			
$(-2)^{-1}$	84	98				
	74	99	0 3			
Qufp+Bivert(.034+.03G)+Scoil(.19G)+Bent(1)	99	96				
Hent(1)	97	100	96			
C.V. %		100	93			
LSD 5%	6	,				
LSD 1%	7	4	17			
# OF REPS	10	5 7	2			
* Poter	4		3			
* Rates are listed as pounds active incenti	4	4	4			

* Rates are listed as pounds active ingredient per acre or as the portion of a gallon of product per acre as signified by "G".

#

Bivert=adjuvant from Wilbur-Ellis; Scoil=methylated seed oil from Agsco SUMMARY: Clethodim, sethoxydim and quizalofop used with Scoil and no broadleaf herbicide gave nearly complete control of oats and foxtail millet. Clethodim in combination with desmedipham gave nearly total grass control even without an oil additive. Desmedipham antagonized oats control from sethoxydim and Bivert did not overcome the antagonism. Desmedipham antagonized oats control from quizalofop and Bivert did not overcome the antagonism. Bentazon did not antagonize quizalofop. Increasing the rates of sethoxydim or quizalofop reduced but did not eliminate antagonism from desmedipham. Sethoxydim plus additives, Fargo, 1992. 'NewDak' oats at 17 lb/A and 'Siberian' foxtail millet at 7.5 lb/A were seeded in 9 foot strips across herbicide plots April 29. 'Maribo 403' sugarbeet was seeded 1.25 inches deep in six 22 inch rows across herbicide plots April 29. Counter 15G was applied at 12 pounds product per acre using a modified in-furrow system at planting. Herbicides were applied 12:30 pm June 6 when the air temperature was 55F, soil temperature at six inches was 61F, relative humidity was 71%, wind velocity was 10 mph, soil moisture was good, sugarbeet was in the 4 to 6 leaf stage, oats was 6 to 9 inches tall, foxtail millet was 3 to 6 inches tall, and yellow foxtail was 1 to 3 inches tall. All herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center seven feet of eleven foot plots. Oats, foxtail millet, and yellow foxtail control and sugarbeet injury were ted June 26.

evaluated June 20.	Rate	Oats control	Foxtail Millet control	Yellow Foxtail control	Sugarbeet injury
Treatment* Sethoxydim Sethoxydim+X-77 Sethoxydim+Dash Sethoxydim+Scoil Sethoxydim+Raider Sethoxydim+Herbimax Sethoxydim+Herbimax Sethoxydim+LI700 HIGH MEAN LOW MEAN EXP MEAN C.V. % LSD 5% LSD 1% # OF REPS	(1b/A) 0.1 0.1+0.125G 0.1+0.25G 0.1+0.19G 0.1+0.125G	10 29 95 95 16 66 18 21 95 10 44 14 9 12 4	58 86 100 100 39 94 64 85 100 39 78 11 13 17 4	53 60 99 99 40 96 53 67 99 40 71 14 18 25 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* X-77=non-ionic surfactant from Valent; Dash=adjuvant from BASF; Scoil=methylated seed oil from Agsco; Herbimax=petroleum oil from Loveland; Bivert=adjuvant from Wilbur-Ellis; LI700=non-ionic surfactant from Loveland; Raider=surfactant from Nature's Choice.

Summary

None of the treatments caused sugarbeet injury. Sethoxydim plus Dash or Scoil gave better oats control than other treatments. Sethoxydim plus Herbimax gave control of foxtail millet and yellow foxtail similar to Dash and Scoil but all other treatments gave less control.

Additives with desmedipham, Glyndon, 1992. Experimental test plots six rows wide by 30 feet long were established in a commercial sugarbeet field. The first half of split treatments was applied 3:45 pm May 23 when the air temperature was 54F, soil temperature at six inches was 50F, relative humidity was 65%, wind velocity was 17 mph, soil moisture was good, sugarbeet and redroot pigweed were in the cotyledon to 2 leaf stage, and common lambsquarters was in the cotyledon to 4 leaf stage. The second half of split treatments was applied 3:00 pm May 28 when the air temperature was 74F, soil temperature at six inches was 62F, relative humidity was 34%, wind velocity was 20 mph, soil moisture was good, sugarbeet was in the 2 leaf stage, redroot pigweed was in the cotyledon to 4 leaf stage, and common lambsquarters was in the cotyledon to 6 leaf stage. All herbicide treatments were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sethoxydim+Dash at 0.3 lb ai/A + 1 qt/A was broadcast over entire plot area May 30. Sugarbeet injury and redroot pigweed and common lambsquarters control were evaluated June 9 and June 19.

	June 9						19
	Sgbt	Rrpw	Colq	Sgbt	Rrpw	Colg	
Treatment* Rate			cnt1		cntl		
(1b/A)			(%	()			
Desmedipham/Desmedipham 0.25/0.33							
	23	82	87	18	58	82	
	45	83	90	30	65	82	
Des+Raider/Des+Raider 0.25+0.125G/0.33+0.125G	23	80 -	82	20	67	78	
Des+Raider/Des+Raider 0.33+0.125G/0.5+0.125G	40	83	88	29	63	78	
Raider/Raider 0.125G/0.125G	0	0	0	0	0	0	
Raider/Raider 0.25G/0.25G	0	0	0	0	0	0	
Des+Cycloate/Des+Cycloate 0.25+0.75/0.33+0.75	30	82	87	29	68	83	
Des+Cycloate/Des+Cycloate 0.33+0.75/0.5+0.75	36	87	92	25	77	87	
Des+FoamBuster/Des+FB 0.25+0.0625G/0.33+0.0625G	21	80	83	24	63	78	
Des+FoamBuster/Des+FB 0.33+0.0625G/0.5+0.0625G	31	87	91	23	67		
Desmed+Scoil/Des+Scoil 0.25+0.19G/0.33+0.19G	40	83	85	23		85	
Desmed+Scoil/Des+Scoil 0.33+0.19G/0.5+0.19G	61				72	80	
Diethaty1/ 6/		88	88	44	70	77	
	9	40	0	3	55	17	
Desmedipham+Diethaty1/Desmedipham 0.33+6/0.5	41	100	94	33	99	85	
C.V. %	24	6	6	20	11	17	
LSD 5%				30	14	14	
LSD 1%	10	7	7	9	14	15	
# OF REPS	13	10	9	12	19	21	
* Scoil=methylated seed oil from Aggacy Fourthuste	4	3	3		3	3	

* Scoil=methylated seed oil from Agsco; Foambuster=anti-foaming agent from Ostlund; Raider=surfactant from Nature's Choice.

Summary

Raider had no effect on sugarbeet injury or weed control when applied alone or in combination with desmedipham. Cycloate increased sugarbeet injury from desmedipham at 0.25/0.33 lb/A on the June 19 evaluation. Foambuster reduced sugarbeet injury from desmedipham at 0.33/0.5 lb/A on the June 9 evaluation. Scoil increased or tended to increase sugarbeet injury at both rates of desmedipham and both evaluation dates. None of the additives had a significant effect on weed control. Diethatyl was added to desmedipham as a lay-by treatment to provide weed control through soil residual. Diethatyl had no effect on sugarbeet injury but redroot pigweed control was improved compared to desmedipham alone. The improvement in redroot pigweed. Desmedipham plus insecticides, St. Thomas, 1992. 'Seedex Monohikari' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 13. 'Lorsban 15G' insecticide at 13 lb/A was applied in a two inch band and drag chain incorporated at planting. The first half of each treatment was applied 7:00 pm June 2 when the air temperature was 80F, soil temperature at six inches was 64F, relative humidity was 41%, wind velocity was 10 mph, soil moisture was good, and sugarbeet was in the 2 leaf stage. The second half of treatments were applied 5:00 pm June 8 when the air temperature was 74, soil temperature at six inches was 65F, relative humidity was 47%, wind velocity was 5 to 10 mph, soil moisture was good, and sugarbeet was in the 2 to 4 leaf stage. Desmedipham and desmedipham plus insecticides were applied in 8.5 or 17 gpa water at 40 psi through 800l or 8002 nozzles respectively to the center four rows of six row plots. Sethoxydim + Dash at 0.3 lb ai/A+l qt/A was applied to the entire experiment June 9. Sugarbeet injury was evaluated July 3.

A	pplicat	ion	Sugarbeet	
Treatment	Volume	Rate	injury	
<u>ireatment</u>	(gpa)	(1b/A)	(%)	
			0	
Desmed/Desmedipham	(8.5)	0.25/0.33	8	
Desmed/Desmedipham	(8.5)	0.33/0.5	15	
Desmed/Desm+Lorsban	(8.5)	0.25/0.33+1.5	15	
Desmed/Desm+Lorsban	(8.5)	0.25/0.33+3	11	
Desmed/Desm+Lorsban	(8.5)	0.25/0.33+6	13	
Desmed/Desm+Lorsban	(8.5)	0.33/0.5+0.38	19	
Desmed/Desm+Lorsban	(8.5)	0.33/0.5+0.75	20	
Desmed/Desm+Lorsban	(8.5)	0.33/0.5+1.5	19	
Desmed/Desm+Lorsban	(8.5)	0.33/0.5+3	29	
Desmed/Desm+Lorsban	(8.5)	0.33/0.5+6	25	
Dec+Clpy/Dec+Clpy+LC	rs(8.5)	0.33+0.09/0.5+0.09+3	30	
Des+Clpy/Des+Clpy+Lc	ors(8.5)	0.33+0.09/0.5+0.09+6	29	
Desmed/Desm+Lorsban	(17)	0.33/0.5+1.5	15	
Desmed/Desm+Lorsban	(17)	0.33/0.5+3	28	
Desmed/Desm+Lorsban	(17)	0.33/0.5+6	26	
Desmed/Desm+Diazinor			24	
Desmed/Desm+Furadan	(8.5)	0.33/0.5+1.5	23	
Desmed/Desm+Dyfonate			18	
Untreated Check	0	0	0	
			30	
HIGH MEAN				
LOW MEAN			0	
EXP MEAN			19 33	
C.V. %			33 9	
LSD 5%				
LSD 1%			12	
# OF REPS			4	

Summary

Lorsban at 3 or 6 lb/A and diazinon at 1.5 lb/A plus the higher rate of desmedipham gave greater sugarbeet injury than desmedipham alone.

Desmedipham plus insecticides, Fargo, 1992. Diethatyl+cycloate at 3+3 lb ai/A was applied to plot area and incorporated twice with a 'Kongskilde Triple K' field cultivator operated 3 inches deep April 30. 'KW 1119' sugarbeet was seeded 1.25 inches deep in 22 inch rows April 30. The first half of each treatment was applied 12:30 pm May 29 when the air temperature was 77F, soil temperature at six inches was 56F, relative humidity was 36%, wind velocity was 20 mph, soil moisture was good, and sugarbeet was in the cotyledon to 2 leaf stage. The second half of treatments were applied 8:00 pm June 4 when the air temperature was 67, soil temperature at six inches was 69F, relative humidity was 46%, wind velocity was 11 mph, soil moisture was good, and sugarbeet was in the 2 to 4 leaf stage. Herbicides were applied in 8.5 or 17 gpa water at 40 psi through 8001 or 8002 nozzles respectively to the center four rows of six row plots. Sethoxydim+Dash at 0.2 lb ai/A+1 qt/A was applied to the entire experiment May 27. All plots were cultivated July 20. Sethoxydim+Scoil at 0.3 1b ai/A+1 qt/A was applied to the entire experiment July 20. Sugarbeet was hand thinned to an 8 inch spacing July 9. Sugarbeet was maintained weed free by hand weeding throughout the growing season. Sugarbeet injury was evaluated June 13 and July 4. The center two rows of 30 foot long plots were harvested and counted September 28.

					emper					
			6-13				Loss			
	Applicat	lon	Sgbts	Sgbt	Sgbt		to	Root	Tmpur	Extr
Treatment	volume	Rate	inj	ini	DOD1	Sucr	Mol	Yield	Indox	Cuer
	(gpa)	(1b/A)	(%)	(%)	(60')	(%)	(%)	(ton/A)		
					,	(/0)	(/0 /)	(ton/A)		1b/A)
Desmed/Desmed	(8.5)	0.25/0.33	19	11	75	16.3	1 6	10 5	707	
Desmed/Desmed	(8.5)	0.33/0.5		14	82			19.5	727	5644
Des/Des+Lorsba	n (8.5)	0.25/0.33+1.5				16.6		22.0	693	6542
Des/Des+Lorsba	n (8.5)	0.25/0.33+3		15	81	16.4		22.8	723	6662
Des/Des+Lorsba				18	82	16.8		20.8	689	6273
Des/Des+Lorsba		0.25/0.33+6	44	28	79	16.5		22.5	727	6648
Des/Des+Lorsba		0.33/0.5+0.38		19	81	17.4	1.5	22.9	631	7190
Des/Des+Lorsba		0.33/0.5+0.75	36	24	76	16.7	1.6	20.8	700	6208
Des/Des+Lorsba		0.33/0.5+1.5	43	25	78	17.0	1.5	23.2	665	7100
Des/Des+Lorsba		0.33/0.5+3	49	28	84	16.6		22.7	741	6707
Des/Des+Lorsba		0.33/0.5+6	59	38	80	17.2		23.4	670	
De+Clp/De+Clp+	Lor(8.5)	.33+.09/.5+.09+3	55	35	85	16.9				7243
De+Clp/De+Clp+	Lor(8.5)	.33+.09/.5+.09+6	55	36	79			22.5	686	6860
Desmed/Desm+Lo	rs (17)	0.33/0.5+1.5	41	24		16.9		23.3	684	7073
Desmed/Desm+Lo		0.33/0.5+3				16.6	And the second second	20.9	720	6173
Desmed/Desm+Lo			43	25		16.9		22.2	709	6734
Des/Des+Diazin	on (8.5)	0.33/0.5+6	48	29		16.2		23.7	732	6829
Des/Des+Furada		0.33/0.5+1.5	40	21		16.7		23.5	702	7046
Des/Des+rurada	n (8.5)	0.33/0.5+1.5	29	19	81	16.8	1.5	24.1	645	7327
Des/Des+Dyfona	te (8.5)	0.33/0.5+3.0	45	29	80	16.5	1.6	22.5	722	6654
Untreated Check	c (0)	0	0	0	86	17.4	1.6	25.3	657	7917
										1311
C.V. %			15	29	9	2.8	8.3	10.5	10	12
LSD 5%			8	10	NS	0.7	NS	NS	NS	
LSD 1%			11	13	NS	NS	NS	NS		NS
# OF REPS			4	4	4				NS	NS
				4	4	4	4	4	4	4

Summary

Sugarbeet injury was less on July 4 than on June 13 reflecting sugarbeet recovery from herbicide injury. The yields were not sufficiently uniform across the experiment for significance among treatments. Based on the June 13 evaluation, all insecticide combinations with desmedipham gave greater sugarbeet injury than desmedipham alone except for Lorsban at 0.38 lb/A and Furadan at 1.5 lb/A. Sugarbeet injury tended to be less with spray volume of 17 gpa rather than 8.5 gpa. Higher rates of Lorsban in combination with desmedipham tended to cause more sugarbeet injury than lower rates. Herbicides on hand weeded sugarbeet, Fargo, 1992. Diethatyl+cycloate at 3+3 lb ai/A was applied to the entire plot area April 29 and incorporated with a 'Kongskilde Triple K' field cultivator and a second time with an 'Alloway Seedbetter' field cultivator. 'Maribo 403' sugarbeet was seeded 1.25 inches deep in 22 inch rows April 29. Counter 15G insecticide at 12 pounds product per acre was applied modified in-furrow at planting. The first half of herbicide treatments was applied 2:00 pm May 27 when the air temperature was 72F, soil temperature at six inches was 53F, relative humidity was 35%, wind velocity was 5 mph, soil moisture was good, and sugarbeet was in the 2 to 4 leaf stage. The second half of treatments was applied 1:00 pm June 3 when the air temperature was 86F, soil temperature at six inches was 64F, relative humidity was 31%, wind velocity was 30 mph, soil moisture was good, and sugarbeet was in the 4 to 6 leaf stage. All herbicide treatments were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sugarbeet was cultivated May 21 and June 15. Sugarbeet was hand weeded May 30 and maintained weed free by hand labor throughout the growing season. Sugarbeet was hand thinned to an 8 inch spacing June 2. Sugarbeet injury was evaluated June 13. Sugarbeet was harvested and counted from the ows of 35 foot long plots September 15.

center two rows of 35 foot long plots sept	Can C]	Loss			
	Sabt	Sgbt		to	Root	Impur 1	Extr
Pete	ini	pop1	Sucr	Mol	Yield	Index	Sucr
Treatment* Rate (1b/A)	(%)	(/70')) (%)	(%)(ton/A)	(1)	b/A)
	(/0) \	(110)					
0	0	83	12.1	2.5	24.7	1487	4637
Untreated Check	8	82	11.9	2.5	23.1	1564	4210
Destinher / Desmed inham 0.33/0.5		88	12.2	2.5	24.8	1480	4752
		85	12.0	2.4	22.3	1499	
Des+C1py/Des+C1py 0.33+0.19/0.5+0.19	24	81	11.7	2.5	21.1	1575	3772
Des+Scoil/Des+Scoil 0.33+0.196/0.5+0.196	29	01	11.1	2			
D Gland Cooil /Des+ClDy+Scoll		84	11.6	2.6	21.3	1625	3751
0.33+0.19+0.196/0.5+0.19+0.19+0.19+0.19+0.19+0.19+0.19+0.19	43		12.2	2.5	24.1	1494	
Clopyralid/Clopyralid 0.19/0.19) 4	84	12.2	2.00			
$c_1 \dots c_{n-1} / (c_{1} p_{Y} + S_{n-1})$		~~~	10.2	2.5	22.9	1505	4351
0.19+0.19G/0.19+0.19G	; 14	83	12.3	2.5	22.07	1900	
an in il/Clow+Scoil			11 0	2.5	23.8	1573	4307
0.25+0.19G/0.25+0.19G	G 20	83	11.8	2.5	23.1		4149
DRY 66037/DPX-66037 0.0156/0.0156	5 1	86	11.8	2.5	23.2		4311
$D_{0} = 0.031/0.03$	1 4	84	12.0		23.5		4375
DFX-66037/DFX-66037 0.06/0.00	6 1	87	12.0	2.5	23.5	1500	1010
$D_{1} = 1DPY = 66/Dec + DPX = 66$					22.2	1599	3839
0.33+0.0156/0.5+0.015	6 14	84	11.4	2.5	22.02	1555	
D DDY 66 /Doc+DPY-66				~ .		150%	4113
0.33+0.031/0.33+0.03	1 14		11.7		and the second states		4560
	6 13	82	12.3				
Destruit collect -	9 19	80					3881
Dest Din collect 15	0 0	86	11.5	2.5	5 25.4	1604	4431
Untreated Check							10
	25	5	4.6				
C.V. %	5		NS	S NS			
LSD 5%	e		S NS	5 N			
LSD 1%	L			+ 4	4	4 4	4 4
# OF REPS							

* Scoil = methylated seed oil from Agsco

SUMMARY: Five treatments caused a significant reduction in root yield compared to the average root yield of the two untreated checks (25.0 T/A): desmedipham+clopyralid at 0.19 lb/A, desmedipham+Scoil, desmedipham+clopyralid Scoil, desmedipham+DPX-66037, and desmedipham+DPX-66037 followed by desmedipham+clopyralid. The addition of Scoil to desmedipham, clopyralid or desmedipham+clopyralid caused increased sugarbeet injury.

Date of thinning and sugarbeet yield, Fargo, 1992. Diethatyl+cycloate at 3+3 lb ai/A was applied to the entire plot area April 29 and incorporated with a 'Kongskilde Triple K' field cultivator and a second time with an 'Alloway Seedbetter' field cultivator. 'Maribo 403' sugarbeet was seeded 1.25 inches deep in 22 inch rows April 29. Counter 15G insecticide at 12 pounds product per acre was applied modified in-furrow at planting. Sugarbeet was hand thinned to an eight inch spacing May 21, May 29, June 5, June 12, June 24, and July 1. Sugarbeet was cultivated May 21 and June 15. Sugarbeet was hand weeded May 26 and maintained weed free by hand labor throughout the growing season. Sugarbeet was harvested and counted from the center two rows of 35 foot long plots September 15.

Date of <u>Thinning</u>	<u>Sugarbeet</u> (leaf stage)	Sgbt pop1 (#/70ft)	Sucrose (%)	Loss to <u>Mol</u> (%)	Root Yield (ton/A)	Impurity Index	Extract Sucrose (1b/A)
May 21	(cotyledon)	83	11.9	2.4	25.5	1478	4708
May 29	(2 to 4 leaf)	85	12.8	2.3	27.0	1301	5560
June 5	(4 to 6 leaf)	88	13.0	2.3	27.0	1279	5648
June 12	(6 to 8 leaf)	81	12.6	2.3	25.0	1309	5078
June 24	(8 to 12 leaf)	81	13.1	2.2	25.8	1237	5491
July 1	(10 to 14 leaf)	79	12.3	2.3	23.9	1383	4703
HIGH MEAN LOW MEAN EXP MEAN C.V. % LSD 5% LSD 1% # OF REPS		88 79 83 6 6 NS 6	13.1 11.9 12.6 3.6 0.5 0.7 6	2.4 2.2 2.3 5.2 NS NS 6	27.0 23.9 25.7 5.4 1.7 2.2 6	1478 1237 1331 8 132 NS 6	5648 4703 5198 8 511 691 6

Summary

Sugarbeet thinned on May 29, June 5, or June 24 yielded more extractable sucrose than sugarbeet thinned on May 21 or July 1.

Interaction of desmedipham with Lorsban insecticide, Crookston, 1992. 'Seedex Monohikari' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 5. Lorsban 15G at 6.5 or 13 pounds product per acre was applied modified infurrow at planting. Sethoxydim + Dash at 0.2 lb ai/A+1 qt/A was applied to the entire plot area May 21 and July 22. The first half of split treatments beginning in the cotyledon stage were applied 12:30 pm May 26 when the air temperature was 65F, soil temperature at six inches was 48F, relative humidity was 36%, wind velocity was 8 mph, soil moisture was good, and sugarbeet was in the cotyledon stage. The second half of these treatments was applied 12:45 pm June 1 when the air temperature was 85F, soil temperature at six inches was 56F, relative humidity was 31%, wind velocity was 5 mph, soil moisture was good, and sugarbeet was in the 2 leaf stage. The first half of split treatments beginning at root maggot midfly stage were applied 11:00 am June 2 when the air temperature was 74F, soil temperature at six inches was 60F, relative humidity was 51%, wind velocity was 17 mph, soil moisture was good, and sugarbeet was in the 2 leaf stage. The second half of these treatments were applied 9:30 am June 8 when the air temperature was 60F, soil temperature at six inches was 58F, relative humidity was 73%, wind velocity was 2 mph, soil moisture was good, and sugarbeet was in the 4 to early 6 leaf stage. All herbicide treatments were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots. Sugarbeet was cultivated Sugarbeet was counted in the center two rows of each plot June 11. Sugarbeet was hand weeded and hand thinned to an eight inch spacing June 11. Ten sugarbeet from each plot were rated July 15 for root maggot damage using the following scale: 0=no damage, 1=1 to 4 small scars, 2=5 to 10 small scars or up to 3 larger scars, 3=more than 3 larger scars, 4=50 to 75% of root blackened by scars, 5=more than 75% blackened or dead beet. The mean of these ten ratings is the sugarbeet root maggot damage rating. Sugarbeet from the center two rows of each plot was harvested September 29.

	Sgbt	Root m damage Lors	rating ban	Pret sgbt s Lors 11b/A	tand**
Treatment Rate 1b/A	stage*	<u>11b/A</u>		plts/	70ft
Desmedipham0.25/0.33Desmedipham0.33/0.5Desmedipham0.5/0.75Desm+Clpy0.33+0.09/0.5+0.09	cotyl cotyl cotyl cotyl	2.7 2.7 2.2 2.6	2.7 2.7 2.4 2.6	271 249 200 240	237 222 186 202
Desmedipham 0.25/0.33 Desmedipham 0.33/0.5 Desmedipham 0.5/0.75 Desm+Clpy 0.33+0.09/0.5+0.09	2 1f 2 1f 2 1f 2 1f 2 1f	2.3 2.2 2.1 2.4	2.6 2.2 2.2 2.4	250 215 180 204	226 212 184 184
Untreated 0		2.7	2.7	246	236
LSD (0.05)		(0.3		21

* Stage of sugarbeet at first application. ** Sugarbeet plants per 70 feet of row prior to thinning.

(experiment continued on next page)

<u>Treatment Rate</u> 1b/A	Sgbt stage*	$\frac{Lor}{11b/A}$	Yield sban 21b/A n/A	<u>Lor</u> 11b/A	<u>rose</u> sban 21b/A %	$\frac{Lor}{11b/A}$	<u>Sucro</u> sban 21b/A /A
Desmedipham 0.25/0.33 Desmedipham 0.33/0.5 Desmedipham 0.5/0.75 Desm+Clpy 0.33+0.09/0.5+0.09	cotyl cotyl cotyl cotyl cotyl	14.9 17.8 15.1 13.4	13.3 10.8 12.7 12.2	15.2 15.5 16.2 15.8	15.4 15.2 15.6 15.6	4030 4990 4410 3730	3690 2940 3540 3360
Desmedipham 0.25/0.33 Desmedipham 0.33/0.5 Desmedipham 0.5/0.75 Desmedipham 0.33+0.09/0.5+0.09	2 1f 2 1f 2 1f 2 1f 2 1f	16.2 13.4 12.7 15.1	13.5 11.9 11.8 12.7	15.5 15.7 15.2 16.1	15.3 15.3 15.0 15.5	4460 3770 3420 4410	3660 3200 3110 3470
Untreated 0 LSD (0.05)		16.4 2.	15.7 .8	15.6 0.	15.2 7	4610 87	4260 0

Interaction of desmedipham with Lorsban insecticide, Crookston, 1992. (continued)

* Stage of sugarbeet at first application.

Summary

Sugarbeet treated with Lorsban at 2 lb/A yielded less or tended to yield less than sugarbeet treated with Lorsban at 1 lb/A. Sugarbeet stands before thinning were reduced by the two highest rates of desmedipham at each growth stage. The rates were higher than would be normally applied to sugarbeet to deliberately cause sugarbeet injury. Several of the treatments reduced sugarbeet yield in tons and/or extractable sucrose. Root maggot damage was less on sugarbeet treated with the high herbicide rates than on untreated sugarbeet. This suggests that desmedipham injured sugarbeet are affected less by root maggot than undamaged sugarbeet. Perhaps root maggot flies are more attracted to healthy, non-injured plants for egg laying. Interaction of soil applied herbicides and Lorsban insecticide, Crookston, 1992. Preplant incorporated herbicides were applied in 17 gpa water at 40 psi to the center four rows of six row plots 2:30 pm May 5 when the air temperature was 66F, soil temperature at six inches was 48F, relative humidity was 30%, wind velocity was 7 mph, and soil moisture was fair. Incorporation was with a rototiller set four inches deep for EPTC and cycloate and two inches deep for diethatyl. Lorsban 15G at 6.5 or 13 pounds product per acre was applied modified in-furrow at planting. 'Seedex Monohikari' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 5. Sethoxydim + Dash at 0.2 1b ai/A+1 qt/A was applied to the entire plot area May 21 and July 22. Sugarbeet was cultivated June 2. Sugarbeet injury was evaluated June 3. Sugarbeet was counted in the center two rows of each plot June 11. Sugarbeet was hand weeded and hand thinned to an eight inch spacing June 11. Ten sugarbeet from each plot were rated July 15 for root maggot damage using the following scale: 0=no damage, 1=1 to 4 small scars, 2=5 to 10 small scars or up to 3 larger scars, 3=more than 3 larger scars, 4=50 to 75% of root blackened by scars, 5=more than 75% blackened or dead beet. The mean of these ten ratings is the sugarbeet root maggot damage rating. Sugarbeet from the center two rows of each plot was harvested September 29.

	Sgbt injury	Root maggot* damage rating	Prethin** sgbt Lo	Root <u>Yield</u> rsban (1b/A)	Sucrose	Extract Sucrose		
Treatment Rate	1.0 2.0	1.0 2.0	1.0 2.0 plts/70'	<u>1.0 2.0</u> Ton/A	1.0 2.0	1b/A		
Cycloate 6 Diethatyl 6 Diethatyl 8 EPTC 2 EPTC 2	5 12 12 3 10 18	1.7 1.6	216 176 214 184 220 178 239 174	14.3 10.2 12.0 12.0 13.8 13.2 15.6 12.1 13.0 12.4 12.2 12.5	15.214.515.115.215.015.315.015.215.614.914.914.9	3860 2590 3180 3240 3610 3570 4080 3200 3640 3250 3250 3260		
LSD (0.05)	6	0.3	18	2.6	NS	770		

* O=no damage, 5=severely injured or dead.

** Sugarbeet plants per 70 feet of row prior to thinning.

Summary

Sugarbeet treated with Lorsban at 2 lb/A plus cycloate or EPTC yielded less or tended to yield less than sugarbeet treated with Lorsban at 1 1b/A plus cycloate or EPTC. All herbicides caused significant sugarbeet injury and However, remaining stands were reduced pre-thinned sugarbeet stands. sufficient to obtain optimum sugarbeet populations after thinning. EPTC at 4 1b/A caused severe sugarbeet injury but the sugarbeet recovered and yielded as much as the untreated check. Sugarbeet root maggot affected herbicide injured sugarbeet less than undamaged sugarbeet. Plots with the most severe herbicide injury had the lowest root maggot damage ratings. Perhaps root maggot flies are more attracted to healthy, non-injured plants for egg laying.

Insecticide influence on simulated spray drift, Fargo, 1992. Diethatyl + cycloate at 3+3 lb ai/A was broadcast over entire plot area April 29 and incorporated with a 'Kongskilde Triple K' field cultivator and a second time with an 'Alloway Seedbetter' field cultivator. 'Maribo 403' sugarbeet was seeded 1.25 inches deep in 22 inch rows April 29. Sugarbeet was hand thinned to an 8 inch spacing May 28. Plots were cultivated May 21 and June 15 and maintained weed free by hand weeding thoughtout the growing season. The simulated herbicide drift treatments were applied to sugarbeet treated with Counter 15G insecticide at 12 pounds product per acre applied modified infurrow at planting and to sugarbeet not treated with insecticide. Simulated drift treatments were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots at 11:30 am June 11 when the air temperature was 85F, soil temperature at six inches was 68F, relative humidity was 47%, wind velocity was 10 mph, soil moisture was good, and sugarbeet was in the 6 to 8 leaf stage. Sugarbeet injury was evaluated July 10. Sugarbeet was harvested and counted from the center two rows of 35 foot long plots

<u>Treatment*</u>	Pata	Sugarbeet Sgbt Harvest <u>Injury</u> <u>Stand</u> <u>Rate Count Untrt Count Untrt Cou</u> (1b/A)%			Vie	oot eld	0	ract	
	<u>Rate</u> (1b/A)	Count	<u>Untrt</u>	Count	Untrt	Count	Untrt	0	
	(10/A)	,		-plts,	/70ft-	tor	n/A	11	A
Imazethapyr+Sun-It Imazethapyr+Sun-It Imazethapyr Nicosulfuron+Scoil Nicosulfuron+Scoil Nicosulfuron Thif+trib+X-77 Thif+trib+X-77 Thif+trib Untreated	0.0005+1.5pt 0.0025+1.5pt	75 99 2 99 100 0	61 100 2 100 100 5 100 100 24 0	39 1 82 2 1 82 2 6 73 77	51 2 84 2 1 84 2 2 79 85	11.6 0.1 24.8 0.9 0.4 23.3 0.7 2.7 22.8 25.4	14.6 1.0 26.1 0.9 0.4 24.4 1.1 0.9 22.6 25.5	1990 0 4450 50 40 4290 70 400 3940 4610	2490 50 4820 90 50 4460 100 50 4290 4600
LSD(0.05)			5		6		.0		4000 80

* Sun-It and Scoil = methylated seed oil additives from Agsco. X-77 = non-ionic surfactant from Valent.

Summary

Most treatments either caused too much or too little injury to evaluate the interaction of Counter and simulated spray drift. Only Imazethapyr+Sun-It at 0.0005 gave the desired level of injury. Sugarbeet treated with Counter plus imazethapyr+Sun-It at 0.0005 yielded less than sugarbeet only treated with imazethapyr. This suggests that Counter increased sugarbeet susceptibility to imazethapyr but the effect was not large. Also, sugarbeet treated with Counter plus imazethapyr at 0.0025, nicosulfuron at 0.01, or thifensulfuron+tribenuron at 0.001 lb/A tended to yield less than sugarbeet applied with an adjuvant rather than alone. Time of cultivation, Fargo, 1992. 'KW 1119' sugarbeet was seeded 1.25 inches deep in 22 inch rows April 30. Sethoxydim + Scoil at 0.1 lb ai/A + 1.5 pt/A, desmedipham at 0.5 lb ai/A, and clopyralid at 0.09 lb ai/A were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center four rows of six row plots 12:15 pm June 10 when the air temperature was 84F, soil temperature at six inches was 63F, relative humidity was 47%, wind velocity was 9 mph, soil moisture was good, sugarbeet was in the 4 to 6 leaf stage, wild oats was 8 to 10 inches tall, and redroot pigweed was in the 2 to 8 leaf stage. Row-crop cultivation was done one and five days before and one and five days after herbicide application. Wild oats and redroot pigweed control and sugarbeet injury were evaluated July 4.

injuly well to		Redroot	
	Wild Oats	Pigweed	Sugarbeet
	control	control	
Treatment (date)		(%)	
Treatment (date) Cultivation (June 5) + Sethoxydim (June 10) Cultivation (June 9) + Sethoxydim (June 10) Sethoxydim (June 10) + Cultivation (June 11) Sethoxydim (June 10) + Cultivation (June 15) Sethoxydim (June 5) + Desmedipham (June 10) Cultivation (June 9) + Desmedipham (June 10) Desmedipham (June 10) + Cultivation (June 11) Desmedipham (June 10) + Cultivation (June 15) Desmedipham (June 10) Cultivation (June 5) + Clopyralid (June 10) Cultivation (June 9) + Clopyralid (June 10) Cultivation (June 10) + Cultivation (June 11) Clopyralid (June 10) + Cultivation (June 11) Clopyralid (June 10) + Cultivation (June 11) HIGH MEAN	Wild Oats <u>control</u> 98 95 98 100 96 0 0 0 0 0 0 0 0 0 0 0 0 0	control	injury
LOW MEAN	32	30	0
EXP MEAN	8	12	0
C.V. %	4	5	NS
LSD 5%	5	7	NS
LSD 1%	4	4	4
# OF REPS		and the second	

Summary

Weed control was evaluated in the non-cultivated band over the rows. Cultivation did not reduce weed control from sethoxydim or desmedipham.

Herbicide soil residual, Fargo (NW section 22), 1989-1992. 'Evans' soybeans were solid seeded at 59 1b/A June 2, 1989 to the entire plot area. Herbicides were applied 10:00 am July 7, 1989 when the air temperature was 79F, soil temperature at six inches was 74F, relative humidity was 47%, wind was 8 mph, soil moisture was poor, and soybean was in the one trifoliolate stage (2 inches tall) to the four trifoliolate stage (6 inches tall). Plots were 14 feet wide and 45 feet long with the center 10 feet treated with herbicides in 8.5 gpa water at 38 psi through 8001 nozzles. The entire experiment was treated with sethoxydim+Dash at 0.2 lb/A + 1 qt/A June 26, 1989 and acifluorfen+sethoxydim+Dash at 0.25+0.2 lb/A + 1 qt/A July 10, 1989. Clopyralid at 0.2 lb/A was spot sprayed to control thistles July 10, 1989. All tillage of the plot area was with a field cultivator moving parallel with the herbicide plots. Bioassay strips of sugarbeet, corn, wheat, and oats were seeded across herbicide plots for evaluation in 1990. 'Van Der Have Puressa II' sugarbeet was seeded in two directions over entire plot area May 24, 1991. Sugarbeet injury was evaluated June 24, 1991. Spring tillage in 1992 was with a 'Kongskilde Triple K' field cultivator operated the same direction as the herbicide plots. 'Seedex Monohikari' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 19, 1992. Seeding was done parallel and perpendicular to plots to ensure a dense sugarbeet population. Desmedipham&Phenmedipham + sethoxydim + clopyralid at 0.33 + 0.3 + 0.09 lb ai/A was broadcast applied to all plots June 12, 1992. Desmedipham&Phenmedipham + sethoxydim + clopyralid at 0.9 + 0.3 + 0.09 lb ai/A was broadcast applied to all plots June 29, 1992. Sugarbeet injury was evaluated June 29 and July 10, 1992.

		July 24, 1991	June 29, 1992	July 10, 1992
		Sugarbeet	Sugarbeet	Sugarbeet
Treatment*	Rate	injury	injury	injury
	(1b/A)	(%)	(%)	(%)
Imazethapyr+X-77	0.12+0.25%	85	3	5
Imazethapyr+X-77	0.06+0.25%	58	3	0
Imazethapyr+X-77	0.03+0.25%	14	3	8
Imazethapyr+X-77	0.015+0.25%	0	0	0
Imazamethabenz	0.6	0	0	0
Imazamethabenz	0.3	3	0	0
Imazamethabenz	0.15	0	0	0
Metribuzin-DF	1	0	0	0
Metribuzin-DF	0.5	0	0	3
Metribuzin-DF	0.25	0	0	0
Nicosulfuron	0.125	3	0	0
Nicosulfuron	0.06	5	0	3
Nicosulfuron	0.03	5	0	3
DPX-E9636+Nicosulfuron	0.062+0.062	4	0	0
DPX-E9636+Nicosulfuron	0.03+0.03	3	0	0
DPX-E9636+Nicosulfuron	0.015+0.015	0	0	3
Primisulfuron	0.06	91	45	40
Primisulfuron	0.03	59	36	25
Primisulfuron	0.015	24	8	3
C.V. %		31	106	207
LSD 5%		8	8	14
LSD 1%		11	10	19
# OF REPS		4	4	4

* X-77 = non-ionic surfactant from Valent

SUMMARY: Sugarbeet seeded in 1991 were significantly injured by imazethapyr at 0.12, 0.06, and 0.03 1b/A and by primisulfuron at 0.06, 0.03, and 0.015 1b/A applied in 1989. Sugarbeet seeded in 1992 were significantly injured by primisulfuron at 0.06 and 0.03 1b/A applied in 1989.

Carryover of soybean herbicides, Fargo (NW section 22), 1990-1992. 'McCall' soybean was seeded May 24, 1990. The entire plot area was treated with acifluorfen+sethoxydim at 0.25+0.2 lb ai/A plus Dash at 1 qt/A June 26, 1990. Herbicide treatments were applied in 8.5 gpa water at 38 psi through 8001 nozzles to the center 10 feet of 14 foot wide plots 9:15 am June 29, 1990 when the air temperature was 75F, soil temperature at six inches was 69F, relative humidity was 78%, wind velocity was 2 to 4 mph, soil moisture was good, and soybean was in the 2 to 3 trifoliolate stage. Spring and fall tillage was with a field cultivator operated the same direction as the herbicide plots. A six foot strip of 'Butte' wheat at 88 lb/A, a six foot strip of 'Valley' oats at 60 lb/A, a four row strip of 'Interstate 3001' sunflower at 25,000 seeds per acre, and twelve ll inch rows of 'Van Der Have Puressa II' sugarbeet were seeded across herbicide plots May 24, 1991. Sugarbeet, wheat, oats, and sunflower injury were evaluated June 24, 1991 and July 8, 1991. Kochia control was evaluated June 24, 1991. Spring tillage in 1992 was with a 'Kongskilde Triple K' field cultivator operated the same direction as the herbicide plots. 'Seedex Monohikari' sugarbeet was seeded 1.25 inches deep in 22 inch rows May 19, 1992. Seeding was done parallel and perpendicular to plots to ensure a dense sugarbeet population. Desmedipham&Phenmedipham + sethoxydim + clopyralid at 0.33 + 0.3 + 0.09 lb ai/A was broadcast applied to all plots June 12, 1992. Desmedipham&Phenmedipham + sethoxydim + clopyralid at 0.9 + 0.3 + 0.09 lb ai/A was broadcast applied to all plots June 29, 1992. Sugarbeet injury was evaluated June 29 and July 10, 1992.

											19	992
			June	24.	199	L	Ju	ly 8,	199	91	6-29	7-10
Treatment	Rate	Sgbt	Wht	Oat		Kocz				Suf1	Sgbt	Sgbt
<u>Ileatment</u>	(1b/A)					()						
	(10//											
Chlorimuron	0.004	94	30	31	54	98	91	30	19	48	70	53
Chlorimuron	0.008	98	33	18	69	97	98	46	15	74	90	76
Nicosulfuron	0.125	63	10	23	31	80	59	21	20	19	0	3
Nicosulfuron	0.06	30	10	3	10	40	33	18	8	8	0	0
Nicosulfuron	0.03	14	0	0	3	20	18	10	3	8	3	5
DPX-E9636+Nico	0.062+0.062	39	5	20	38	65	38	23	15	20	0	3
Primisulfuron	0.06	100	84	84	98	99	100	97	73	99	96	86
II IMIBUILUION												
HIGH MEAN		100	84	84	98	99	100	97	73	99	96	86
LOW MEAN		14	0	0	3	20	18	10	3	8	0	0
EXP MEAN		62	24	25	43	71	62	35	22	39	37	32
C.V. %		23	61	92	30	16	25	36	49	34	17	33
LSD 5%		22	22	35	19	17	24	18	16	20	9	16
LSD 1%		29	30	48	26	24	32	25	21	27	13	22
# OF REPS		4	4	4	4	4	4	4	4	4	4	4

Summary

Sugarbeet was significantly injured in 1991 by all treatments applied in 1990 except nicosulfuron at 0.03 lb/A. Wheat was significantly injured in 1991 by chlorimuron and primisulfuron applied in 1990. Oats was significantly injured only by primisulfuron. Sunflower was significantly injured in 1991 by all treatments applied in 1990 except nicosulfuron at 0.06 and 0.03 lb/A. Sugarbeet was significantly injured in 1992 by both rates of chlorimuron and primisulfuron applied in 1990.

Multispecies screening of herbicides. Dexter, Alan G., Richard K. Zollinger and John D. Nalewaja. The objective of this experiment was to determine the response of several crop and weed species to new and established herbicides. Experiments were on a silty clay soil with 4% organic matter near Fargo, ND. Preplant incorporated herbicides were applied May 19, 1992 in 17 gpa water at 40 psi through 8002 nozzles to the center 7 feet of 11 foot by 40 foot plots when the air temperature was 70 F, and six-inch soil temperature was 59 F. Incorporation was two passes with a field cultivator plus rolling crumblers operated three inches deep. Canola, crambe, buckwheat (tame), 'BJ1320' sugarbeet, safflower, 'Neche' flax, 'Morex' barley, 'Valley' oats, 'Gus' HRS wheat, 'Vic' durum wheat, 'IS-343A' corn, 'McCall' soybean, 'Othelio' pinto bean, and 'IS-3311' sunflower were seeded May 19 across the preplant incorporated herbicide treated plots and across plots that were treated June 22 with postemergence herbicides. Wild mustard, green and yellow foxtail, and kochia populations were natural. Postemergence herbicides were applied in 8.5 gpa water at 40 psi through 8001 nozzles to the center 7 feet of 11 foot by 40 foot plots when air temperature was 70 F, six-inch soil temperature was 64 F and relative humidity was 72%. Size of plants when treated was wild mustard 5 to 10 inches, green and yellow foxtail 3 to 5 inches, kochia 0.5 to 5 inches, canola 5 inches, carmbe 5 inches, buckwheat 7 to 9 inches, sugarbeet 4- to 6-leaf, safflower 4 to 7 inches, flax 7 inches, barley 14 inches, oats 12 inches, HRS wheat 11 inches, durum wheat 11 inches, soybean first trifoliolate, pinto bean second trifoliolate, corn 6 to 10 inches, and sunflower 6-leaf. Percent control or percent injury was evaluated July 8 for preplant incorporated herbicides and July 17 for postemergence herbicides.

Several new postemergnece herbicides gave little injury to small acreage crops. For example, DPX-66037 on sugarbeet, safflower, flax, and pinto bean' MON-12000 on flax and pinto bean; and Quinchloral on buckwheat (tame), pinto bean and sunflower. Preplant incorporated herbicides that were relatively safe on small acreage crops included MON-12000 & MON-13900 on pinto bean; acetochlor on flax, sunflower, and pinto bean; SAN-582 on flax, sunflower, and pinto bean; MON-13200 on canola, crambe, safflower, and sunflower; DE-498 & trifluralin & DE-498 & metolachlor on pinto bean; and clomazone on buckwheat (tame). (Department of Crop and Weed Sciences, North Dakota State University, Fargo).

													Nalo	(sis							
	or control (r nec i	es Fa	rao.	1992.	(Dex	ter,	ZOII	inger	r, and	I nate	ts Hr	SW DU	iwt S	oyb Pr	nto C	orn	Sufl	
Table. Injury to	or control (or se	veral	SPECT	Cano	Cra	m Buw	n So	bt S	aff	Fla	X Bar	- inju	ry							
Treatment*	Rate	Wimu	Fxtl	NUCZ	Curre				perc	ent	cont	rol or	r inju	ry							
Treadmente	Ib/A																				1.11
	pt/A												-	0	0	5	17	7	3	98	
Preplant Incorporat	ed				3 9	10	00	97	100	93		5	5	-	72	85	10	7	0	(
MON-12000&MON-13900	0.075	100	53					35	45	- 48				00	60	78	7	0	0		3
MUN-12000anon 10000	1.75	48	82					27	27	47		0		73		85	23	30	60		0
Acetochlor	1.5	63	8					63	93	10	2		82	83	83	72	8	15	50	9	5
SAN-582	0.25	27	94			· ·	10		100	98		97	77	80	75		5	7	45	9	2
MON-13200	0.06+0.85	100	9			-	00		100	97		96	68	57	63	87	0	Ó	0		0
DE-498&Trifluralin	0.06+2.34	100	9			• -	00	12	57	33		3	47	60	58	87	0	Ő	52		0
DE-498&Metolachler	3	40		3 3			50	83	87	3		40	40	78	73	33	-	13	78	9	9
Alachlor	1	7	9	4 8		0	0		100	98		97	80	82	82	92	12	17	92		20
Trifluralin	0.06	100		5 10	0 10	0 1	.00	94		20	•	92	73	88	90	80	3	17	0		0
Imazethapyr	0.00	43		2 9	12 5	3	98	8	33	20		7	93	97	95	97	12		57		53
Clomazone	4	50		0 2	5	5	7	33	12	5		30	57	52	53	53	3	28	11		11
EPTC & Dichlormid				10 10	3 0(33	83	98	100	2		13	20	15	17	15	NS	16	11		••
F6285	0.375	2				17	16	27	16	۷.	3	15	20								
LSD (0.05)		۷.	з ,																2		96
										-	_	86	93	82	93	96	78	37	3		90
Postemergence		10	0	30	50	99	99	58	70	2	5	00	55						0		53
Rimsulfuron+	0.0156+		0	50	50					<u></u>		00	87	43	93	96	82	25	0		53
X-77	0.25%			70	43	99	99	65	77	5	2	80	0/	75							
Rimsulfuron+	0.01564		10	/0																	
Metr+	0.125-												50	8	18	37	15	8	7		42
X-77	0.255			~~	28	22	23	55	10		12	13	58	2	3	5	81	3	(99
DPX-66037+X-77	0.031+0.25	% 10		20		98	99	35	81		37	8	2	ő	2	0	2	2	2	2	4
MON-12000+X-77	0.032+0.25	% 10	00	0	30	20	22	0	28	3 (68	78	7	U	2	, v					
Quinclorac+	0.25		33	23	23	20								00	20	22	10	17		0	13
Sun-It II	1.5 p	t				99	99	99	2	5	99	99	18	20	87	95	0	5	4	3	93
	0.2+2 p	t 1	00	0	88		99	82	9		87	55	77	62	0/	35					
Lactofen+OC	0.047		00	93	97	98		02							97	97	0	3	9	9	99
Imazethapyr+	1.5 0						99	82	9	9	73	25	93	99	97	91	, in the second s				
Sun-It II	0.047+0.2		00	96	94	98	99	02								32	0	1	8	2	99
Imep+Seth+	1.5						00	43	q	9	20	35	10	23	12	32	C.		Ŭ,		
Sun-It II	0.004+0.00		00	0	65	98	99	45			-						0		5	0	7
Clim+Thif+	0.004+0.00							10	6	52	70	0	0	0	0	0	0		с -	Č	
X-77	0.7		65	0	15	63	55	13								~	15		5	0	10
Bentazon+	1.5							00		33	67	73	95	96	93	96	15		5	~	
Sun-It II	0.03		100	95	75	99	99	82		55	57					10			88	0	90
Nicosulfuron+		•	100							00	98	27	12	2	6				88 99	0	83
Sun-It II	1.5		91	0	92	67	99	91		88	99	- 0	Ō	0	0					0	99
Dicamba		.25	0	ő	7	0	13			0		78	92	92	93	96	5 82		60	0	
Clopyralid		.19		92	89	96	99	28		82	95	/0	52								
Primisulfuron+	0.03		100	92	0,														20	7	2
Sun-It II	1.5	pt								75	10	52	17	48	()	3 27		38	1	2
	0	31+	98	18	13	73	98	3 25	>	75	10	52							10	2	94
Imazamethabenz+	1.5							-		00	96	82	2	2	1	2	1 70	J	40	2	54
Sun-It II			100	13	96	99	99	9 88	5	99	30	02							0	0	0
Thif&Trib+2,4-D		25%							-	~	10	10	6	. 4			1990 - Carlos Carlos (1990)	0	0	0	14
X-77		.75	43	0	7	0		0 1		0	83	77	7		1	3 1		0	0	5	19
Desmediphem).38	100	37	18	96	9			33		22						17	21	9	19
Acifluorfen	U		100		10	12	1	6 2	0	24	26	22	1.					rambe	Buw	h =	

LSD (0.05) 21 22 18 13 16 20 24 26 22 15 21 8 12 17 21 9 * X-77 = non-ionic surfactant from Valent; Sun-It II = methylated seed soil from Agsco; Cano = canola, Cram = crambe, Buwh = buckwheat (tame), Sgbt = sugarbeet, Saff = safflower, Barl = barley, HRSW = Hard Red Spring wheat, Duwt = durum wheat, Soyb = soybean, Pnto = pinto bean, Sunf = sunflower, Fxtl = green and yellow foxtail.

Wild oat control in wheat, Fargo 1992. 'Gus' hard red spring wheat was seeded April 4. Treatments (2-3 lf) were applied to 2- to 3-leaf wheat, 2- to 2.5-leaf wild oats, 2-leaf common lambsquarters, 2- to 3-leaf wild mustard, 0.5-inch-tall kochia, and cotyledon- to 1-leaf wild buckwheat on May 14 with 60 F, 48% RH, a partly cloudy sky, and 20 mph wind. Treatments (4-51f) were applied to 4- to 5partly cloudy SKy, and 20 mpH wild. Treatments (4-511) were applied to 4- to 5-leaf wheat, 3- to 4-leaf common lambsquarters, 3- to 4.5-leaf wild oats, and 1-to 2-leaf green and yellow foxtail with 48 F, 55% RH, a clear sky, and 15 mph wind. All treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 20 ft plots. the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Weed densities were wild oats and common lambsquarter 10 plants per square ft and wild mustard 4 per square yard.

Tambsquar eer = +			lur	le 6			July	28		
Treatment	<u>Rate</u> oz/A	Wheat inj b	-		<u>Wimu</u>	<u>Wioa</u> %	<u>Colq</u>	<u>KOCZ</u>	/ <u>Wibu</u> 	Aug 17 <u>Yield</u> bu/A
Diclofop $(2-31f)$ Diclofop + Sun-it $(2-31f)$ Immb-SG + X-77 $(2-31f)$ Cheyenne® $(2-31f)$ Diclofop + Sun-it $(4-51f)$ Immb-SG + X-77 $(4-51f)$ Immb-SG + Sun-it $(4-51f)$ Difenzoquat $(4-51f)$ Dife+Immb-SG+X-77 $(4-51f)$ Cheyenne+ $(4-51f)$ Tiller® $(4-51f)$ Untreated	12 12+.12G 5+.25% 7.52 16+.12G 5+.25% 5+.25% 10 6+2.5+. 7.52 9.4 0	0 0 0 0 0	90 94 90 96 69 66 78 61 77 87 91 0	0 0 13 99 0 35 49 0 99 98 0	0 99 99 95 98 0 98 99 98 0	85 93 84 68 48 50 66 55 84 95 0	0 0 92 0 0 0 0 99 99 0	0 0 98 0 0 0 0 99 18 0	0 99 88 40 0 0 0 0 0 0 0	13.2 10.1 13.0 27.3 9.0 8.7 8.2 9.8 9.8 14.4 15.5 7.1
C.V. % LSD 5% # OF REPS		113 1 4	13 13 4	30 13 4		15 13 4	14 4 4	35 8 4	1	18.9 3.2 4

Summary

None of the herbicide treatments injured wheat. Yields were low because the dense wild oats gave early competition during the dry early season preventing wheat tillering. Cheyenne applied at the 2- to 3-leaf stage gave good control of wild oats and other weeds and a 20 bu/A yield increase compared to the untreated. This treatment applied at the 4- to 5-leaf stage gave good weed control but only increased wheat 8 bu/A. Diclofop and imazamethabenz gave greater wild oats control when applied at the 2- to 4-leaf stage than the 4- to 5-leaf stage. Cheyenne was equally effective at both stages of application.

1

<u>Wild oats control in wheat, Carrington 1992</u>. 'Amidon' hard red spring wheat was seeded April 30. All treatments were applied to 4-leaf wheat and redroot pigweed, 1- to 2-leaf green foxtail, 4-inch-tall common lambsquarter, and 3inch tall kochia on June 2 with 65 F, 68% RH, a clear sky, and 11 mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates. Weed densities were common lambsquarter 1 plant per square ft, kochia 1 plant per square yard and green foxtail was variable and drought

<u>Treatment</u> ^a	Rate oz/A	Wheat inj	Jul Grft		KOCZ
Diclofop Diclofop + Sun-it Imazamethabenz-SG + X-77 Cheyenne® Diclofop + Sun-it Imazamethabenz-SG + X-77 Imazamethabenz-SG + Sun-it Imazamethabenz-SG + Scoil Difenzoquat Difenzoquat + Immb-SG + X-77 Cheyenne Tiller® Untreated	12 $12+.12G$ $5+.25%$ 7.52 $16+.12G$ $5+.25%$ $5+.25G$ $5+.25G$ 10 $6+2.5+.25%$ 7.52 9.4 0	0 0 0 0 0 0 0 0 0 0 0 0 0	46 60 7 534 25 26 48 4 34 73 70 0	0 0 99 0 3 6 13 0 0 99 92 0	0 8 98 0 5 16 5 0 92 54 0
C.V. % LSD 5% # OF REPS		0 NS 4	50 28 4	33 11 4	64 20 4

Summary

The area where the experiment was located did not contain wild oats. The herbicide treatments did not injure wheat. Cheyenne gave acceptable (70%) control of grass and broadleaf weeds. Tiller adequately controlled green foxtail and common lambsquarters, but only gave 54% control of kochia. <u>Wild oat control in wheat, Hettinger 1992</u>. 'Grandin' hard red spring wheat was seeded April 16. Treatments were applied to 3.5-leaf wheat and wild oats on May 19 with 77 F, 62% RH, clear sky, and 5-mph wind. Hard frost occurred on both May 26 and June 6. Bromoxynil + MCPA at 4 + 4 oz/A was applied for broadleaf control on June 9. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Wild oat density was 100 per square yard.

			<u>y 5</u>			Augu	st 14
		Whea	t			Test	Wheat
Treatment	Rate	inj	Wioa	Wioa	hght	wght	yield
	oz/A	'	%		cm	1b/bu	bu/A
Diclofop	12	0	50	42	71	69	13.1
Diclofop+Sun-it	12+.12G	0	63	77	68	63	13.3
Diclofop+Sun-it	16+.12G	1	79	70	66	62	15.4
Immb-SG+X-77	5+.25%	0	35	51	65	62	8.8
Immb-SG+Sun-it	5+.25G	0	76	75	68	63	15.5
Immb-SG+Scoil	5+.25G	0	79	79	69	63	15.7
Difenzoquat	10	0	13	13	74	64	12.4
Dife+Immb-SG+X-77	6+2.5+.25%	0	59	51	74	64	15.7
Cheyenne®	7.52	3	88	82	70	62	18.3
Tiller®	9.4	0	55	40	67	63	15.9
Untreated	0	0	0	0	63	61	10.3
C.V. %		310	35	39	12	2	48.8
LSD 5%		NS	28	38	NS	NS	NS
# OF REPS		4	4	4	4	4	4

Summary

None of the herbicide treatments injured wheat. Weed populations were quite variable making evaluation difficult and giving a high LSD.

<u>Wild oats control in wheat, Minot 1992</u>. 'Amidon' hard red spring wheat was seeded on April 16. Treatments were applied to 5-leaf wheat and wild oats, 0.5- to 1-inch tall kochia, 1- to 3-inch tall common lambsquarter, 2- to 4inch tall Russian thistle, 0.5- to 3.25-inch tall redroot pigweed 3- to 6-leaf green foxtail, and 4-leaf wild buckwheat on June 3 with 78 F, 70% RH, partly cloudy sky, and 4- to 12-mph wind. Treatments were applied with a shielded bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. 2-31f and 4-51f treatments were applied on the same day.

	COLOR COLOR		J	uly 10)		August 19		
		Whea	t						
<u>Treatment</u> ^a	Rate	inj	Grft	Ruth	Colq	KOCZ	Height	Yield	
<u>Treatment</u>	oz/A			%			inches	bu/A	
Diclofop(2-31f)	12	0	76	10	0	0	30	52.6	
Diclofop+Sun-it(2-31f)	12+.12G	0	83	0	0	0	29	50.2	
Immb-SG+X-77(2-31f)	5+.25%	0	0	23	0	0	30	52.4	
Cheyenne® (2-31f)	7.52	1	99	99	99	88	30	54.0	
Diclofop+Sun-it(4-51f)	16+.12G	0	87	0	0	0	29	51.2	
Immb-SG+X-77(4-51f)	5+.25%	0	0	26	4	7	31	53.1	
Immb-SG+Sun-it(4-51f)	5+.25G	0	19	50	20	10	29	51.4	
Immb-SG+Scoil(4-51f)	5+.25G	1	23	49	0	0	29	52.7	
Difenzoquat(4-51f)	10	0	5	4	0	0	31	50.9	
Dife+Immb-SG+X-77(4-51f)	6+2.5+.25%	0	0	19	0	0	30	51.6	
Cheyenne (4-51f)	7.52	0	99	99	99	89	30	53.4	
Tiller [®] (4-51f)	9.4	3	87	76	93	17	31	50.5	
Untreated	0	0	0	0	0	0	30	54.1	
Untreated									
C.V. %		332	22	27	24	63	9	7.8	
LSD 5%		NS	14	14	8	15	NS	NS	
# OF REPS		4	4	4	4	4	4	4	

Summary

The wild oats infestation was too sparce for evaluation. None of the herbicide injured wheat as determined by the visible injury or wheat yield. Cheyenne gave 88% or more control of grass and broadleaf weeds. Tiller was less effective than Cheyenne for kochia and Russian thistle control.

<u>Wild oat control in hard red spring wheat, Williston 1992</u>. 'Amidon' hard red spring wheat was seeded April 29. Treatments (2-31f) were applied to 3-leaf wheat and 2- to 3-leaf wild oats on May 22 with 51 F, 58% RH, clear sky, and 6 mph wind. Treatments (4-51f) were applied to 5.5-leaf wheat, 4.5- to 5-leaf wild oats, 2-leaf green foxtail, and 1- to 3-inch tall Russian thistle on June 2 with 70 F, 70% RH, clear sky, and 7 mph wind. All treatments were applied to dry soil and plant surfaces with a soil temperature of 64 F taken at at a depth of 4 inches. A rainfall measuring 0.39 of an inch occurred on June 14. Method of application was a bicycle-type-plot sprayer with a wind shield mounted on a G-Allis Chalmers delivering 8.5 gpa at 32 psi through an 8001 flat fan nozzle to a 7 ft wide area the length of 10 by 25 ft plot. The experiment was a randomized complete block design with 4 replicates.

		Jul Wheat	y 9 Wild	Aug 3 Wild	<u>Augu</u> Test	st 27
Treatment	Rate	inj		oats	wght	Yield
	oz/A		- %		lbs/bu	
Diclofop(2-31f)	12	0	89	85	59	55.8
Diclofop+Sun-it(2-31f)	12+0.12G	0	99	98	59	59.1
Imazamethabenz-SG+X-77(2-31f)	5+0.25%	0	90	90	59	55.8
Cheyenne® (2-31f)	7.52	0	99	97	60	55.6
Diclofop+Sun-it(4-51f)	16+0.12G	6	99	97	59	54.1
Imazamethabenz-SG+X-77(4-51f)	5+0.25%	3	92	86	59	57.8
Imazamethabenz-SG+Sun-it(4-51f)	5+0.25G	4	87	90	59	55.9
Imazamethabenz-SG+Scoil(4-51f)	5+0.25G	1	91	88	59	56.9
Difenzoquat(4-51f)	10	4	85	83	59	53.8
Dife+Imazamethabenz-SG+X-77(4-51f)	6+2.5+0.25%	6 1	88	85	59	52.8
Cheyenne (4-51f)	7.52	2	98	96	59	58.5
Tiller®(4-51f)	9.4	4	98	96	59	55.4
Untreated	0	0	0	0	59	51.4
C.V. %		9	5	5		5.9
LSD 5%		4	7	5		NS
# of Reps		4	4	4	1	4

Summary

None of the herbicide treatments caused injury to wheat as measured by visible injury, seed yield, or grain test weight. Wild oats infestation were light (about 1 plant per sq yard) so treatments did not significantly increase yield even though all treatments gave 83% or more wild oat control. <u>Preemergence wild oat control in wheat, Fargo 1992</u>. 'Gus' hard red spring wheat was seeded April 15. Treatments (PPI) were incorporated twice with a field cultivator plus harrow on April 15 with 50 F, 70% RH, cloudy sky, and 15 mph wind. Preemergence treatments (PEI) were incorporated twice with harrow on April 16 with 53 F, 60% RH, cloudy sky, and 10 mph wind. Treatment (Post 2-31f) was applied to 2- to 3-leaf wheat, 2-leaf wild oats and wild mustard, 0.5 inch kochia, and 1-leaf wild buckwheat on May 14 with 61 F, 48% RH, partly cloudy sky, and 20 mph wind. Treatments (POST 4L) were applied to 4- to 5-lf wheat, 2to 4-leaf wild oats, 2-inch tall kochia, and 2-leaf green and yellow foxtail on May 23 with 50 F, 50% RH, partly cloudy sky, and 15- to 20-mph wind. All treatments were applied with a bicycle-wheel-type plot sprayer delivering 17 gpa through 8002 flat fan nozzles for all soil applied treatments and 8.5 gpa through 8001 flat fan nozzles for the postemergent treatments at 35 psi to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Weed densities were wild oats 30 plants per square yd, wild mustard 1 plant per square and not replicates than 1 plant per square yard.

			Jur	ne 2			Jı	11y 3	1		Sep 10
		Wht				Wht					
Treatment	Rate	inj	Fota	Wimu	KOCZ	inj	Wioa	Fota	KOCZ	Colq	Yield
Trouting	oz/A					%					bu/A
								50	00	05	: 40 E
UCC-C4243-10E(PPI)	1.4	1	85	96	98	0	9	59	98	95	40.5
UCC-C4243-10E(PPI)	1.9	3	97	98	99	0	0	77	99	95	54.9
UCC-C4243-10E(PEI)	1.4	5	89	67	83	0	16	64	79	15	50.8
UCC-C4243-50W(PEI)	1.4	1	91	53	79	1	10	63	78	33	52.2
UCC-C4243-50W(PEI)	1.9	0	92	70	72	0	18	62	75	18	53.5
Triallate(PPI)	16	5	11	5	0	1	95	0	0	0	48.3
Tria+UCC-C4243-50W(PPI)	16+1.9	19	98	98	99	5		73	99	99	54.2
Triallate(PEI)	16	1	9	0	0	4	89	0	9	0	44.0
Tria+UCC-C4243-50W(PEI)	16+1.4	5	98	71	92	9		59	86	40	60.6
Tria+UCC-C4243-50W(PEI)	16+1.9	5	97	68	93	3		50	79	23	58.5
Diclofop+PO(POST 2-3L)	12+.120		66	0	0	1	87	26	0	45	52.5
Tiller®(POST 4L)	9.5	9	93	99	66			38	34	99	51.2
<pre>Immb-SG+Sun-it(POST 4L)</pre>	5+.25G	1	29		86			0	92	33	48.1
Untreated	0	0	0	0	0	0	0	0	0	0	51.4
									0.0	22	
C.V. %		139			17						
LSD 5%		8									
# OF REPS		4	4	4	4	4	- 4	4	4	2	1

Summary

Triallate + UCC-C4243 PPI and Tiller POST injured wheat, yield probably was not reduced. However, yields were only taken for one replicate because kochia in parts of the other replicates made those plots unharvestable with the small plot combine. Kochia control exceeded 90% at both evaluations when treated with UCC-C4243 PPI or imazamethabenz + Sun-it II. UCC-C4243 PPI or tiller POST gave greater than 90% common lambsquarter control. All UCC-C4243 treatments and tiller gave greater than 85% foxtail control at the early evaluation, control was less than 85% for all treatments at the July 31 evaluation.

Tiller® mixtures for wild oat control, Fargo 1992. 'Morex' barley was seeded April 15. Treatments were applied to 5- to 5.5-leaf barley, 3- to 4.5-leaf wild oats, 1- to 2-leaf green and yellow foxtail, 3- to 7-leaf wild mustard, and 3- to 4-leaf common lambsquarters on May 26 with 48 F, 55% RH, a clear sky, and 15-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates.

Treatment	Rate oz/A	June 2 Barley	June 26 Barley	<u>July</u> Barley %	28 Wioa	Aug 12 Yield bu/A
Tiller® Tiller Tiller Tiller+Thif&Trib Tiller+Thif&Trib+Scoil Tiller+Thif&Trib+Brox Tiller+Brox Tiller+Brox Tiller+Triasulfuron Fenx&MCPA+Thif&Trib Untreated C.V. % LSD 5%	6.6 8.3 9.3 9.3+0.22 9.3+0.22+.18G 9.3+.11+2 9.3+3 9.3+0.22 1.8&6.4+0.22 0	17 16 21 16 17 25 21 12 31 0 19 5	5 2 5 2 4 11 3 3 19 0 48 4	4 0 3 1 1 6 2 0 6 0 121	90 97 98 86 98 95 82 92 0 4	49.8 53.3 54.3 48.0 61.3 51.8 52.8 52.8 52.8 54.3 41.3
# OF REPS		4	4	4 4	4 4	NS 4

Summary

triasulfuron treatment.

All herbicide treatments significantly injured barley at the early (June 2) evaluation. Barley generally recovered from injury and was 6% or less at the July 28 evaluation. Fenoxaprop & MCPA + thifensulfuron & tribenuron and Tiller + thifensulfuron & tribenuron + bromoxynil were the most injurious. Wild oats control exceeded 85% with all but the tiller + Imazamethabenz for wild oat and broadleaf weed control in wheat, Fargo 1992. 'Gus' hard red spring wheat was seeded April 15. Treatments were applied to 4-leaf wheat, 2- to 4-leaf wild oats, wild buckwheat, and common lambsquarter and 4- to 6-leaf wild mustard on May 23 with 50 F, 48% RH, a partly cloudy sky, and 17-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Weed densities were wild oats greater than 100 plants per sq yard, wild mustard 1 plant per sq yard, common lambsquarter, wild buckwheat, and kochia between 10 and 50 plants per sq yard.

		June 7					July 30				
		Wheat									
Treatment	Rate	inj	Wioa	Wibu	Wimu	Colq	Wioa	Colq	Kocz	Wibu	
Treatment	oz/A					- %					
Imazamethabenz+X-77	5+.25%	0	77	79	97	45	56	0	0	0	
Imazamethabenz+X-77	7.5+.25%	1	81	85	97	70	67	0	0	0	
Imazamethabenz-SG+X-77	5+.25%	0	72	70	96	64	60	0	0	0 5	
Imazamethabenz-SG+X-77	7.5+.25%	1	90	85	98	67	78	0	0	э 30	
Imazamethabenz-SG+Sun-itII	5+.25G	0	88	83	99	67	76	0		20	
Imazamethabenz-SG+Sun-itII	7.5+.25G	2	90	85	99	72	84	25	0	13	
Imazamethabenz-SG+Sun-itII	5+.12G	2	82	84	98	61	68	0	0	23	
Imazamethabenz-SG+Sun-itII	7.5+.12G	2	87	82	98	66	82	0	0	0	
Imazamethabenz-SG+Dife+X-77	3.7+8+.25%	4	92	89	99	78	67	0	0	8	
Imazamethabenz-SG+Dife+Sun-itII	3.7+8+.25G	8	88	83	97	60	69	0	0	0 8	
Imazamethabenz-SG+MCPA-ioe+X-77	5+8+.25%	1	76	72	99	99	59	99	0	18	
Imazamethabenz-SG+MCPA-ioe+Sun-itII	5+8+.25G	5	88	80	99	97	72	99	99	92	
Imazamethabenz-SG+Brox&MCPA+X-77	5+8+.25%	0	67	99	99	99	18	99	99	92	
Imazamethabenz-SG+24-Dbee+X-77	5+8+.25%	15	71	58	98	99	43	99		98	
Imazamethabenz-SG+Clpy&24-D+X-77	5+9.5+.25%	4	51	95	98	94	31	99	82 98	90 73	
Immb-SG+Thif&Trib+MCPA-ioe+X-77	5+.5+4+.25%	12	83	99	99	99	55	99	98	63	
Immb-SG+Dife+Thif&Trib+MCPA-ioe+X-77	5+8+.5+4+.25		90	99	99	99	57	99 99	99	30	
Imazamethabenz-SG+Trib+MCPA-ioe+X-77	5+.25+4+.25%	12	77		99	99	52		99		
Immb-SG+Trib+MCPA-ioe+Sun-itII	5+.25+4+.25		89		99	99	72				
Immb-SG+Thif&Trib+MCPA-ioe+Sun-itII	5+.5+4+.25%	15	84		99	99	69				
Untreated	0	0	0	0	0	0	0	U	U	U	
						10	17	8	13	62	
C.V. %		111	9								
LSD 5%		8	10								
# OF REPS		4	4	4	4	3	4	4	. 4	, 4	

Summary

None of the herbicide treatments caused important injury to wheat. The slight injury observed at the early evaluation was not evident at the late evaluation (data not presented). Wild mustard was controlled at 97% or more by all herbicide treatments. Imazamethabenz (liquid fertilizer) and the SG (soluble granule) equally controlled wild oats and broadleaf weeds. Wild oats and broadleaf weed control were greater or equal when imazamethabenz was applied with Sun-it as compared to with X-77 adjuvant. Sun-it II at 0.12 or 0.25 gallons/A equally enhance wild oat control by imazamethabenz. Bromoxynil & MCPA and clopyralid & 2,4-D antagonized wild oat control by imazamethabenz. Kochia control was greater than 90% when bromoxynil or a sulfonylurea was a component of the herbicide treatment.

Imazamethabenz-SG with adjuvant volume, Fargo 1992. 'Gus' hard red spring wheat was seeded April 15. Treatments were applied to 4- to 4.5-leaf wheat, 3- to 4.5-leaf wild oats, 1- to 2-leaf green and yellow foxtail, 3- to 7-leaf wild mustard, and 3- to 4-leaf common lambsquarters on May 26 with 48 F, 55% RH, a clear sky, and 15-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Weed densities were wild oats 10 plants per sq ft, common lambsquarter 5 plants per sq ft, and wild mustard 5 plants per sq yard.

			Ju	ne 9		
Treatment	Rate	Wheat inj	Hica	6.1.		July 28
	oz/A		Wioa	<u> Colq</u> %	Wimu	Wioa
Imazamethabenz-SG+Sun-it II Imazamethabenz-SG+Sun-it II Imazamethabenz-SG+Sun-it II Imazamethabenz-SG+Sun-it II Imazamethabenz-SG+Sun-it II Imazamethabenz-SG+Sun-it II Imazamethabenz-SG+Sun-it II Imazamethabenz-SG+Sun-it II Imazamethabenz-SG+ExpN Imazamethabenz-SG+ExpS Untreated C.V. % LSD 5% # OF REPS	2.0+.07G 2.0+.13G 2.0+.25G 3.5+.07G 3.5+.13G 3.5+.25G 5+.07G 5+.13G 5+.25G 3.5+.25G 3.5+.25G 3.5+.25G 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	61 76 74 76 80 79 82 83 57 46 0 11 11 11 4	0 0 0 18 37 39 33 41 0 0 0 71 14 4	90 93 93 94 94 96 96 96 96 97 91 87 0 2 3 4	30 28 34 41 41 51 29 54 58 36 10 0 42 21 4

Summary

None of the herbicide treatments injured wheat. control exceeded 85% with all imazamethabenz treatments. Wild oats control was greater from imazamethabenz applied with Sun-it II than with ExpN or ExpS. Wild oats control generally increased as the volume of Sun-it II

Adjuvants with Imazamethabenz(LC) for wild oat control, Fargo 1992. 'Gus' hard red spring wheat was seeded April 15. Treatments were applied to 3-leaf wheat, 2- to 3-leaf wild oats, 1-inch tall kochia, and 4-leaf wild mustard and common lambsquarters on May 19 with 93 F, 5% RH, a clear sky and 20-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Weed densities were wild oats, common lambsquarters, and wild buckwheat 5- to 10-plants per sq ft and wild mustard 1 plant per sq ft.

			Ju	ine 5		
Treatment	<u>Rate</u> oz/A	Wheat inj	Wioa	<u>Colq</u> % -	Wibu	<u>Wimu</u>
Imazamethabenz(LC)+X-77 Imazamethabenz(LC)+X-77 Imazamethabenz(LC)+X-77+Sun-itII Imazamethabenz(LC)+X-77+Sun-itII Imazamethabenz(LC)+Sun-itII Imazamethabenz(LC)+Sun-itII Imazamethabenz(LC)+X-77+Mor-act Imazamethabenz(LC)+X-77+Mor-act Imazamethabenz(LC)+Mor-act Imazamethabenz(LC)+Mor-act Immb(LC)+X-77+Clean crop Immb(LC)+X-77+Clean crop Immb(LC)+X-77+Clean crop Imazamethabenz(LC)+Clean crop Imazamethabenz(LC)+Clean crop Untreated	3.7+.25% 5+.25% 3.7+.25%+.25G 5+.25%+.25G 3.7+.25G 5+.25%+.25G 3.7+.25%+.25G 3.7+.25%+.25G 3.7+.25%+.25G 3.7+.25%+.25G 5+.25%+.25G 3.7+.25G 5+.25%+.25G 3.7+.25G 5+.25G 0		71 73 88 90 89 87 84 82 81 86 78 79 78 85 0	50 51 83 77 79 76 73 71 71 81 63 60 51 73 0	44 59 85 82 84 84 83 78 78 78 78 73 66 80 0	98 99 99 99 99 99 99 99 99 99 99 99 99 9
C.V. % LSD 5%		NS 4	7 4	17 4	10 4	1
<u># OF REPS</u>						

Summary

Imazamethabenz did not injure wheat regardless of adjuvant. The inclusion of X-77 with an oil adjuvant did not influence wild oats control from imazamethabenz. The general area of adjuvant effectiveness with imazamethabenz for wild oat control was Sun-it II > Mor-act > Clean crop > X-77. Wild mustard was controlled by imazamethabenz regardless of adjuvant. Adjuvant effectiveness in enhancement of imazamethabenz for common lambsquarters and wild buckwheat was similar for wild oats.

Broadleaf and grass control in small grains, Fargo 1992. 'Gus' hard red spring wheat was seeded April 17. Treatments were applied to 4-leaf wheat and wild mustard and 3-inch tall kochia on May 23 with 50 F, 50% RH, partly cloudy sky, and 10-mph wind. Treatments were applied with a bicycle-wheel -type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Weed density for kochia was 10 per sq ft.

		lune	10	17	01	
		June	10	July	31	
Treatment	Rate	Wheat		Wheat		Aug 27
		inj	KOCZ	inj	KOCZ	Yield
	oz/A			%		bu/A
2,4-Ddma						
2,4-Dbee	6	1	45	0	31	8.9
Dicamba-Na+MCPA-dma	6	1	87	3	58	20.4
Dicamba Na+MCPA-dma	1.5+4	5	90	15	94	30.6
Dicamba-Na+MCPA-bee	1.5+4	5	95	10	97	36.4
Dicamba-dma+MCPA-bee	1.5+4	4	94	5	99	
Bromoxynil+MCPA-ioe	4+4	Ö	91	1		40.3
Bromoxynil-gel+MCPA-ioe	4+4	0	87		85	40.5
Bromoxynil+2,4-Dbee	3+6	0		0	75	40.7
C1py&2,4-D	9.5	2	81	6	61	30.9
Thif&Trib+Dicamba-dma+X-77	0.2+1.5+.25%		36	0	38	9.9
Flox+2,4-D-dma	1+6	1	99	3	98	44.9
Flox+2,4-Ddma+Picl		0	91	15	94	33.5
Thif&Trib+2,4-Dbee+X-77	1+6+.125	3	92	19	94	32.4
Mets+2,4-Dbee+X-77	0.2+4+0.25%	0	99	6	95	42.1
Tria+2,4-Dbee+X-77	0.06+4+.25%	1	99	1	96	43.4
Trib 2^{4} Dbee 4^{7}	0.2+4+0.25%	0	99	1	97	46.0
Trib+2,4-Dbee+X-77 Dakota®	0.2+4+0.25%	1	99	1	97	46.6
	6.5	2	78	Ō	46	25.8
Tiller®	6.6	4	72	Õ	34	13.5
Cheyenne®	7.52	0	99	1	96	
Dakota+Bromoxynil	8.7+4	1	83	0	79	46.0
Dakota+Dicamba-Na	6.5+1	4	94	9		39.4
Propanil-DF+MCPA+PO	17+4+.25G	0	67		97	39.7
Untreated	0	0		0	43	21.1
	· ·	U	0	0	0	6.7
C.V. %		414	-			
LSD 5%		414		121	16	13.2
# OF REPS		NS	8	7	16	6.0
		4	4	4	4	4

Summary

Kochia was the only weed present and extremely competitive. Wheat yield reflects the extent of kochia control and the rapidity with which kochia was controlled. Treatments which gave rapid control allowed the wheat to recover from competition. The July 31 injury values are not a direct response to the herbicide, but indicate late season tillering from delayed kochia control. 2,4-Dbee ester whether alone or with dicamba was more effective than the dma for kochia control. All treatments containing sulfonylurea herbicides effectively controlled kochia and wheat yield was the highest.

Broadleaf and grass control in small grains, Carrington 1992. 'Amidon' hard red spring wheat was seeded April 30. Treatments were applied to 4to 5-leaf wheat, 3- to 4-leaf green and yellow foxtail, 2-inch tall common lambsquarter and redroot pigweed, 3-inch tall wild buckwheat and wild mustard, 1- to 2-inch tall kochia, 1-inch tall prostrate pigweed, and 3-inch-tall Russian thistle on June 3 with 71 F, 64% RH, a partly cloudy sky, 16-mph wind, and 0.03-inch rain occurring 6 h after application. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Weed densities were green and yellow foxtail 5 plants per sq ft, common lambsquarter 1 plant per sq ft, and kochia less than 1 plant per sq yard.

Wheat Grft& ini yeft Colq KOCZImage: Colspan="2">Vector of the system of the	kochia less than I plant per sy jura.				7	
TreatmentRateiniyeftColqKOCZ $0Z/A$ $0Z/A$ $0Z/A$ $0Z/A$ $0Z/A$ $2, 4$ -Ddma 6 0 74 40 $2, 4$ -Dbee 6 0 74 40 $2, 4$ -Dbee $1.5+4$ 0 074 55 Dicamba-Na+MCPA-bee $1.5+4$ 0 99 73 Dicamba-dma+MCPA-bee $1.5+4$ 0 98 $-$ Bromoxynil-gel+MCPA-ioe $4+4$ 0 98 40 Bromoxynil-gel+MCPA-ioe $3+6$ 4 4 4 Bromoxynil-gel+MCPA-ioe $3+6$ 0 87 70 Clopyralid&2, 4-D $0.2+1.5+.25\%$ 0 87 70 Clopyralid&2, 4-D $0.2+1.5+.25\%$ 0 89 99 Thif&Trib+Dica-dma+X-77 $0.2+4+0.25\%$ 0 99 99 Fluroxypyr+2, 4-Ddma+Picl $1+6+.125$ 0 99 99 Thif&Trib+24-Dbee+X-77 $0.2+4+0.25\%$ 0 99 99 Triasulfuron+2, 4-Dbee+X-77 $0.2+4+0.25\%$ 0 99 99 Triasulfuron+2, 4-Dbee+X-77 $0.2+4+0.25\%$ 0 99 99 Triasulfuron+2, 4-Dbee+X-77 $0.2+4+0.25\%$ 0 99 99 Dakota® $6.5+1$ 2 53 99 99 Dakota® $6.5+1$ 2 53 99 99 Dakota+Bromoxynil $6.5+1$ 2 53 99 99 Dakota+Bromoxynil $6.5+1$ 2 53 <			Wheat	Grft&		
Treatmentoz/A		Rate		yeft	Colq	KOCZ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Treatment			%		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		02/11				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	0	0	74	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,4-Ddma				99	
Dicamba-Na+MCPA-dma 1.5+4 0 0 99 73 Dicamba-Ma+MCPA-bee 1.5+4 0 0 98 - Dicamba-dma+MCPA-bee 1.5+4 0 0 98 - Bromoxynil+MCPA-ioe 4+4 0 0 98 40 Bromoxynil-gel+MCPA-ioe 4+4 0 0 97 48 Bromoxynil-gel+MCPA-ioe 3+6 0 4 84 40 Bromoxynil-gel+MCPA-ioe 3+6 0 4 84 40 Bromoxynil-gel+MCPA-ioe 9.5 0 0 87 70 Clopyralid&2,4-D 0 9.5 0 87 70 Clopyralid&2,4-D 0 2.2+1.5+.25% 0 15 99 99 Thif&Trib+Dica-dma+X-77 1.66+.125 0 5 99 92 Metsulfuron+2,4-Dbme+X-77 0.2+4+0.25% 0 6 99 99 Trisulfuron+2,4-Dbee+X-77 0.2+4+0.25% 0 0 99 99 Tribenuron+2,4-Dbee+X-77 6.5 0	2.4-Dbee				74	55
Dicamba-Na+MCPA-bee 1.5+4 0 98 - Dicamba-dma+MCPA-bee 1.5+4 0 98 40 Bromoxynil+MCPA-ioe 4+4 0 97 48 Bromoxynil-gel+MCPA-ioe 3+6 0 4 84 40 Bromoxynil-gel+MCPA-ioe 9.5 0 0 87 70 Clopyralid&2,4-D 0 2.4+1.5+.25% 0 15 99 99 Fluroxypyr+2,4-Ddma 1+6+.125 0 15 99 99 Thif&Trib+24-Dbee+X-77 0.2+4+0.25% 0 5 99 92 Metsulfuron+2,4-Dbee+X-77 0.2+4+0.25% 0 0 99 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 0 99 99 <td>Dicamba-Na+MCPA-dma</td> <td></td> <td></td> <td></td> <td>99</td> <td>73</td>	Dicamba-Na+MCPA-dma				99	73
Dicamba-dma+MCPA-bee 1.41 0 0 98 40 Bromoxynil+MCPA-ioe 4+4 0 0 97 48 Bromoxynil-gel+MCPA-ioe 3+6 0 4 84 40 Bromoxynil-gel+MCPA-ioe 3+6 0 4 84 40 Bromoxynil-gel+MCPA-ioe 3+6 0 4 84 40 Bromoxynil-gel+MCPA-ioe 9.5 0 0 87 70 Clopyralid&2,4-D 9.5 0 0 87 70 Thif&Trib+Dica-dma+X-77 0.2+1.5+.25% 0 15 90 60 Thif&Trib+24-Dbee+X-77 0.2+4+0.25% 0 99 99 Triasulfuron+2,4-Dbee+X-77 0.2+4+0.25% 0 699 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 99 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 99 99 Dakota® 6.6 1 66 99 99 Dakota® 7.5 1 75 99 99 Dakota*Bromoxynil <td>Dicamba-Na+MCPA-bee</td> <td>1.3+4</td> <td></td> <td></td> <td>98</td> <td>-</td>	Dicamba-Na+MCPA-bee	1.3+4			98	-
Bromoxynil+MCPA-ioe $4+4$ 009748Bromoxynil-gel+MCPA-ioe $3+6$ 048440Bromoxynil+2, 4-Dbee 9.5 008770Clopyralid&2, 4-D $0.2+1.5+.25\%$ 0159060Thif&Trib+Dica-dma+X-77 $0.2+1.5+.25\%$ 0159999Fluroxypyr+2, 4-Ddma $1+6+.125$ 0159999Fluroxypyr+2, 4-Ddma+Picl $1+6+.125$ 0159999Thif&Trib+24-Dbee+X-77 $0.2+4+0.25\%$ 09999Triaulfuron+2, 4-Dbee+X-77 $0.2+4+0.25\%$ 09999Tribenuron+2, 4-Dbee+X-77 6.5 1759999Cheyenne® 6.6 1669999Dakota+Bromoxynil $6.5+1$ 2539991Dakota+Dicamba-Na $17+4+.25G$ 0519745Propanil-DF+MCPA+PO 0 0000Untreated 416 521414LSD 5% 4 442	Dicamba-dma+MCPA-bee				98	40
Bromoxynil-gel+MCPA-10e $3+6$ 048440Bromoxynil+2,4-Dbee 9.5 008770Clopyralid&2,4-D $0.2+1.5+.25\%$ 0159060Thif&Trib+Dica-dma+X-77 $0.2+1.5+.25\%$ 0159999Fluroxypyr+2,4-Ddma $1+6+.125$ 0159999Fluroxypyr+2,4-Dbee+X-77 $0.2+4+0.25\%$ 09999Thif&Trib+24-Dbee+X-77 $0.06+4+.25\%$ 09999Triasulfuron+2,4-Dbee+X-77 $0.2+4+0.25\%$ 09999Tribenuron+2,4-Dbee+X-77 $0.2+4+0.25\%$ 09999Tribenuron+2,4-Dbee+X-77 $0.2+4+0.25\%$ 09999Tribenuron+2,4-Dbee+X-77 $0.2+4+0.25\%$ 09999Tribenuron+2,4-Dbee+X-77 $0.2+4+0.25\%$ 09999Tribenuron+2,4-Dbee+X-77 $0.2+4+0.25\%$ 09999Dakota® 6.5 1669950Tiller® 7.5 1759999Cheyenne® $8.7+4$ 1609999Dakota+Dicamba-Na $6.5+1$ 2539991Dakota+Dicamba-Na $17+4+.25G$ 0519745Propanil-DF+MCPA+PO00000Untreated 416 52141414LSD 5% 4 442	Bromoxvnil+MCPA-ioe				97	48
Bromoxynil+2,4-Dbee 9.5 0 0 87 70 Clopyralid&2,4-D 0.2+1.5+.25% 0 15 90 60 Thif&Trib+Dica-dma+X-77 1+6 0 82 84 Fluroxypyr+2,4-Ddma 1+6+.125 0 15 99 99 Fluroxypyr+2,4-Ddma+Picl 1+6+.125 0 99 99 Thif&Trib+24-Dbee+X-77 0.2+4+0.25% 0 99 99 Metsulfuron+2,4-Dbee+X-77 0.2+4+0.25% 0 99 99 Triasulfuron+2,4-Dbee+X-77 0.2+4+0.25% 0 99 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 99 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 99 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 99 99 Cheyenne® 6.5 166 99 99 Dakota® 6.6 166 99 99 Dakota+Bromoxynil 6.5+1 2 53 99 91 Dakota+Dicamba-Na 17+4+.25G 0 51 9	Bromoxynil-gel+MCPA-10e					40
Clopyralid&2,4-D 0.2+1.5+.25% 0 15 90 60 Thif&Trib+Dica-dma+X-77 1+6 0 82 84 Fluroxypyr+2,4-Ddma 1+6 0 82 84 Fluroxypyr+2,4-Ddma+Picl 1+6+.125 0 99 99 Thif&Trib+24-Dbee+X-77 0.2+4+0.25% 0 99 99 Metsulfuron+2,4-Dbee+X-77 0.06+4+.25% 0 699 99 Triasulfuron+2,4-Dbee+X-77 0.2+4+0.25% 0 99 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 99 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 99 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 0 99 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 0 99 99 Dakota® 6.6 1 66 99 99 Cheyenne® 8.7+4 1 60 99 99 Dakota+Bromoxynil 6.5+1 2 53 99 91 Dakota+Dicamba-Na 17+4+.25G	Bromoxynil+2,4-Dbee					70
Thif&Trib+Dica-dma+X-771+6008284Fluroxypyr+2,4-Ddma1+6+.1250159999Fluroxypyr+2,4-Ddma+Pic11+6+.125009999Thif&Trib+24-Dbee+X-770.2+4+0.25%009999Metsulfuron+2,4-Dbee+X-770.2+4+0.25%069999Triasulfuron+2,4-Dbee+X-770.2+4+0.25%009999Tribenuron+2,4-Dbee+X-770.2+4+0.25%009999Tribenuron+2,4-Dbee+X-770.2+4+0.25%009999Toibenuron+2,4-Dbee+X-770.2+4+0.25%009999Toibenuron+2,4-Dbee+X-770.2+4+0.25%009999Dakota®6.51669950Tiller®7.51759999Dakota+Bromoxynil6.5+12539991Dakota+Dicamba-Na17+4+.25G0519745Propanil-DF+MCPA+PO00000Untreated416521414NS14171919LSD 5%4442	Clonvralid&2,4-D				90	60
Fluroxypyr+2,4-Ddma 1+0 15 99 99 Fluroxypyr+2,4-Ddma+Picl 1+6+.125 0 15 99 99 Thif&Trib+24-Dbee+X-77 0.2+4+0.25% 0 99 99 Metsulfuron+2,4-Dbee+X-77 0.06+4+.25% 0 699 99 Triasulfuron+2,4-Dbee+X-77 0.2+4+0.25% 0 099 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 099 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 099 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 0 99 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 0 99 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 0 99 99 Dakota® 6.5 0 76 98 48 8 Dakota® 6.5 166 99 90 99 99 Dakota+Bromoxynil 6.5+1 2 53 99 91 Dakota+Dicamba-Na 17+4+.25G 0 51 97 45	Thif&Trib+Dica-dma+X-//					84
Fluroxypyr+2,4-Ddma+Pic1 1101112 Thif&Trib+24-Dbee+X-77 0.2+4+0.25% 0 99 99 Metsulfuron+2,4-Dbee+X-77 0.06+4+.25% 0 6 99 99 Triasulfuron+2,4-Dbee+X-77 0.2+4+0.25% 0 0 99 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 0 99 99 Tribenuron+2,4-Dbee+X-77 0.2+4+0.25% 0 0 99 99 Dakota® 6.5 0 76 98 48 Dakota® 6.6 1 66 99 50 Tiller® 7.5 1 75 99 99 Dakota+Bromoxynil 8.7+4 1 60 99 99 Dakota+Dicamba-Na 6.5+1 2 53 99 91 Dakota+Dicamba-Na 17+4+.25G 0 51 97 45 Propanil-DF+MCPA+PO 0 0 0 0 0 0 Untreated 416 52 14 14 14 17 19 LSD 5% <td>Fluroxvpvr+2,4-Ddma</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Fluroxvpvr+2,4-Ddma					
Thif&Trib+24-Dbee+X-770.06+4+.25%059992Metsulfuron+2,4-Dbee+X-770.06+4+.25%069999Tribenuron+2,4-Dbee+X-770.2+4+0.25%009999Tribenuron+2,4-Dbee+X-770.2+4+0.25%009999Dakota®6.50769848Dakota®6.61669950Tiller®7.51759999Cheyenne®8.7+41609999Dakota+Bromoxynil6.5+12539991Dakota+Dicamba-Na6.5+12539991Propanil-DF+MCPA+PO00000Untreated416521414LSD 5%4442	Fluroxypyr+2,4-Ddma+P1C1					
Metsulfuron+2,4-Dbee+X-77 0.00000000000000000000000000000000000	Thif&Trib+24-Dbee+X-//					
Triasulfuron+2,4-Dbee+X-770.21440.25%009999Tribenuron+2,4-Dbee+X-770.2+4+0.25%009999Dakota®6.50769848Dakota®6.61669950Tiller®7.51759999Cheyenne®8.7+41609999Dakota+Bromoxynil6.5+12539991Dakota+Dicamba-Na6.5+12539991Propanil-DF+MCPA+PO00000Untreated416521414LSD 5%4442	Motsulfuron+2.4-Dbee+X-//	0.00+4+.25%		6		
Tribenuron+2,4-Dbee+X-77 6.1 (1.1 (1.1 (1.1 (1.1 (1.1 (1.1 (1.1 (Triasulfuron+2.4-DDee+X-//	0.2+4+0.25%				
Dakota® 6.6 1 66 99 50 Tiller® 7.5 1 75 99 99 Cheyenne® 8.7+4 1 60 99 99 Dakota+Bromoxynil 6.5+1 2 53 99 91 Dakota+Dicamba-Na 17+4+.25G 0 51 97 45 Propanil-DF+MCPA+PO 0 0 0 0 0 Untreated 416 52 14 14 LSD 5% 4 4 4 2	Tribenuron+2,4-Dbee+X-77					
Tiller®0.01759999Cheyenne®7.51759999Dakota+Bromoxynil8.7+41609999Dakota+Dicamba-Na6.5+12539991Dakota+Dicamba-Na17+4+.25G0519745Propanil-DF+MCPA+PO00000Untreated416521414C.V. %NS141719LSD 5%4442	Dakota®					
Cheyenne® 7.5 1 60 99 99 Dakota+Bromoxynil 8.7+4 1 60 99 99 Dakota+Bromoxynil 6.5+1 2 53 99 91 Dakota+Dicamba-Na 17+4+.25G 0 51 97 45 Propanil-DF+MCPA+PO 0 0 0 0 0 Untreated 416 52 14 14 C.V. % NS 14 17 19 LSD 5% 4 4 4 2	Tiller®					
Dakota+Bromoxynil 8.7+4 1 53 99 91 Dakota+Dicamba-Na 6.5+1 2 53 99 91 Dakota+Dicamba-Na 17+4+.25G 0 51 97 45 Propanil-DF+MCPA+PO 0 0 0 0 0 Untreated 416 52 14 14 C.V. % NS 14 17 19 LSD 5% 4 4 4 2						
Dakota+Dicamba-Na 0.011 Propanil-DF+MCPA+PO 17+4+.25G 0 0 0 Untreated 416 52 14 14 C.V. % NS 14 17 19 LSD 5% 4 4 4 2	Dakota+Bromoxynil					
Propanil-DF+MCPA+PO 1/++1.250 0 0 0 0 Untreated 416 52 14 14 C.V. % NS 14 17 19 LSD 5% 4 4 4 2	Dakota+Dicamba-Na					
Untreated C.V. % LSD 5% Untreated 416 52 14 14 NS 14 17 19 4 4 4 2	Propanil-DF+MCPA+PO					
C.V. % LSD 5% 416 52 14 14 NS 14 17 19 4 4 4 2	Untreated	0	U	U	· ·	
C.V. % LSD 5% NS 14 17 19 4 4 4 2			116	52	14	14
LSD 5% 4 4 4 2	C V %					
			4		T	

Summary

None of the herbicides injured wheat. Foxtail control by Dakota was reduced when applied with dicamba or bromoxynil. lambsquarters control was greater by 2,4-D ester than amine whether alone or with dicamba. All other treatments gave 80% or more common lambsquarters control. Kochia density was variable and occurred only in two replicates. Kochia control exceeded 80% with all sulfonylureas except thifensulfuron & tribenuron + dicamba-dma + X-77; cheyenne (fenoxaprop + thifensulfuron + tribenuron + MCPA); Dakota + bromoxynil and + dicamba Na.

Broadleaf and grass control in small grains, Dickinson 1992. 'Stoa' hard red spring wheat was seeded May 4. Treatments were applied to 4.5-leaf wheat, 4-leaf redroot pigweed and wild buckwheat, and 1- to 2-inch-tall Russian thistle on May 29 with a clear sky and no wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 5 ft wide area the length of 10 by 28 ft plots. The experiment was a randomized complete block design with four replicates.

			July	8		Augus	t 28
Treatment	8.1	Wheat				Test	
<u>Treatment</u>	Rate	inj	Rrpw	Wibu	Ruth	weight	Yield
	oz/A				%		
0.4.5.							
2,4-Ddma	6	0	65	39	98		
2,4-Dbee	6	1	98	75	99	60.0	
Dicamba-Na+MCPA-dma	1.5+4	1	82	65		60.8	77.4
Dicamba-Na+MCPA-bee	1.5+4	1			76	60.5	78.3
Dicamba-dma+MCPA-bee	1.5+4	1	99	99	96	60.0	74.2
Bromoxynil+MCPA-ioe		0	99	75	99	60.6	82.9
Bromoxynil-gel+MCPA-ioe	4+4	0	99	87	99	61.0	75.4
Bromoxynil+2,4-Dbee	4+4	3	85	72	88	60.6	72.2
Clonypolide2 4 D	3+6	1	99	77	99	60.5	70.7
Clopyralid&2,4-D	9.5	0	99	99	99	60.8	77.0
Thif&Trib+Dica-dma+X-77	0.2+1.5+.25%	0	94	67	99	61.3	72.5
Fluroxypyr+2,4-Ddma	1+6	5	80	76	99	61.1	76.1
Fluroxypyr+2,4-Ddma+Picl	1+6+.125	0	99	98	99	61.1	77.0
Thif&Trib+2,4-Dbee+X-77	0.2+4+0.25%	6	99	99	99	61.0	
Mets+2,4-Dbee+X-77	0.06+4+.25%	1	99	61	99		70.9
Tria+2,4-Dbee+X-77	0.2+4+0.25%	3	99	99		60.9	71.0
Tribenuron+24-Dbee+X-77	0.2+4+0.25%	3			99	60.9	75.9
Dakota®	6.5		98	98	99	60.9	75.8
Tiller®	6.6	2	75	30	76	61.0	79.5
Cheyenne®		4	80	20	87	61.1	78.7
Dakota+Bromoxynil	7.52	0	99	99	99	61.0	76.4
Dakota+Dicamba-Na	8.7+4	6	94	92	97	60.6	73.1
Propanil DE MCDA. DO	6.5+1	1	91	81	99	60.8	75.6
Propanil-DF+MCPA+PO	17+4+.25G	5	90	34	18		71.0
Untreated	0	1	0	0	0		76.7
0.11. **							
C.V. %		179	15	26	12	.7	5.9
LSD 5%		NS	19	26	15		
# OF REPS		4	4	4	4	.6	6.0
		т	T	4	4	4	4

Summary

None of the herbicide injured wheat . The bromoxynil gel formulation tended to be less effective than the liquid formulation for Russian thistle and wild buckwheat control. Clopyralid & 2,4-D, fluroxypyr + 2,4-D + picloram, thifensulfuron & tribenuron, and Dakota + bromoxynil gave greater than 95% control of redroot pigweed, wild buckwheat, and Russian thistle.
Broadleaf and grass control in small grains, Hettinger 1992. 'Grandin' hard red spring wheat was seeded April 16. Treatments were applied to 3.5-leaf wheat and wild oats, 1- to 3.5-leaf green and yellow foxtail, 0.5- to 1.5-inch tall kochia and 1- to 2.5-inch tall Russian thistle on May 19 with 82 F, 70% RH, a clear sky, and 5-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 5 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

				July	17					Augus	st 14		
		Wheat										Test	
	Rate	ini	Wioa	Fota	KOCZ	Wibu	Fibw	Brd1	Wioa	Fxt1	Hght	wght	<u>yield</u>
Treatment	oz/A					%					cm	ID/DU	DU/ A
	6	0	0	0	36	0	10	24	8	72	77	63.7	27.2
2,4-Dcima	6	0	0	16	44	0	0	67	13	0	78	63.8	44.4
2,4-Dbee	1.5+4	0	0	13	87	99	15	93	3	0	83	63.5	40.6
Dicamba-Na+MCPA-dma	1.5+4	1	0	23	97	99	65	98	0	49	75	63.9	40.2
Dicamba-Na+MCPA-bee	1.5+4	0	0	3	96	98	40	99	0	13	77	63.6	34.3
Dicamba-dma+MCPA-bee	4+4	0	3	0	98	99	15	99	1	69	83	63.8	37.6
Bromoxynil+MCPA-ioe	4+4	0	0	8	89	97	13	94	0	13	77	63.8	36.3
Bromoxynil-gel+MCPA-ioe	3+6	0	0	5	80	43	30	93	0	0	77	63.7	36.1
Bromoxynil+2,4-Dbee	9.5	0	4	8	26	91	65	28	3	72	73	63.3	29.5
Clopyralid&2,4-D	9.5		0	0	99	98	0	99	0	0	78	63.3	31.3
Thif&Trib+Dica-dma+X-77	1+6	0	0	0	96	93	-	98	3	0	79	63.6	40.6
Fluroxypyr+2,4-Ddma		0	0	20	96	92	10	96	3	13	81	63.6	35.5
Fluroxypyr+2,4-Ddma+Pic	0.2+4+0.25%		0	15	92	75	-	98	0	43	83	63.2	42.4
Thif&Trib+24-Dbee+X-77	0.06+4+.25%		0	15	86	50	0	92	3	23	80	63.8	36.6
Mets+2,4-Dbee+X-77	0.2+4+0.25%		3	9	93	97	40	99	23	13	78	63.7	41.4
Tria+2,4-Dbee+X-77			0	0	97	94	30	99	3	13	79	63.2	35.4
Tribenuron+2,4-Dbee+X-7	7 0.2+4+0.25%	0	4	82	28	0	30	17	6	85	79	63.6	28.3
Dakota®	6.5	1	45		49	0	40	54	45	82	71	63.8	32.2
Tiller	6.6	1 5	4J 88			73	60	98	82	69	67	63.4	68.8
Cheyenne®	7.52		29				20	92	26	0	73	63.2	2 30.1
Dakota+Bromoxynil	8.7+4	3	10				_				75	63.	6 32.4
Dakota+Dicamba-Na	6.5+1	3 0	10				_		. 1	45	73	63.	5 28.0
Propanil-DF+MCPA+P0	17+4+.25G		C						0) 0	72	2 63.	6 29.8
Untreated	0	0	L	, t									
			1.40	61	15	5 34		22	133	3 110) ·	70.	7 20.8
C.V. %		211	142					25	-			S NS	10.7
LSD 5%		2				4/			_	4 4	ı .	4 4	4
# OF REPS		4	-	1 '	4 4	+ 2							

Summary

None of the herbicides caused important injury to wheat. Wheat grain test weight or wheat height were not influenced by herbicide treatment. Wheat yield directly related to weed control. The greater weed control with 2,4-D bee (ester) than 2,4-D dma (amine) resulted in a 17 bu/A improved wheat yield. Clopyralid & 2,4-D did not adequately control kochia and yield was not increased beyond that of the untreated wheat. However, Fluroxypyr + 2,4-D controlled kochia and increased yield by 13 bu/A. Cheyenne controlled kochia and wild oats and increased yield by 39 bu/A compared to untreated wheat. Dakota and Tiller were less effective for kochia and wild oats than the Cheyenne.

Broadleaf and grass control in small grains, Langdon, 1992. 'Gus' hard red spring wheat was seeded May 21. Treatments were applied to 5.5-leaf wheat on June 24. Treatments 1 through 8 were applied 70 minutes before a rainfall of 0.1-inch. Sixty minutes after the rain treatments 9 through 23 were applied, followed 30 minutes later by a 0.12-inch rainfall. The experiment was applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through a 8001 flat fan nozzle to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

			July	22	
Tuesday		Wheat	Jury	23	
Treatment	Rate	inj	KOC7	Wibu	NEaf
	oz/A		RUCZ	%	MICT
1 0 4 D 1	,			/0	
1. 2,4-Ddma	6	0	61	39	60
2. 2,4-Dbee	6	õ	86	71	60
3. Dicamba-Na+MCPA-dma	1.5+4	Ő	86	68	76
4. Dicamba-Na+MCPA-bee	1.5+4	Ő	95	77	81 92
5. Dicamba-dma+MCPA-bee	1.5+4	Ő	96	76	92
6. Bromoxynil+MCPA-ioe	4+4	Ő	98	98	99 96
7. Bromoxynil-gel+MCPA-ioe	4+4	Õ	98	98	99
8. Bromoxynil+2,4-Dbee	3+6	1	99	99	86
9. Clopyralid&2,4-D	9.5	Ō	39	85	65
10. Thif&Trib+Dica-dma+X-77	0.2+1.5+.25%	Õ	86	59	96
11. Fluroxypyr+2,4-Ddma	1+6	1	92	70	60 į
<pre>12. Fluroxypyr+2,4-Ddma+Pic1 13. Thif&Trib+24-Dbee+Y_77</pre>	1+6+.125	1	94	82	97
	0.2+4+0.25%	Ō	88	56	86
	0.06+4+.25%	Õ	75	74	97
	0.2+4+0.25%	Ő	89	85	86
	0.2+4+0.25%	Ő	85	48	79
	6.5	Ō	75	34	87
	6.6	1	62	35	99
	7.52	ō	64	74	79
20. Dakota+Bromoxynil 21. Dakota+Dicamba-Na	8.7+4	2	91	99	99
	6.5+1	1	92	70	92
	17+4+.25G	1	76	73	60
23. Untreated	0	0	23	13	23
C.V. %					20
LSD 5%		326	26	30	28
# OF REPS		NS	29	29	33
I UI NLFS		4	4	4	4

Summary

None of the herbicides injured wheat. 2,4-D bee generally was more effective than the 2,4-D dma for control of all weeds. Bromoxymil liquid or gel + MCPA and Dakota + bromoxymil were the only herbicide treatments giving more than 90% control of all weeds. Weed densities were variable making control evaluation difficult and giving large LSD's. The 0.1-inch rain which occurred immediately following application of the first eight treatments did not appear to reduce weed control. The applications after the rain with the subsequent second rain may have reduced the effectiveness of the herbicides since thifensulfuron & tribenuron did not completely control kochia as in other experiments (identical experiment conducted this year at branch However, some kochia in the Langdon area has bad resistance to stations). sulfonylureas.

'Amidon' hard red Broadleaf and grass control in small grains, Minot 1992. spring wheat was seeded April 16. Treatments 3, 4, and 5 were applied to 5-leaf wheat, 3- to 6-leaf green foxtail, 2- to 4-inch Russian thistle, 1- to 3inch common lambsquarter, 0.5- to 1-inch kochia, 0.5- to 3.25-inch tall redroot pigweed, and 4-leaf wild buckwheat on June 5 with 55 F, 80% RH, and 10-mph wind. The remaining treatments were applied to 6-leaf wheat on June 12 with 82 F, 50% RH, and 5- to 10-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. experiment was a randomized complete block design with four replicates.

	July 7								<u>ist 19</u>
Treatment	Rate oz/A	Wheat inj	Fxtl			KOCZ	<u>Wibu</u>	<u>Hght</u> inch	<u>Yield</u> bu/A
2,4-Ddma 2,4-Dbee Dicamba-Na+MCPA-dma Dicamba-Na+MCPA-bee Dicamba-dma+MCPA-bee Bromoxynil+MCPA-ioe Bromoxynil-gel+MCPA-ioe Bromoxynil+2,4-Dbee Clopyralid&2,4-D Thif&Trib+Dica-dma+X-77 Fluroxypyr+2,4-Ddma Fluroxypr+2,4-Ddma Fluroxypr+2,4-Ddma Fluroxypr+2,4-Ddma+Picl Thif&Trib+2,4-Dbee+X-77 Mets+2,4-Dbee+X-77 Tria+2,4-Dbee+X-77 Tribenuron+2,4-Dbee+X-77 Dakota® Tiller® Cheyenne® Dakota+Bromoxynil Dakota+Dicamba-Na Propanil-DF+MCPA+PO Untreated	$\begin{array}{c} 6\\ 6\\ 1.5+4\\ 1.5+4\\ 1.5+4\\ 4+4\\ 3+6\\ 9.5\\ 0.2+1.5+.25\\ 1+6\\ 1+6+.125\\ 0.2+4+0.25\\ 0.2+4+0.25\\ 0.2+4+0.25\\ 0.2+4+0.25\\ 0.2+4+0.25\\ 6.5\\ 6.6\\ 7.52\\ 8.7+4\\ 6.5+1\\ 17+4+.25\\ 0\\ 0\end{array}$	0 0 0 0 0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	66 55 0	99 99 99 99 99	87 0	53 43 0	29 32	47.2 55.2
C. V% LSD 5%		417 NS	22 7						

Summary

None of the herbicide treatments injured wheat. Wheat from yield was not increased by herbicide treatment as weed densities were low. lambsquarter was controlled 90% or more by all herbicide treatments. Common Kochia and Russian thistle control was generally greater from 2,4-D bee than 2,4-D dma. Bromoxynil gels generally gave greater weed control than the liquid formulation, when applied with MCPA. Bromoxynil at 3 oz/A + 2,4-D gave equal weed control to bromoxynil at 4 oz/A + MCPA. Cheyenne and Dakota + bromoxynil completely controlled grass and broadleaf weeds except for wild buckwheat. Treatments containing sulfonylureas and bromoxynil + Dakota or + 2,4-D bee gave 95% or more Russian thistle control.

Broadleaf weed control in barley, Williston 1992. 'Bowman' barley was seeded April 27. Treatments were applied to 5.5- to 6-leaf barley, 1- to 2-inch tall kochia and Russian thistle and 2- to 4-leaf green foxtail on June 2 with 76 F, 51% RH, clear sky, 10 mph wind, and dry soil and plant surfaces with a soil temperature of 75 F taken at a 4 inch depth. Treatments were applied with a bicycle-type sprayer, with a wind shield, mounted on a G-Allis Chalmers tractor delivering 8.5 gpa at 32 psi throught 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. Rainfall occurred June 14 and 15 with 0.39 and 0.28 inch, respectively. The experiment was a randomized with 0.39 and 0.28 inch, respectively. The experiment was a randomized complete block design with 4 replicates. Weed densities were kochia 5 per square ft, Russian thistle 10 per square ft, and green foxtail 2 per square

		.]11]	y 9					
		Barle		A	ugust	3	Aug	ust 5
Treatment	Rate		y Kooz				Test	
		inj	KUCZ	KOCZ	Ruth	Grft	wght	Yield
	oz/A			%			1b/bu	bu/A
2,4-Ddma	c							,
2,4-Dbee	6	0	14	4	73	32	52	33.9
Dicamba-Na+MCPA-dma	6	3	39	18	99	8	53	36.5
Dicamba NathCPA-uma	1.5+4	0	92	89	90	9	53	43.5
Dicamba-Na+MCPA-bee	1.5+4	6	90	95	. 91	15	52	
Dicamba-dma+MCPA-bee	1.5+4	10	94	94	98	0		40.6
Bromoxynil+MCPA-ioe	4+4	8	63	70	99		52	41.8
Bromoxynil-gel+MCPA-ioe	4+4	0	26	10		0	52	48.9
Bromoxynil+2,4-Dbee	3+6	2	53		90	9	53	40.4
Clopyralid&2,4-D	9.5	0	16	70	97	31	52	45.1
Thif&Trib+Dica-dma+X-77	0.2+1.5+.25%	8		13	98	15	53	34.2
Fluroxypyr+2,4-Ddma	1+6		96	97	99	8	52	46.7
Flox+2,4-Ddma+Picl	1+6+.125	1	86	94	98	33	53	42.5
Thif&Trib+2,4-Dbee+X-77		3	92	90	99	8	53	42.9
Mets+2,4-Dbee+X-77	0.2+4+0.25%	1	55	44	99	0	53	44.7
Tria+2,4-Dbee+X-77	0.06+4+.25%	1	80	85	99	20	53	46.8
Trib+2,4-Dbee+X-77	0.2+4+0.25%	3	48	63	74	0	53	43.2
Dakota®	0.2+4+0.25%	3	75	80	99	5	52	48.2
Tiller®	6.5	39	28	6	49	86	50	26.4
	6.6	3	14	0	94	93	53	
Cheyenne®	7.52	19	58	61	74	77	50	34.8
Dakota+Brox	8.7+4	5	53	68	99	54		38.2
Dakota+Dica-Na	6.5+1	5	95	97	90		52	49.0
Propanil-DF+MCPA+PO	17+4+.25G	6	35	16		56		45.5
Untreated	0	0			39	86		37.9
	v	0	0	0	0	0	53	27.9
C.V. %		00	0.5					
LSD 5%		88	25	21	24	91		10.7
# of Reps		7	20	17	28	36		6.2
		4	4	4	4	4	1	4
And the second								

Summary

Dakota and Cheyenne caused 19% or more injury to barley. The injury from Dakota probably reduced barley yield when compared to yield of barley treated with 2,4-D dma or propanil with similar weed control. Kochia control was the greatest for treatments which contained dicamba. Barley yield related to weed control or injury. The most effective treatments increased yield by 20 bu/A compared to untreated.

'Gus' hard red Herbicide evaluations for broadleaf weeds in wheat, Fargo 1992. spring wheat was seeded April 17. Treatments were applied to 4-leaf wheat, 3-inch tall kochia, and 4- to 6-inch tall wild mustard on May 23 with 50 F, 50% RH, a partly cloudy sky, and 10- to 15-mph wind. Treatments were applied with a bicyclewheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Kochia at greater than 10 plants per sq ft was the only weed in replicates 1 through 3. Kochia and other weeds in relicate 4 were at 3 plant per sq yard.

weeds in refreque			June	- 5			Jı	1 y 3			10
Treatment	- Rate oz/A	Wht inj	KOCZ		<u>Colq</u>	Wht <u>inj</u> %	KOCZ	KOCZ	<u>Colq</u>		Aug 19 <u>Yield</u> bu/A
2,4-Dws(Savage) 2,4-Dws(Savage)+X-77 2,4-Dws+Scoil 2,4-Dws+Silwet L77 2,4-Ddma 2,4-Ddma+X-77 2,4-Ddma+Scoil 2,4-Ddma+Silwet L77 Fluroxypyr Fluroxypyr Fluroxypyr Fluroxypyr Fluroxypyr+2,4-Ddma Fluroxypyr+2,4-Ddma Fluroxypyr+2,4-Ddma Fluroxypyr+2,4-Ddma Fluroxypyr+2,4-Ddma Mets+2,4-Ddma+X-77 Tribenuron+2,4-Ddma+X-77 Untreated	$\begin{array}{c} 4\\ 4+.25\%\\ 4+1\%\\ 4+.25\%\\ 4\\ 4+.25\%\\ 4\\ 4+.25\%\\ 1\\ 1.5\\ 2\\ 1+6\\ 1.5+6\\ 2+6\\ 1+6+0.12\\ 1.5+6\\ 0.06+4+.2\\ 0.25+4+.2\\ 0\end{array}$	5% 5% 3	91 92 99 99	99		14	93 96 89 94 90 97) 0	99 0	99 99	90 99 99 99	
C.V. % LSD 5% # OF REPS		432 N		. 8			5 20 7 17 4 4		.]	[]	. 1

Summary

None of the herbicides injured wheat, at the June 5 evaluation. Preharvest, July 31, evaluation indicated injury from fluroxypyr and dicamba treatments which was a retardation of maturity or malformed spikes. The retarded maturity appeared as late developed tillers probably a recovery from the severe competition after weed control. The yield does not reflect the injury because yield was only from replicate 4 which did not have the severe weed density. Most treatments in replicates 1 through 3 were not harvestable because of kochia. In the harvested replicate, herbicides which gave effective weed control increased wheat yield by greater than 40 bu/A compared to untreated wheat. sulfonylureas, dicamba, or fluroxypyr gave 89% or more kochia control. Kochia and common lambsquarter control was similar from 2,4-Ddma (liquid) and 2,4-Dws (dma solid). The kochia control was greater for the fourth replicate where density was less, and control then related to wheat yield.

Bromoxynil for broadleaf weed control in wheat, Fargo 1992. 'Gus' hard red spring wheat was seeded April 17. Treatments were applied to 4-leaf wheat, 3-inch tall kochia, 1-inch tall redroot pigweed, and 4- to 6-leaf wild mustard on May 23 with 50 F, 48% RH, a partly cloudy sky, and 17-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Kochia was at greater than 10 plants per sq ft in replicates 1-3 and the only weed present, weeds in replicate 4 were at 1 plant per square yard.

			J	une 5				July	21		
Treatment	<u>Rate</u> oz/A	Whea inj	t <u>KOCZ</u>		COLQ	Wibw	Wheat inj %	KOCZ		Wibw	Aug 19 Yield
Bromoxynil Bromoxynil-gel Bromoxynil Bromoxynil-gel Bromoxynil-gel Bromoxynil+Tiller® Bromoxynil+Tiller Bromoxynil+Dakota® Tiller Dakota Untreated	3 3 4 8 3+9.4 6+9.4 6+8.7 9.4 8.7 0	0 0 0 0 3 5 1 8 5 0	88 54 91 84 95 96 89 84 96 68 71 0	99 58 95 94 99 98 99 99 99 99 99 99 99 0	85 78 99 99 99 99 99 99 88 85 0	99 99 99 99 99 99 99 99 60 35 0	1 0 0 1 0 7 4 2 3 1 0	81 44 79 79 89 87 82 88 91 39 28 0	99 70 99 95 99 99 99 99 99 99 99 99 99	95 99 90 99 99 99 99 99 99 0 0	59.0 57.0 62.0 54.0 59.0 56.0 52.0 62.0 65.0 52.0 55.0 45.0
C.V. % LSD 5% # OF REPS		99 3 4	14 15 4	5 6 4	1	1	140 3 4	13 12 4	1	1	1

Summary

The gel formulation of bromoxynil was less effective in controlling weeds than the liquid formulation, but the difference was overcome with the higher rates of bromoxynil. None of the herbicide treatments caused important injury to wheat. important injury to wheat. Treatments which were most effective in controlling kochia increased wheat yield 17 to 20 bu/A compared to untreated Yields were only from replicate 4 where kochia infestations were less dense and did not prevent harvest with the small combine.

'Gus' hard red spring Triasulfuron for Broadleaf weeds in wheat, Fargo 1992. <u>Intasulturon for Broadleat weeds in wheat, Fargo 1992</u>. Gus hard red spring wheat was seeded April 17. Treatments were applied to 4-leaf wheat, 1- to 3-inch tall kochia, 3-leaf common lambsquarter, 2-leaf redroot pigweed, and 1- to 2-leaf foxtail on May 26 with 58 F, 50% RH, a partly cloudy sky, and 10- to 15-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Weed densities were kochia 3 plants per sq ft and common lambsquarter 4 plants per sq yard.

		June 11 July 31						
Treatment	Rate oz/A	Wheat inj			Wheat inj	KOCZ	A <u>Colq</u>	ug 19 <u>Yield</u> bu/A
Triasulfuron+X-77 Triasulfuron+Scoil Triasulfuron+Z,4-Dbee+X-77 Triasulfuron+2,4-Ddma+X-77 Triasulfuron+2,4-Ddma+Scoil Triasulfuron+Dica-dma+X-77 Triasulfuron+Brox+X-77 Metsulfuron+X-77 Metsulfuron+2,4-Dbee+X-77 Metsulfuron+Dica-dma+X-77 Bromoxoynil&MCPA 2,4-Dbee Untreated C.V. % LSD 5% # OF REPS	$\begin{array}{c} 0.1{+}0.25\%\\ 0.1{+}0.126\\ 0.2{+}0.25\%\\ 0.2{+}4{+}0.25\%\\ 0.2{+}4{+}0.25\%\\ 0.2{+}4{+}0.25\%\\ 0.1{+}4{+}0.126\\ 0.2{+}1.5{+}0.25\%\\ 0.2{+}2{+}0.25\%\\ 0.06{+}0.25\%\\ 0.06{+}4{+}0.25\%\\ 0.06{+}1.5{+}0.25\%\\ 8\\ 4\\ 0\end{array}$	0 1 1 1 2 3 0 3 1 3 0 0 0 0 0 1 47 NS 4	84 95 89 99 94 99 98 94 69 98 78 97 55 0 4 4	54 83 61 98 97 99 99 81 98 99 87 99 98 0 7 84	0 0 4 2 6 1 0 1 2 2 0 5 0 0 107 2 4	1	44 54 48 99 99 99 73 71 99 99 99 99 99 99 0 5 18 8 20 4	10.2

Summary

None of the herbicide treatments injured wheat. Wheat yield related to the degree of weed control and effective weed control increased yield by 25 bu/A compared to wheat not treated for weed control. Metsulfuron + X-77 alone did not adequately control kochia and common lambsquarters, but was effective when applied with 2,4-D or dicamba. Triasulfuron at 0.1 oz/A when applied with Scoil gave greater kochia and common lambsquarter control than when applied with X-77. Further, triasulfuron tended to give greater kochia and common lambsquarter control with triasulfuron at 0.1 oz/A alone or with 2,4-D plus Scoil adjuvant than 0.2 oz/A alone or with 2,4-D applied with X-77 adjuvant.

Kochia control with herbicides plus adjuvants in wheat, Fargo 1992. 'Gus' hard red spring wheat was seeded April 17. Treatments were applied to 4-leaf wheat, 1- to 3-inch tall kochia, 3-leaf common lambsquarter, 2-leaf redroot pigweed, 1- to 2-leaf foxtail on May 26 with 58 F, 50% RH, a partly cloudy sky, 10- to 15-mph wind, and rainfall of 0.1 inch occurred after treatment 11 was completed leaving the remainder of treatments to be finished the following day, May 27. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Weed densities were kochia 10 plants per sq ft, common lambsquarters 2 plants per sq ft, and wild buckwheat was variable at less than 1 plant per sq yard.

			June	9		June :	26		July	21
<u>Treatment</u> ^a		Wheat	t		Wheat	t		Wheat	-	51
reachent	Rate	inj	KOCZ	Colq	inj	KOCZ	Colq		KOCZ	Colq
2,4-Dbee(DW)	oz/A		· ·			%				cory
2, 4-Ddma(DW)	4	3	84	95	3	60	99	4	41	97
2,4 Ddmp (Np)	4	1	37	86	0	39	72	Ó	35	99
2,4-Ddma(Na)	4	0	9	20	0	11	75	Ő	9	87
2,4-Ddma+AMS(Na)	4+11	0	43	62	0	21	97	0	26	
2,4-Ddma(Ca)	4	0	6	8	Õ	10	57	0	20	98
2,4-Ddma+AMS(DW)	4+11	0	8	48	0	16	76	Ő	29	59
Dicamba-dma(DW)	2	0	31	49	2	52	88	5	66	81
Dicamba-dma+AMS(DW)	2+11	1	43	50	2	57	88	3		98
Dicamba-Na(DW)	2	8	40	46	1	64	98	6	75	99
Dicamba-Na+AMS(DW)	2+11	1	31	43	1	48	76		78	99
Dicamba-dma(Na)	2	0	32	54	2	56	78	2	57	96
Dicamba-dma+AMS(Na)	2+11	5	92	93	7	97	99	8	65	88
Dicamba-Na(Na)	2	3	83	73	4	94		6	96	99
Dicamba-Na+AMS(Na)	2+11	5	90	91	6	99	97	5	96	99
Dicamba-dma(Ca)	2	3	74	91	5		99	3	98	99
Dicamba-dma+AMS(Ca)	2+11	7	91	92	6	91	99	6	94	99
Dicamba-Na(Ca)	2	Ó	53	82	1	99	99	2	99	99
Dicamba-Na+AMŚ(Ca)	2+11	2	90	96		76	98	3	91	97
Untreated	0	õ	0		4	99	98	2	99	99
	v	U	U	0	0	0	0	0	0	0
C.V. %		196	28	20	0.4	10				
LSD 5%		NS	20	20 17	94	19		151	23	12
# OF REPS		4	4		3	16	24	NS	20	16
	Na=NaHCO3,3.	6 0/1 .	4	$\frac{4}{CaCl_2}$	4	4	4	4	4	4
		· 9/L,	ca=l	2	, 2.2	2 g/L.	•			

Summary

2,4-D bee (ester) gave greater weed control than 2,4-D dma. Sodium bicarbonate and calcium chloride antagonized weed control by 2,4-D dma and the ammonium sulfate adjuvant overcame the sodium bicarbonate and tended to overcome the calcium chloride antagonism of 2,4-D dma. Salts appeared to enhance weed control from both dicamba dma and Na. However, data were variable.

Foxtail control in wheat, Fargo 1992. 'Gus' hard red spring wheat was seeded May 2. Treatments were applied to 3- to 3.5-leaf wheat, 1- to 3-leaf foxtail, 1- to 5-leaf proso millet, 3- to 5-leaf wild mustard, 1- to 2-leaf wild husk wheat and 2 to 4 leaf common lembers where March 7 with CC 5 com put buckwheat, and 2- to 4-leaf common lambsquarter on May 27 with 66 F, 28% RH, a partly cloudy sky, and 3- to 5-mph wind. Tips of foxtail and proso millet leaves were dead from frost at time of treatment. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. variable.

		June	8	A	igust		ug 21
Rate	Wht	Prmi	Fxt1		Fxtl	Prmi	<u>Yield</u>
			9	%			bu/A
$\begin{array}{c} 2.4 \pm 0.25G\\ 2.4 \pm 4 \pm 0.25G\\ 2.4 \pm 2 \pm 0.25G\\ 2.4 \pm .22 \pm 0.25G\\ 4 \pm 0.25G\\ 0.22 \pm 0.25G\\ 0.22 \pm 0.25G\\ 5 \pm 0.25G\\ 6 \pm 0.25G$	0 3 4 1 1 1 1 1 0 0 0 0 0 1 0 13	70 48 71 69 15 20 9 74 86 0 5 89 91 88 0	84 58 87 84 5 16 29 93 95 4 5 92 95 93 0	0 5 0 1 0 0 0 0 0 0 0 0 0 0	39 53 36 53 36 41 36 69 74 31 31 53 75 63 0	55 58 60 55 57 42 47 64 80 58 68 68 68 77 78 0	36 33 37 32 29 35 35 35 38 38 40 41 38 36 39 32
	379 NS 4	27 19 4	22 18 4	465 NS 4	36 24 4	31 30 3	16 NS 4
	$\begin{array}{c} 2.4+4+0.25G\\ 2.4+2+0.25G\\ 2.4+.22+0.25G\\ 4+0.25G\\ 2+0.25G\\ 0.22+0.25G\\ 22\\ 22+0.25G\\ 5+0.25G\\ 5+0.25G\\ 5+0.25G\\ 5+0.25G\\ 5+6.6+0.25G\\ 6.6+0.25G\\ 6.6\end{array}$	oz/A 2.4+0.25G 0 2.4+4+0.25G 3 2.4+2+0.25G 4 2.4+2+0.25G 1 4+0.25G 1 2+0.25G 1 0.22+0.25G 1 22 0 22+0.25G 1 5+0.25G 0 5+0.25G 0 5+0.25G 0 5+0.25G 0 5+0.25G 1 6.6 0 0 13 379 NS	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Summary

None of the herbicide treatment injured wheat. Herbicide treatments did not increase wheat yield. The wheat was seeded late to encourage early grass weed emergence with the wheat. However, cool conditions delayed grass weed emergence and reduced their growth relative to wheat. The early evaluation better represents the weed response to herbicides as the weeds were suppressed by the wheat at the late evaluation. Grass weed control from BAS-514 appeared reduced when applied with 2,4-D bee, but not with dicamba or thifensulfuron & tribenuron. BAS-527-16 was equally as effective as BAS-514 for grass weed control. All treatments containing Tiller were effective in controlling grass weeds.

Imazamethabenz plus grass control herbicides, Fargo 1992. 'Gus' hard red spring wheat was seeded April 17. Treatments were applied to 4-leaf wheat, 1- to 3-inch tall kochia, 3-leaf common lambsquarter, 2-leaf redroot pigweed, 1- to 2-leaf foxtail on May 26 with 58 F, 50% RH, a partly cloudy sky, 10- to 15-mph wind, and 0.1 inch rainfall occurred after treatment 9 was completed. The remaining treatments were applied the following day. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Weed densities were foxtail 20 plants per sq ft, except sparce in rep 1, common lambsquarter variable in reps 2, 3, and 4, and kochia 1 plant

Treatment				e 10		A	uqust	19
Ti ea cilleit c	Rate	Wht	Yeft	KOCZ	Wibu	Wht		KOCZ
	oz/A				%			
Imazamethabenz-SG+Thif&Trib+X-77 Immb-SG+Thif&Trib+X-77 Immb-SG+Thif&Trib+X-77 Immb-SG+Thif&Trib+X-77 Immb-SG+Thif&Trib+MCPA-ioe+X-77 Immb-SG+Thif&Trib+MCPA-ioe+X-77 Immb-SG+Thif&Trib+MCPA-ioe+X-77 Immb-SG+Thif&Trib+24-Dbee+X-77 Immb-SG+Thif&Trib+24-Dbee+X-77 Immb-SG+Thif&Trib+24-Dbee+X-77 Immb-SG+Thif&Trib+24-Dbee+X-77 Immb-SG+Thif&Trib+24-Dbee+X-77 Immb-SG+Trib+X-77 Immb-SG+Trib+X-77 Immb-SG+Trib+MCPA-ioe+X-77 Immb-SG+Trib+MCPA-ioe+X-77 Immb-SG+Tiller®+X-77 Dakota® Cheyenne® Tiller Diclofop Untreated	$\begin{array}{c} 4.96+.2+.25\%\\ 4.96+.3+.25\%\\ 4.96+.3+.256\\ 4.96+.5+.25\%\\ 4.96+.2+4+.25\%\\ 4.96+.3+4+.25\%\\ 4.96+.3+4+.25\%\\ 4.96+.5+4+.25\%\\ 4.96+.3+4+.25\%\\ 4.96+.25\%\\ 4.96+.25\%\\ 4.96+.25\%\\ 4.96+.25\%\\ 4.96+.25\%\\ 4.96+.25\%\\ 4.96+.25\%\\ 4.96+.25\%\\ 4.96+.25\%\\ 4.96+.25\%\\ 4.96+.25\%\\ 4.96+.25\%\\ 4.96+.25\%\\ $	1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 4 5 3 5 0 0	19 31 41 35 25 26 50 44 18 48 59 23 15 45 73 89 93 84 43 0	78 72 98 74 88 94 98 97 83 97 99 99 99 92 98 72 70 99 78 8 0	75 80 99 88 94 99 99 95 99 95 99 99 92 98 88 90 99 96 0 0	1 3 1 2 0 1 0 0 3 1 1 1 0 1 1 0 2 6 0 0	5 6 18 34 5 11 11 23 20 3 15 0 4 16 63 49 68 73 74 0	75 69 98 81 89 87 98 96 86 99 99 99 98 98 98 58 30 99 39 39 5 0
C.V. % LSD 5% # OF REPS]	172 3 4	58 35 4	10 12 4		80 NS 4	65 23 4	13 14 4

Summary

The objective was to determine foxtail control with imazamethabenz in combination with other herbicides. Foxtail was abundant in the experiment, but did not develop competively in the wheat because of the cool condition and excellent wheat growth. The only imazamethabenz treatment which gave more than 50% yellow foxtail control was when in combination with Tiller. However, yellow foxtail control tended to be greater when imazamethabenz plus thifensulfuron & tribenuron at comparable rates when applied with Sun-itII than X-77. Kochia control was greater from imazamethabenz + thifensulfuron & tribenuron at 0.3 oz/A when applied with Sun-itII adjuvant than X-77 adjuvant and tended to be greater when MCPA was also included in the spray mixture. The inclusion of MCPA or 2,4-D to imazamethabenz + thifensulfuron & tribenuron mixture generally increased kochia control.

Thifensulfuron and tribenuron for foxtail control in wheat, Fargo 1992. 'Gus' hard red spring wheat was seeded April 17. Treatments were applied to 4-leaf wheat, 1- to 3-inch tall kochia, 3-leaf common lambsquarters, 2-leaf redroot pigweed, and 1- to 2-leaf foxtail on May 26 with 58 F, 50% RH, a partly cloudy sky, 10- to 15-mph wind, and 1 h after treatment 0.1 inch rainfall occurred. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Weeds were stressed from cold and weed densities were kochia and common lambsquarters 2 plants per sq ft and foxtail 20 plants per sq ft.

			June	11		F	lug 19	
		heat	and the second			heat		
<u>Treatment</u>	Rate oz/A		Fxtl	<u>KOCZ</u>	<u>Colq</u> %	<u>inj</u>	<u>Fxt1</u>	<u>KOCZ</u>
Thif&Trib+X-77 Thif&Trib+Sun-it Thif&Trib+SCOIL Thif&Trib+Sun-it Thif&Trib+SCOIL Thif&Trib+Immb-SG+X-77 Thif&Trib+Immb-SG+Sun-it Thif&Trib+Immb-SG+SCOIL Thif&Trib+Immb-SG+SCOIL Thif&Trib+Immb-SG+SCOIL Thif&Trib+ExpS2 Untreated	$\begin{array}{c} 0.2 + 0.25\%\\ 0.2 + 0.12G\\ 0.2 + 0.12G\\ 0.2 + 0.25G\\ 0.2 + 3 + 0.25G\\ 0.2 + 3 + 0.25\%\\ 0.2 + 3 + 0.12G\\ 0.2 + 3 + 0.12G\\ 0.2 + 3 + 0.25G\\ 0.2 + 3 + 0.25G\\ 0.2 + 3 + 0.25G\\ 0.2 + 2\%\\ 0\end{array}$	000000000000000000000000000000000000000	39 30 26 24 40 25 38 48 38 30 31 0	93 98 90 93 94 90 98 92 93 98 95 0	96 98 97 99 99 94 98 98 98 99 99 99	0 0 0 1 0 3 0 0 0	0 19 5 6 33 28 34 36 19 10 0 0	97 99 95 95 80 99 99 99 99 99 95 0
C.V. % LSD 5% # OF REPS		693 NS 4	86 NS 4	10 12 4	6 8 4	343 2 4	111 25 4	11 14 4

Summary

None of the treatments injured wheat. Foxtail control did not differ for the various herbicide treatments at the June 11 evaluation. Foxtail was suppressed in growth by excellent wheat growth with the cool season. The evaluations on August 19 were difficult because of the dense wheat stand and differences maybe a chance occurrence. All herbicide treatments gave 90% or more kochia control at the late evaluation, except for thifensulfuron & tribenuron at 0.2 oz/A + imazamethabenz at 3 oz/A + surfactant X-77.

Difenzoquat for weed control in wheat, Fargo 1992. 'Gus' hard red spring wheat was seeded April 17. Treatments were applied to 5-leaf wheat, 3- to 5leaf wild oats, 2-inch tall wild buckwheat, 5-leaf wild mustard, and 2-inch tall common lambsquarter on May 27 with 70 F, 30% RH, a clear sky, and 5- to 10-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates.

		-		ne 2			July 31
Twostment	_	Wheat					
Treatment	Rate	inj	Wioa	Wibu	Wimu	Colq	Wioa
	oz/A				- %		
Difenzoquat(2ASU)	16	0	59	0	0	0	58
Difenzoquat-640sg+X-77	16+.5%	0	68	38	93	10	64
Difenzoquat-640sg+Immb-sg+X-77	8+3.68+.5%	0	86	71	94	33	65
Difenzoquat-640sg+Immb-sg+X-77	8+3.68+.25%	1	75	66	95	49	51
Difenzoquat(2ASU)+Immb+X-77	8+3.68+.25%	1	89	76	96	57	68
Untreated	0	0	0	0	0	0	0
C.V. %		313	13	29	6	66	14
LSD 5%		NS	12	18	6	30	10
# OF REPS		4	4	4	4	3	4

Summary

None of the herbicide treatment injured wheat. Wild mustard was sparse and the control with difenzoquat maybe a chance occurrence, contamination, or effective control with difenzoquat. Wild oats control did not vary greatly with the treatment at the July 31 evaluation. At the June 2 evaluation injury to wild oats generally was greater for treatment with imazamethabenz then without. Propanil formulations for foxtail control in wheat, Fargo 1992. 'Gus' hard red spring wheat was seeded on May 2. Treatments were applied to 3- to 3.5leaf wheat, 1- to 3-leaf foxtail, 1- to 4-leaf proso millet, 3- to 5-leaf wild mustard, 1- to 2-leaf wild buckwheat, and 2- to 4-leaf common lambsquarter on May 27 with 66 F, 28% RH, partly cloudy sky, and 3- to 5-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 20 ft plots. the length of 10 by 30 ft plots. The experiment was a complete randomized block design with four replicates. Weed densities were green and yellow foxtail and variable proso millet at approximately 3 plants per square ft and common lambsquarters 1 per square ft.

			Jur	ne 9		Au	igust	19	Aug 27
		Wheat		- dege		Wheat			Wheat
Twostmont	Rate		xt1	Prmi	Colq	inj	Fxt1	Prmi	yield
Treatment	oz/A				%				lb/bu
	22	0	85	30	99	0	49	63	44.3
Propanil&MCPA	26.4	3	88	64	99	0	76	78	40.2
Propanil&MCPA	16+4+.12G	0	80	29	99	2	75	83	44.9
Propanil-wdg+MCPA-ioe+PO	16+4	Ő	83	49	99	0	50	70	50.2
Propanil-wdg+MCPA-ioe	18+4+.12G	1	85	46	99	0	55	60	53.7
Propanil-wdg+MCPA-ioe+PO	18+4	Ō	76	35	99	0	53	61	52.1:
Propanil-wdg+MCPA-ioe Propanil-wdg+MCPA-dma+PO	18+4+.12G	Ō	87	64	99	0	77	68	46.4
Propanil-wdg+MCPA-dma	18+4	1	83	55	99	0	65	59	53.5
Propanil-wdg+Thif&Trib+PO			85	50	99	0	57	64	52.0
Propanil-wdg+Trib+P0	18+.2+.12G		93	43	99	0	65	64	50.8
Propanil-wdg	18	1	70	19	99	0	55	66	50.6
Diclofop+PO	12+.12G	0	75	41	0	0	66	73	54.2
Tiller®	6.5	5	94	85	99	0	80	78	51.6
Dakota®	8.7	1	91	74	99	0	67	78	49.4
Untreated	0	0	0	0	0	0	0	0	50.9
							00	00	0.2
C.V. %		156	12	37	0	775		22	9.3
LSD 5%		2	14	24	0	NS		20	6.6
# OF REPS		4	4	4	4	4	4	4	4_

Summary

None of the herbicides caused any important injury to wheat. The weeds were sparse and not competitive with the cool conditions which favored wheat growth. The early ratings better indicate the response to the herbicides than the late evaluation when grass weeds were suppressed by the wheat. The results may have also been influenced by frost which occurred shortly before treatment resulting in leaf injury. Propanil control of foxtail was similar to all rates with or without the petroleum oil adjuvant (PO).

Wheat cultivar response to difenzoquat, Langdon 1992. Durum and hard red spring wheat (HRSW) were seeded May 13. Difenzoquat at 14.4 oz ai/A was applied to 6.5-leaf (early varieties) and 5.5-leaf (late varieties) wheat on June 18 with 47 F. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 7.7 gpa at 35 psi through 8001 flat fan nozzles. Evaluation for injury was July 23.

HRSW	Injury	Durum Injury
	%	%
Baart	0	Ward 2
Len	2	Ward 2 Rugby 2
Marshall	ō	Vic 10
Stoa	0	Lloyd 0
Butte 86	0	Cando O
2375	0	Monroe 2
Amidon	0	Renville 7
Prospect	4	Medora 2
Vance	2	Sceptre 0
Gus	5	Fjord 13
Grandin	6	Laker 4
Bergen	0	Regal 15
2370	0	Plenty 0
Sharp	3	D8460 5
2371	3	D86398 9
Pasqua	0	D86741 5
Dalen	4	D87121 0
Norm	2	D87122 0
Krona	0	D87130 2
AC Minto	0	D87141 15
Nordic	0	D87240 22
Fjeld	0	D87436 0
ND671	4	D87450 0
XW398A4	0	D86-1523 0
ND673	10	
ND674	12	D88273 2
ND675	0	D88277 2
ND676	8	D88284 2
ND678	2	D88289 2
ND679	8	D88303 3
ND680	12	D88058 2 D88273 2 D88277 2 D88284 2 D88289 2 D88303 3 D88450 4
ND681	0	D88758 3
XW397A3	0	D88793 10
N87-0306	0	D87-1534 2
SD3056	0	

.

Summary

None of the cultivars appeared to be severely injured by difenzoquat. The cultivars having an injury rating of 10% or more probably have intermediate tolerence to difenzoquat.

Wheat cultivar response to wild oats control herbicides, Langdon 1992. All wheat cultivar response to wild dats control herbicides, Langdon 1992. All varieties were seeded May 19. Treatments were applied to 6.5-leaf early wheat varieties and 5.5-leaf late wheat varieties on June 18 with 47 F and 10-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 7.7 gpa at 35 psi through 8001 flat fan nozzles. Bromoxynil + MCPA was applied for broadleaf weed contol.

	Dife	Tiller	Immb	Dife+Immb	
Cultivar	7.5 oz/A	9.4 oz/A		072.J 02/A	
Cultivar Butte 86 Marshall Gus Grandin 2375 Bergen Prospect Sharp 2370 2371 Dalen Korna Norm D8460	7.5 oz/A 0 1 1.5 1 0 0 2 0 0 2.5 2 2.5 2 2.5 0 4	<u>9.4 oz/A</u> 0 0 2 1.5 0 1.5 3 0 1 1 1.5 1.5 0 12.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>6+2.5 oz/A</u> 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1	
Norm D8460 D87450 LSD (0.05)		12.5 11.0	0 0 3.7	1 0	

Summary

None of the herbicides cause important injury to the wheat cultivar. D8460 and D87450 appeared more susceptible than the other cultivars to Tiller.

Time of grass control with nicosulfuron in corn, Casselton 1992. 'Interstate 343A' corn was seeded May 14. Treatment (spike) was applied to spike corn, 2-to 3-leaf green and yellow foxtail, 0.5-inch tall kochia, and cotelydon- to 2-leaf wild mustard on June 1 with 80 F, 70% RH, partly cloudy sky, and 5-mph wind. Treatment (grass1-2in) was applied to 1- to 2-leaf corn, 2.5- to 3.5-leaf green and yellow foxtail, 0.5- to 1-inch tall kochia, and 1- to 3-leaf wild mustard on June 3 with 70 F, 40% RH, partly cloudy sky, and 15- to 20-mph wind. Treatment (grass2-4in) was applied to 5-leaf corn, 3.5- to 5.5-leaf green and yellow foxtail, 4- to 6-leaf common lambsquarters, and 4-leaf wild mustard on June 12 with 75 F, 60% RH, clear sky and 5-mph wind. Treatment (grass4-6in) was applied to 5- to 6-leaf corn, 3.5- to 6.5-leaf green and yellow foxtail, 2- to 6-inch tall common lambsquarters, 6- to 12-inch tall wild mustard on June 20 with 65 F, 65% RH, partly cloudy sky, and 5-mph wind. Treatment (grass6-10in) was applied to 6 - to 8-inch tall green and yellow foxtail and kochia, 8- to 12-inch tall wild mustard, 4- to 6-inch tall common lambsquarters on June 25 with 67 F, 60% RH, partly cloudy sky, and 22-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with six replicates. Foxtail density was approximately 5 plants per sq ft.

<u>Treatment</u>	<u>Rate</u> oz/A	Corn	<u>y 31</u> Grft& <u>yeft</u> %	Oct 20 Yield bu/A
Pendimethalin + Cyanazine-DF(spike) Nicosulfuron + Scoil(grass1-2in) Nicosulfuron + Scoil(grass2-4in) Nicosulfuron + Scoil(grass4-6in) Nicosulfuron + Scoil(grass6-10in) Weed Free Weedy	24+32 0.5+1% 0.5+1% 0.5+1% 0.5+1% 0	0 0 1 27 37 0 44	87 82 95 95 98 99 0	60.4 54.4 58.3 52.6 45.8 67.4 14.5
C.V. % LSD 5% # OF REPS		29 5 6	5 5	12.0 7.1
Cumm	And the second sec	0	6	6

Summary

The corn injury was not from the herbicide treatments, but a reduction in growth from weed competition. Treatment when grasses were 4- to 6-inches tall was too late to remove weed competition without supressing the corn. Treatments applied to 1- to 2-inch foxtail only gave 82% control because of subsequent foxtail emergence. Treatment applied to 2- to 4-inch or larger grasses gave 95% more control. Broadleaf weeds were hand pulled from the plots so any response would represent only the grass weeds. The effectiveness of pendimethalin + cyanazine generally decreased with each replicate indicating possible settling in the spray container. Nicosulfuron application to 2- to 4-inch green and yellow foxtail was the optimum for corn yield. Earlier application allowed for new foxtail emergence which apparently competed with the corn and later applications controlled the foxtail, but probably already had competed with the corn. Corn treated with nicosulfuron, when foxtail was 2- to 4-inches tall, yield less than the season long weed free corn indicating that the foxtail may have already caused a yield loss or the uncontrolled plants were competitive. The spike stage corn treated with pendimethalin + cyanazine gave a similar yield with slightly less than the corn with 2- to 4-inch foxtail treated with nicosulfuron.

Nicosulfuron mixture with bromoxynil in corn, Casselton 1992. 'Interstate 343A' corn was seeded May 12. Treatments were applied to 4.5-leaf corn, 3.5to 5.5-leaf foxtail, 3- to 5-leaf wild mustard, 4- to 6-leaf cocklebur, and 2- to 4-leaf common lambsquarter on June 12 with 86 F, 63% RH, a partly cloudy sky, and 5-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates.

Treatment Rate Coin Fota Wimu Colq KOCZ Cocb Oz/A oz/A % Nicosulfuron+Brox+X-77 0.5+6+.25% 14 96 99 97 99 97 Nicosulfuron+Brox+X-77+28N 0.5+6+.25%+4% 13 98 99 99 99 Nicosulfuron+Brox+X-77+28N 0.5+6+1% 19 95 99 99 97 Nicosulfuron+Brox+PO 0.5+6+1% 19 97 99 99 99	Tandom Tzea compress				July	/ 5		
Nicosulfuron+Brox+X-770.5+6+.25%1490999999Nicosulfuron+Brox+X-77+28N0.5+6+.25%+4%139899999997Nicosulfuron+Brox+PO0.5+6+1%199599999997	Treatment		Coin	Fota	Wimu	Colq	KOCZ	<u>Cocb</u>
Nicosulfuron+Brox+P0+28N 0.5+6+1% 24 99 99 99 99 99 Nicosulfuron+Brox+Scoil 0.5+6+1% 26 99 99 99 99 99 Nicosulfuron+Brox+Scoil+28N 0.5+6+1%+4% 26 99 99 99 99 99 99 Nicosulfuron+Brox+Scoil+28N 0.5+6+2%+4% 30 99 98 99 88 99 99 98 99 88 99 98 99 88 99 63 99 99 95 99 83 99 53 99 63 99 63 99 <td< td=""><td>Nicosulfuron+Brox+X-77+28N Nicosulfuron+Brox+PO Nicosulfuron+Brox+PO+28N Nicosulfuron+Brox+Scoil+28N Nicosulfuron+Brox+Scoil+28N Nicosulfuron+PO+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Untreated C.V. % LSD 5%</td><td>$\begin{array}{c} 0.5+6+.25\%\\ 0.5+6+.25\%+4\%\\ 0.5+6+1\%\\ 0.5+6+1\%\\ 0.5+6+1\%+4\%\\ 0.5+6+1\%+4\%\\ 0.5+6+2\%+4\%\\ 0.5+6+2\%+4\%\\ 0.5+1\%+4\%\\ 0.5+1\%+4\%\\ 0.5+2\%+4\%\\ 0.5+.25\%+4\%\\ 0.25+1\%+4\%\\ 0.25+1\%+4\%\\ 0.25+2\%\\ 0.25+2\%+4\%\end{array}$</td><td>13 19 19 24 26 30 6 0 3 1 1 1 0 0 0 0 0 0 0 5 9</td><td>98 95 97 99 99 91 98 99 93 93 91 96 96 0</td><td>99 99 99 99 99 99 99 99 99 99 99 99 99</td><td>99 99 99 99 97 30 89 95 58 73 61 82 83 0 11</td><td>99 99 99 99 99 99 99 99 99 99 99 99 0 2 3</td><td>99 97 99 99 99 68 88 83 63 40 45 50 55 0 8 13</td></td<>	Nicosulfuron+Brox+X-77+28N Nicosulfuron+Brox+PO Nicosulfuron+Brox+PO+28N Nicosulfuron+Brox+Scoil+28N Nicosulfuron+Brox+Scoil+28N Nicosulfuron+PO+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Untreated C.V. % LSD 5%	$\begin{array}{c} 0.5+6+.25\%\\ 0.5+6+.25\%+4\%\\ 0.5+6+1\%\\ 0.5+6+1\%\\ 0.5+6+1\%+4\%\\ 0.5+6+1\%+4\%\\ 0.5+6+2\%+4\%\\ 0.5+6+2\%+4\%\\ 0.5+1\%+4\%\\ 0.5+1\%+4\%\\ 0.5+2\%+4\%\\ 0.5+.25\%+4\%\\ 0.25+1\%+4\%\\ 0.25+1\%+4\%\\ 0.25+2\%\\ 0.25+2\%+4\%\end{array}$	13 19 19 24 26 30 6 0 3 1 1 1 0 0 0 0 0 0 0 5 9	98 95 97 99 99 91 98 99 93 93 91 96 96 0	99 99 99 99 99 99 99 99 99 99 99 99 99	99 99 99 99 97 30 89 95 58 73 61 82 83 0 11	99 99 99 99 99 99 99 99 99 99 99 99 0 2 3	99 97 99 99 99 68 88 83 63 40 45 50 55 0 8 13

Summary All treatments containing bromoxynil injured corn and the injury tended to be greater when with Scoil than X-77 or petroleum oil adjvuants. Later observation indicated that the corn recovered from injury. Green and yellow foxtail (Fota) control was greater for nicosulfuron at 0.5 oz/A applied with Scoil then X-77 or petroleum oil, all with 28N. Foxtail control was greater for nicosulfuron at 0.25 oz/A + 28N when applied with Scoil at 2% than at 1%. All broadleaf weeds were completely controlled when bromoxynil was a component of the herbicide treatment.

Nicosulfuron with dicamba in corn, Casselton 1992. 'Interstate 343A' corn was seeded May 12. Treatments were applied to 4.5-leaf corn, 3.5- to 5.5-leaf green and yellow foxtail, 3- to 5-leaf wild mustard, 2- to 4-leaf common lambsquarters, and 4- to 6-leaf cocklebur on June 12 with 86 F, 63% RH, a partly cloudy sky, and 5-mph wind. Treatments were applied with a bicyclewheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Weed densities were green foxtail 100 plants per square ft, wild mustard 3 plants per square ft, common lambsquarter 5 plants per square yard, and kochia 1 plant per

Ireatment				Jul	v 5		
	Rate	Corn	Fota	Wimu	Cola	KOC7	Cohu
	oz/A			9	6	ROCZ	CODU
Nicosulfuron+Dica-dma+X-77 Nicosulfuron+Dica-dma+X-77+28N Nicosulfuron+Dica-dma+PO Nicosulfuron+Dica-dma+PO+28N Nicosulfuron+Dica-dma+Scoil Nicosulfuron+Dica-dma+Scoil+28N Nicosulfuron+Dica-dma+Scoil+28N Nicosulfuron+Dica-dma+Scoil+28N Nicosulfuron+Dica-dma+Scoil+28N Nicosulfuron+Dica-dma+Scoil+28N Nicosulfuron+Dica-dma+Scoil+28N Nicosulfuron+Dica-dma+Scoil+28N Nicosulfuron+Dica-dma+Scoil+28N Nicosulfuron+Dica-dma+Scoil+28N Nicosulfuron+Dica-dma+Scoil+28N Nicosulfuron+Scoil+28N Nicosulfuron+PO+28N Nicosulfuron+Scoil+28N Nicosulfuron+Scoil+28N Nicosulfuron+ExpN	$\begin{array}{c} 0.5+4+0.25\%\\ 0.5+4+0.25\%+4\%\\ 0.5+4+1\%\\ 0.5+4+1\%\\ 0.5+4+1\%\\ 0.5+4+1\%\\ 0.5+4+2\%+4\%\\ 0.25+4+2\%+4\%\\ 0.25+4+2\%+4\%\\ 0.25+4+1\%\\ 0.25+4+1\%\\ 0.25+4+2\%\\ 0.25+4+2\%\\ 0.5+0.25\%+4\%\\ 0.5+1\%+4\%\\ 0.5+1\%+4\%\\ 0.5+1\%+4\%\\ 0.25+2\%+4\%\\ 0.25+2\%\end{array}$	0 3 1 0 3 2 5 0 1 1 3 3 0 1 2 1 0	88 85 91 99 99 98 97 95 97 97 93 95 99 95 95	99 99 99 99 99 99 99 99 99 99 99 99 99	99 98 99 99 99 99 99 99 99 99 99 99 99 65 41 94 84 75	99 99 99 99 99 99 99 99 99 99 99 99 99	98 99 99 99 99 99 99 99 99 99 99 75 69 92 78 58
LSD 5%	L	10	2	0	6	1	7
# OF REPS		NS	3	NS	7	NS	11
		4	4	4	4	4	3
							<u> </u>

Summary

None of the herbicide treatments caused important injury to corn. Thus, the inclusion of 28% nitrogen fertilizer with X-77 at 0.25%, petroleum oil (PO) at 1%, or Scoil at 1 or 2% with nicosulfuron + dicamba did not increase injury to corn. Dicamba applied with nicosulfuron and petroleum oil adjuvants reduced green and yelow foxtail control compared to nicosulfuron and petroleum However, dicamba did not antagonize foxtail control with nicosulfuron applied with Scoil. The control of green foxtail was high from all treatments containing Scoil even when nicosulfuron was at only 0.25 oz/A, possibly masking an antagonism from the dicamba. Common lambsquarter and common cockelbur control was greatly enhanced by the Scoil adjuvant compared to the petroleum oil or X-77 surfactant adjuvants.

Postemergence weed control in corn, Casselton 1992. 'Interstate 343A' corn was seeded May 4. Treatments were applied to 5- to 6-leaf corn, 2- to 6-inch tall green and yellow foxtail and common lambsquarter, 4- to 10-inch tall kochia, 5- to-10 inch tall cockelbur, and 6- to 12-inch tall wild tall kochia, 5- to-10 inch tall cockerbur, and 6- to 12-inch tall wild mustard on June 20 with 70 F, 65% RH, partly cloudy sky, and 5-mph wind. Split treatments (/) were applied to 7-leaf corn, 6- to 11-inch tall green and yellow foxtail, 12- to 20-inch tall wild mustard (injured mustard 10- to 12-inch), 10- to 12-inch tall kochia, and 4- to 10-inch tall common lambsquarter on June 25 with 67 F, 60% RH, a partly cloudy sky, and 22-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates.

Comprete brook 200-3			July	30	
			Grft&		
	Rate	Corn	yeft (<u>KOCZ</u>
Treatment	oz/A		%		
<pre>/Nico+Dica+X-77 /Nico+Dica+Scoil Dica/Nico+Scoil /Nico+Dica+Scoil /Nico+Dica+Scoil Nico+Scoil/Dica(5d) Nico+Scoil/Dica(5d) Nico+Dica+Scoil/Nico+Scoil(5d) Nico+Dica+Scoil/Nico+Dica+Scoil(5d) Nico+Dica+Scoil/Nico+Scoil(5D) /Nico+Atra+Scoil C.V. %</pre>	$\begin{array}{c} 0.2/\text{A} \\ \hline &/0.5+2+.25\% \\ \hline &/0.125+2+2\% \\ 2/0.25+2\% \\ \hline &/0.5+2+2\% \\ 0.125+2\%/2 \\ 0.25+2\%/2 \\ 0.125+2+2\%/0.125+2\% \\ 0.125+1+2\%/0.125+1+2\% \\ 0.25+2+2\%/0.25+2\% \\ 1.25+6+2\% \end{array}$	8 18 11 8 19 19 6 4 % 5 0 1 87 11	72 61 88 78 85 70 80 84 85 95 78 8 9	76 74 86 81 83 80 75 80 86 94 62 11 13	79 80 85 83 86 88 83 80 85 94 59 10 12 4
LSD 5% # OF REPS		4	4	4	T

Summary

None of the treatments caused important injury to corn. The weed control was influenced by the dense canopy of wild mustard. The canopy was reduced when the second application of the split treatments were applied. The greatest weed control was from nicosulfuron at 0.25 oz/A + dicamba + scoil followed in 5 days by nicosulfuron at 0.25 oz/A + scoil. These data indicate that split application of herbicides may be required with dense canopy of large weeds. The type of chemicals in the first part of the split probably should be most effective on the primary weed canopy.

Commercial adjuvants with nicosulfuron, Fargo 1992. Interstate '343A' corn, 'White' proso millet, and 'Siberian' foxtail millet were seeded in adjacent strips as bioassay species on May 7. Treatments were applied across the species to 4- to 5-leaf corn, 4- to 6-inch foxtail millet, 3- to 4-inch proso millet, and 4- to 6-leaf foxtail on June 22 with 66 F, 53% RH, cloudy sky, and 5- to 10-mph wind with rainfall occurring 4 hours after application. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

			J	uly 1	4		A	ugust	10
Treatment		Corn						- 1400	10
Treatment	Rate	inj	Fota	Fomi	Prmi	KOCZ	Grft	Yeft	Prmi
	oz/A					%			
Nicosulfuron+CleanC. Nicosulfuron+Herbimax Nicosulfuron+Mor-act Nicosulfuron+Scoil Nicosulfuron+Sun-itII Nicosulfuron+MSO Nicosulfuron+Methoil Nicosulfuron+R-11 Nicosulfuron+X-77 Nico+Preference Nico+Spray Booster S Nicosulfuron+ExpN Nico+Scoil+ExpN Untreated	0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.25% 0.25+0.25% 0.25+0.25% 0.25+0.25% 0.25+0.25% 0.25+0.25% 0.25+0.18G+2% 0	4 9 5 4 3 1 5 4 3 6 6 3 2 0	83 73 98 92 94 92 80 65 61 60 93 96 0	86 79 85 98 94 95 94 80 71 64 65 96 99 0	80 68 96 90 91 90 73 55 60 60 93 96 0	82 78 99 96 96 56 45 56 39 94 99 0	66 58 74 93 88 89 92 71 51 62 55 88 97 0	44 46 38 79 61 70 73 35 26 26 24 58 88 0	49 49 51 89 72 87 84 51 28 43 40 80 94 0
C.V. % LSD 5% # OF REPS		89 NS 4	9 10 4	6 7 4	8 9 4	16 17 4	10 10 4	17 12 4	14 11 4

Summary

Nicosulfuron did not injure corn regardless of the adjuvants. Scoil, Sun-it II, MSO, and Methoil as a group were more effective than the other adjuvants with nicosulfuron. Among these adjuvants Scoil tended to be more effective and Sun-it II less effective than the other methylated seed oil adjuvants. The next most effective commercial adjuvants were Clean Crop, Herbimax, Mor-act, and R-11; followed by X-77, Preference, and Spray Booster

Nicosulfuron plus salts in corn, Fargo 1992. 'Interstate 343A' corn, 'Siberian' foxtail, and 'White' proso millet were seeded in adjacent strips as bioassay species on May 7. Treatments were applied across the species to 4- to 5-leaf corn, 4- to 6-leaf siberian foxtail, 3- to 5-leaf proso millet, and 3- to 4-leaf foxtail on June 22 with 66 F, 53% RH, a cloudy sky, and 5- to 10-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

		The Country of		July 1	4		AL	igust	10
	Rate	Corn	Fota	Fomi	Prmi	KOCZ	Grft	Yeft	Prmi
<u>Treatment</u>	oz/A				%				
Nicosulfuron+Scoil Nicosulfuron+ExpN Nicosulfuron+ExpN Nicosulfuron+PO Nico+Scoil+28N Nico+Scoil+VRA Nico+Scoil+UREA Nico+Scoil+VREA Nico+Scoil+CaCl2 Nico+PO+28N Nico+PO+VREA Nico+PO+UREA Nico+PO+UREA Nico+PO+VAHCO3 Nico+PO+CaCl2	$\begin{array}{c} 0.12+2\%\\ 0.12+2\%\\ 0.25+2\%\\ 0.25+2\%\\ 0.25+2\%\\ 0.12+2\%+2.5\%\\ 0.12+2\%+4\\ 0.12+2\%+4\\ 0.12+2\%+4\\ 0.12+2\%+4\\ 0.12+2\%+4\\ 0.12+2\%+4\\ 0.12+2\%+4\\ 0.12+2\%+4\\ 0.12+2\%+4\\ 0.12+2\%+4\\ 0.12+2\%+4\\ 0.12+2\%+4\\ \end{array}$	0 0 1 1 4 1 3 4 1 1 3 1 1 5 5 146 NS	86 78 95 86 75 89 91 61 84 64 72 70 33 61 12	88 83 97 91 79 93 93 93 72 86 65 76 71 46 60 9	82 79 96 88 72 91 90 90 69 80 58 72 58 41 55 10 10	69 44 93 70 63 80 87 82 58 60 28 59 33 23 23 29 18	85 72 89 81 51 83 85 80 52 65 48 49 43 21 35 15 13	41 34 74 51 43 56 63 68 35 43 29 38 33 21 26 19 12	68 59 84 78 39 75 73 72 45 51 39 49 31 23 33 18 14
LSD 5% # OF REPS		4	4	4	4	4	4	4	4

Summary

Grass weed control from nicosulfuron generally was enhanced more by Scoil than Exp N and more by Exp N than petroleum oil adjuvant. Scoil was more effective than petroleum oil with nicosulfuron for grass weed control regardless of other salts in the spray solution. Salts did not increase grass control with nicosulfuron applied with Scoil, except for a reduction from sodium bicarbonate and calcium chloride.

Nicosulfuron with EE and/or ME in corn, Fargo 1992. 'Interstate 343A' corn, 'Siberian' foxtail, and 'White' proso millet were seeded in adjacent strips as bioassay species on May 8. Treatments were applied across the species to 4- to 6-leaf corn, 3- to 6-leaf siberian foxtail, 3- to 5-leaf proso millet, and 4- to 6-leaf foxtail on June 22 with 66 F, 53% RH, a cloudy sky, and 5-to 10-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

Turat		Corn	Ju	ly 14			J	uly 2	9
<u>Treatment</u>	Rate oz/A	<u>inj</u>	Fota	Fomi	<u>Prmi</u>		Yeft	Grft	KOCZ
Nicosulfuron+ME(DW) Nicosulfuron+ME(DW) Nicosulfuron+EE(DW) Nicosulfuron+EE(DW) Nicosulfuron+ME(Na) Nicosulfuron+ME(Na) Nicosulfuron+EE(Na) Nicosulfuron+EE(Na) Nicosulfuron+EE+28N Nicosulfuron+EE+28N C.V. % LSD 5% #_OF REPS	$\begin{array}{c} 0.25+1\%\\ 0.5+1\%\\ 0.25+1\%\\ 0.5+1\%\\ 0.25+1\%\\ 0.25+1\%\\ 0.25+1\%\\ 0.25+1\%\\ 0.5+1\%\\ 0.25+1\%+2.5\%\\ 0.25+1\%+2.5\%\\ \end{array}$	1 1 1 0 1 1 1 1 1 0 219 NS	80 87 80 86 86 92 87 92 98 98 98 3 4	81 87 82 87 94 88 93 99 99 99 2 3	78 83 79 83 89 93 86 89 97 98 3 4	66 71 60 73 80 88 81 84 96 96 12 13	47 55 52 54 59 71 62 69 87 89 14 13	60 71 59 66 77 85 74 84 96 96 8 96	35 57 33 56 61 73 56 65 84 79 9 8
		4	4	4	4	4	4	4	4

Summary

Nicosulfuron was equally as effective on controlling weeds when applied with the methyl or ethyl ester of seed oil. The inclusion of 28% liquid nitrogen fertilizer greatly enhanced weed control with nicosulfuron applied with either the methyl or ethyl seed oil. The presence of sodium bicarbonate (Na, 3.6 g/L) in the spray carrier generally enhanced weed control from nicosulfuron applied with either methyl or ethyl ester seed oil adjuvants compared to when in distilled water (DW).

Emulsifier with MS in corn, Fargo 1992. 'Interstate 343A' corn, 'Siberian' foxtail millet, and 'White' proso millet were seeded in adjacent strips as bioassay species on May 8. Treatments were applied across the species to 4- to 5-leaf corn, 3- to 6-leaf foxtail millet, 3- to 5-leaf proso millet, and 4- to 6-leaf foxtail on June 22 with 66 F, 53% RH, a cloudy sky, and 5-to 10-mph wind. Treatments were applied with a bicycle wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	randomized compress and				1. 1/			July	1 29
TreatmentRateinjYeft FomiPrmiKOCZYeft KOCZNicosulfuron+MSAT(2.5)0.25+0.18G0939488788178Nicosulfuron+MSAT(5)0.25+0.18G0959690818580Nicosulfuron+MSAT(10)0.25+0.18G0949592918789Nicosulfuron+MSAT(15)0.25+0.18G0979996919387Nicosulfuron+MSAK(2.5)0.25+0.18G1919384817880Nicosulfuron+MSAK(5)0.25+0.18G0929489798280Nicosulfuron+MSAK(10)0.25+0.18G0989896949086Nicosulfuron+MSAK(15)0.25+0.18G0989997979289Nicosulfuron+MSAK(15)0.25+0.18G0989997979289Nicosulfuron+MSAK(15)0.25+0.18G0989997979289Nicosulfuron+MSAK(15)0.25+0.18G000000Untreated00000000C.V. %600225745LSD 5%5%444444						+			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Domi	KOC7		
Intervent oz/A Intervent ax Nicosulfuron+MSAT(2.5) $0.25+0.186$ 0 93 94 88 78 81 78 Nicosulfuron+MSAT(5) $0.25+0.186$ 0 95 96 90 81 85 80 Nicosulfuron+MSAT(10) $0.25+0.186$ 0 94 95 92 91 87 89 Nicosulfuron+MSAT(15) $0.25+0.186$ 0 97 99 96 91 93 87 Nicosulfuron+MSAK(2.5) $0.25+0.186$ 0 92 94 89 79 82 80 Nicosulfuron+MSAK(5) $0.25+0.186$ 0 92 94 89 79 82 80 Nicosulfuron+MSAK(10) $0.25+0.186$ 0 98 96 94 90 86 Nicosulfuron+MSAK(15) $0.25+0.186$ 0 98 99 97 97 92 89 Nicosulfuron+MSAK(15) $0.25+0.186$ 0 98 99 97 97 92 89 Nicosulfuron+MSAK(15) $0.25+0.186$ 0 98 99 97 97 92 89 Nicosulfuron+MSAK 0 0 0 0 0 0 0 0 Untreated 0 0 0 0 0 0 0 0 S 3 3 5 8 5 5 LSD 5% 4 4 4 4 4 4	Tuestmont		inj	Yeft	FOMI				
Nicosulfuron+MSAT(2.5) 0.25+0.18G 0 93 94 000 70 85 80 Nicosulfuron+MSAT(5) 0.25+0.18G 0 95 96 90 81 85 80 Nicosulfuron+MSAT(10) 0.25+0.18G 0 94 95 92 91 87 89 Nicosulfuron+MSAT(15) 0.25+0.18G 0 97 99 96 91 93 87 Nicosulfuron+MSAK(2.5) 0.25+0.18G 0 97 99 96 91 93 87 Nicosulfuron+MSAK(2.5) 0.25+0.18G 0 92 94 89 79 82 80 Nicosulfuron+MSAK(5) 0.25+0.18G 0 92 94 89 79 82 80 Nicosulfuron+MSAK(10) 0.25+0.18G 0 98 98 96 94 90 86 Nicosulfuron+MSAK(15) 0.25+0.18G 0 98 99 97 97 92 89 Nicosulfuron+MSAK(15) 0.25+0.18G 0 0 0 0 0 0<	Ireatment	oz/A				/0			
4 OF DEDS	Nicosulfuron+MSAT(5) Nicosulfuron+MSAT(10) Nicosulfuron+MSAT(15) Nicosulfuron+MSAK(2.5) Nicosulfuron+MSAK(5) Nicosulfuron+MSAK(10) Nicosulfuron+MSAK(15) Untreated C.V. %	0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G	0 0 1 0 0 0 0 600 NS	95 94 97 91 92 98 98 0 2 3	96 95 99 93 94 98 99 0 2 3	90 92 96 84 96 97 0 5 5	81 91 81 79 94 97 0 7 8	85 87 93 78 82 90 92 0 4 5	80 89 87 80 80

• • •

Weed control with nicosulfuron generally increased as the percent emulsifier increased for both emulsifiers. However, at the 2.5% grass species control tended to be greater with AT than AK emulsifier.

Comparison of ME/EE with Nicosulfuron, Fargo 1992. 'Interstate 343A' corn, 'white proso millet, and 'Siberian foxtial millet were seeded in adjacent strips as bioassay species on May 7. Treatments were applied across species to 5- to 6-leaf corn, 4- to 6-inch tall foxtail millet and green foxtail, and 3- to 4-inch tall proso millet on June 22 with 66 F, 53% RH, a cloudy sky, 5- to 10-mph wind and rain occurred 4 h after treatment. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

			J	uly 14		
<u>Treatment</u> Nicosulfuron+ME Nicosulfuron+NaHCO ₃ +ME Nicosulfuron+DicamBa+ME Nicosulfuron+2,4-Ddma+ME Nicosulfuron+Bent+ME Nicosulfuron+EE Nicosulfuron+EE Nicosulfuron+DicamBa+EE	Rate oz/A 0.25+.18G 0.25+.36%+.18G 0.25+4+.18G 0.25+8+.18G 0.25+12+.18G 0.25+.18G 0.25+.36%+.18G 0.25+4+.18G	Corn inj 4 1 1 6 3 5 1 4	Grft 94 80 93 90 68 94 84	<u>Fxmi</u> % - 96 84 94 92 61 96 86	Prmi 92 79 90 89 56 92 81	<u>KOCZ</u> 95 82 99 96 78 95 91
Nicosulfuron+2,4-Ddma+EE Nicosulfuron+Bent+EE	0.25+4+.18G 0.25+8+.18G 0.25+12+.18G	4 4 5	92 91 61	93 92 58	89 88 45	99 97 71
C.V. % LSD 5% # OF REPS		135 NS 4	7 8 4	8 10 4	5 6 4	7 9 4

Summary

None of the nicosulfuron treatments injured corn. Methylesters were similarly effective as adjuvants with nicosulfuron. Sodium bicarbonate was antagonistic to weed control from nicosulfuron. Bentazon was more antagonistic than sodium bicarbonate. Dicamba and 2,4-D applied as a tank mixture with nicosulfuron did not influence weed control.

Nicosulfuron plus adjuvants, Minot 1992. 'Siberian' foxtail millet, 'Excel' Micosulturon plus adjuvants, Minot 1992. Siberian foxtall millet, Excel-barley, and 'McCall' soybeans were seeded in adjacent strips as bioassay species on June 26. Treatments were applied across the species to 6- to 6.5-leaf foxtail millet, flag-leaf barley, and 3rd trifoliolate soybeans on August 6 with 60 F, partly cloudy sky, and 0- to 8-mph wind. Fog and a heavy dew were present at the time of application of treatments. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

			Augu	ist 17		Augus	<u>st 27</u>
	Rate	Grft	Fomi	Brly	Sobe	Fomi	Sobe
Treatment	oz/A		·	%			
Nicosulfuron+CleanC. Nicosulfuron+Herbimax Nicosulfuron+Mor-act Nicosulfuron+Scoil Nicosulfuron+Sun-itII Nicosulfuron+MSO Nicosulfuron+R-11 Nicosulfuron+R-11 Nicosulfuron+X-77 Nicosulfuron+Preference Nicosulfuron+Spray booster S Nicosulfuron+ExpN Nicosulfuron+ExpN Nicosulfuron+Scoil+ExpN Untreated C.V. % LSD 5%	0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.18G 0.25+0.25% 0.25+0.25% 0.25+0.25% 0.25+0.25% 0.25+0.25% 0.25+2.25% 0.25+0.18G+2% 0	7 8 5 7 4 10 3 5 5 6 4 6 0 85 NS 4	7 8 5 7 4 10 3 5 5 6 4 6 6 0 85 NS 4		4	20	
# OF REPS							

Summary

Differences in species control by nicosulfuron applied with the various adjuvants were not generally significantly different, except control tended to be greater with MSO and Scoil + 28% N than with the other adjuvants.

Grass control with nicosulfuron plus dicamba, Fargo 1992. 'Interstate 343A', proso millet, and Siberian foxtail were planted in adjacent 6 to 10 ft wide proso millet, and Siberian install were planted in adjacent of to it wide strips as bioassay species on May 12. The area contained a natural infestation of green and yellow foxtail. Treatments were applied to 5- to 6-leaf corn, 6- to 8-inch proso millet, 7- to 10-inch siberian foxtail, and 5-to 8-inch foxtail species on June 26 with 70 F, 45% RH, clear sky, and 1 to 3 mph wind. Treatments were applied with a bicycle wheel two plot to 8-inch foxtail species on June 26 with 70 F, 45% KH, clear SKy, and 1 to 3 mph wind. Treatments were applied with a bicycle wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates.

complete block design with			1.1.1.1	14		Au		11	
	Rate	Grft	<u>July</u> Yeft		Prmi	Grft	Yeft	Prmi	
Treatment	oz/A						42	67	
Nicosulfuron+X-77 Nicosulfuron+Dica+X-77 Nicosulfuron+Dica+X-77 Nicosulfuron+Dica+X-77 Nicosulfuron+Dica+X-77 Nicosulfuron+Dica+X-77 Nicosulfuron+Scoil Nicosulfuron+Dica+Scoil Nicosulfuron+Dica+Scoil Nicosulfuron+Dica+Scoil Nicosulfuron+Dica+Scoil Nicosulfuron+Dica+Scoil	$\begin{array}{c} 0.25 \pm 0.25\%\\ 0.25 \pm 2 \pm 0.25\%\\ 0.25 \pm 4 \pm 0.25\%\\ 0.25 \pm 6 \pm 0.25\%\\ 0.25 \pm 8 \pm 0.25\%\\ 0.25 \pm 10 \pm 0.25\%\\ 0.25 \pm 10 \pm 0.25\%\\ 0.25 \pm 2 \pm 1\%\\ 0.25 \pm 4 \pm 1\%\\ 0.25 \pm 6 \pm 1\%\\ 0.25 \pm 8 \pm 1\%\\ 0.25 \pm 10 \pm 1\%\end{array}$	75 74 74 75 75 90 87 88 89 88 89		69 67 68 68 67 69 86 86 84 81 84 84	64 67 65 66 67 78 81 77 79 77 77	78 81 77 82 77 79 87 87 87 88 89 85 85	43 45 39 37 39 38 61 73 78 72 72 72 78	71 63 68 63 70 84 87 88 89 90 90	
		8	6			-			
LSD 5% # of REPS		4	. 4	. 4	. 4	. 4	4		

Summary

Nicosulfuron control of all grass species was enhanced more by Scoil than X-77, regardless whether applied with or without dicamba. Grass control by nicosulfuron was not antagonized by dicamba at any rate. Yellow foxtail control was increased by all dicamba rates when tank mixed with nicosulfuron.

Nicosulfuron plus dicamba and adjuvant volumes. Casselton 1992. (Interstate 343A' corn was planted May 12. Treatments were applied to 5- to 6-leaf corn, 2- to 6-inch foxtail, 4- to 10-inch kochia, 2- to 6-inch common lambsquarters, and 5- to 10-inch common cocklebur on June 20 with 69 F, 70% RH, partly cloudy sky, and 5 mph wind. Treatments were applied with a bicycle wheel type sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzle to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete

Treatment	<u>Rate</u>	Corn inj		July Colq	KOCZ	Cocb	<u>Augu</u> Corn inj		Oct 20 Corn yield
Nico+Dica+Scoil Nico+Dica+Scoil Nico+Dica+Scoil+28N Nico+Dica+Scoil+28N Nico+Dica+Scoil+28N Nico+Dica+Scoil+28N Nico+Dica+X-77 Nico+Dica+X-77 Nico+Dica+X-77+28N Untreated LSD 5% # of REPS	0.37+4+1% 0.37+4+2% 0.37+4+3% 0.37+4+1%+4% 0.37+4+2%+4% 0.37+4+3%+4% 0.37+4+0.25% 0.37+4+0.25%+4% 0	3 3 1 2 1 1 0 0 2 4	91 93 95 94 91 94 87 91 0 3 4	95 95 95 95 95 95 95 95 0 2 4	- % 94 95 95 95 95 95 95 0 1	93 96 96 96 96 96 96 96 96 96 0 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81 86 92 91 84 91 78 88 0 7 4	bu/A 48 47 45 45 45 45 44 42 40 5 11 4

Summary

Corn injury levels were low regardless of the adjuvant or adjuvant volume. Corn injury with 3% Scoil was equal to X-77, indicating that levels of corn injury did not increase with the percent Scoil in the spray solution at the July 13 evaluation. Injury symptoms were not evident from any treatment at the August 4 evaluation. Increasing the Scoil volume increased control of green Increasing the Scoil volume increased control of green and yellow foxtail, kochia, and common cocklebur by nicosulfuron+dicamba. Grass control by nicosulfuron with Scoil was generally greater than with X-77, regardless of the Scoil volume. Corn yields tended to be higher with Scoil than X-77. In general level of weed control, corn injury and yield was similiar with or without 28% nitrogen added to the spray solution.

Nicosulfuron with dicamba in corn, Casselton 1992. 'Interstate 343A' was seeded May 12. Treatments were applied to 6-leaf corn, 2- to 5-inch foxtail spp., 2- to 4-inch common lambsquarters, and 3- to 8-inch kochia on June 21 with 60 F, 50% RH, cloudy sky, and 20 mph wind. Treatments were applied with a bicycle wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of a 10 by 30 ft plot. experiment was a randomized complete block design with four replicates. The

		<u>prove</u>	Corn		uly 1:		ur re	prica		
Treatment	Rate		inj	Caft	VOC7		Cuft	Augu		
	oz/A			Grit	RULZ	LOID	Grft	Yeft	KOCZ	Colq
	02/1						%			
Nicosulfuron+X-77	0.12+0.	25%	0	40	24	16	43	23	11	•
Nicosulfuron+X-77	0.25+0.		õ	53	32	25	80	35	11	0
Nicosulfuron+X-77	0.50+0.		Ő	79	43	38			23	15
Nicosulfuron+Scoil	0.12+1		Ő	59	52	50	90	56	43	38
Nicosulfuron+Scoil	0.25+1		0	82	52		82	35	35	18
Nicosulfuron+Scoil	0.50+1		0	95	58 84	50	91	61	45	31
Nico+Dica-dma+X-77	0.12+1+0		0	43	79	75 87	92	84	71	58
Nico+Dica-dma+X-77	0.12+2+0		Ő	43	86		46	25	80	87
Nico+Dica-dma+X-77	0.12+4+0	25%	0	44	94	91 94	44	27	91	95
Nico+Dica-dma+X-77	0.25+1+0		0	53	81	-	38	30	94	97
Nico+Dica-dma+X-77	0.25+2+0		0	62		88	68	34	72	90
Nico+Dica-dma+X-77	0.25+4+0	25%	0	59	90	93	54	38	85	94
Nico+Dica-dma+X-77	0.50+1+0		0	87	93 82	92	53	36	94	99
Nico+Dica-dma+X-77	0.50+2+0		0	83	90	87 90	84	51	79	90
Nico+Dica-dma+X-77	0.50+4+0		0	75	90		81	53	91	95
Nico+Dica-dma+Scoil	0.12+1+1	%	0	61	95 81	94	86	46	94	97
Nico+Dica-dma+Scoil	0.12+2+1		õ	57	93	90 94	75	40	83	91
Nico+Dica-dma+Scoil	0.12+4+1		0	64	93 95	94 96	80	30	95	98
Nico+Dica-dma+Scoil	0.25+1+1		0	81	89	90 88	79	33	98	99
Nico+Dica-dma+Scoil	0.25+2+1		0	80	93	88 94	87	53	88	93
Nico+Dica-dma+Scoil	0.25+4+1		õ	74	95	94 96	84	53	94	97
Nico+Dica-dma+Scoil	0.50+1+1		õ	92	92	90 91	85	42	96	99
Nico+Dica-dma+Scoil	0.50+2+1		Ő	92	93	91	91 90	76	85	92
Nico+Dica-dma+Scoil	0.50+4+1		Õ	91	95	94 95	89	76	90	95
Dicamba-dma+X-77	1+0.25%		Ő	0	71	95 79	0	66	96	98
Dicamba-dma+X-77	2+0.25%		õ	0	83	89	0	0	79	85
Dicamba-dma+X-77	4+0.25%		Õ	Õ	92	94	0	0	88	94
Dicamba-dma+Scoil	1+1%		Õ	Õ	71	86	0	0	97	99
Dicamba-dma+Scoil	2+1%		Õ	Õ	88	89	0		83	89
Dica-dma+Scoil	4+1%		Õ	6	93	95	0	0	86	92
Untreated	0		Õ	Ő	0	0	0	0	96	97
				v	v	U	0	0	0	0
LSD 5%				11	11	10	12	10	10	•
# of REPS			4	4	4	4	4	10	10	8
			7	<u> </u>	7	4	4	4	4	4

Summary

Corn was not injured by any treatment. Green foxtail control by 0.25 oz/A nicosulfuron was antagonized by all dicamba rates when applied with X-77, but not Scoil. Yellow foxtail control by nicosulfuron at 0.25 and 0.5 oz/A was generally reduced by dicamba when applied with Scoil, but not X-77. Kochia and common lambsquarters control by nicoulfuron was increased more by Scoil than X-77, but level of control was poor regardless of the adjuvant used. Dicamba at 2 and 4 oz/A gave greater of control broadleaf weeds than dicamba at 1 oz/A whether applied alone or in combination with nicosulfuron. Control of all weed species was generally greater for herbicide treatments applied with Scoil than X-77.

Nicosulfuron with dicamba in corn, Wyndmere 1992. '4-Star 5200' corn was planted May 2. Treatments were applied to 6-leaf corn, 2- to 3-inch field sandbur, 2- to 4-inch wild-proso millet, 4- to 15-inch Russian thistle and 4-leaf to vining wild buckwheat on June 18 with 78 F, 88% RH, cloudy sky, and 5 mph wind. Treatments were applied with a bicycle wheel type plot and 5 mpH wind. Theatments were appried with a breget annozzles to a sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block with four replicates.

CornOuty 10Outy 10CornOuty 10Nicosul furon+X-770.12+0.25%04Nicosul furon+X-770.25+0.25%054Nicosul furon+X-770.25+0.25%056Nicosul furon+X-770.25+0.25%0560Nicosul furon+Scoil0.25+1%08898Nicosul furon+Scoil0.25+1%08898Nico+Dica-dma+X-770.12+4+0.25%066658998Nico+Dica-dma+X-770.25+4+0.25%06366658Nico+Dica-dma+X-770.25+4+0.25%06864909433899838998389999 <th>randomized complete</th> <th>DIOCK WILL TOUR</th> <th></th> <th>IICall</th> <th>111</th> <th>ly 16</th> <th></th> <th></th> <th>Augus</th> <th>t 14</th>	randomized complete	DIOCK WILL TOUR		IICall	111	ly 16			Augus	t 14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Corn	Dumi		Duth	Wibw	Prmi	Fish	Ruth
Nicosul furon+X-77 0.12+0.25% 0 45 45 5 4 41 39 0 Nicosul furon+X-77 0.2540.25% 0 50 56 0 3 58 68 0 Nicosul furon+X-77 0.5040.25% 0 87 89 14 17 85 81 4 Nicosul furon+Scoil 0.12+1% 0 67 67 16 13 57 62 0 Nicosul furon+Scoil 0.50+1% 0 93 98 23 36 97 97 8 NicotDica-dmatX-77 0.12+20.25% 0 61 58 90 94 53 53 88 NicotDica-dmatX-77 0.25+140.25% 0 63 64 86 92 67 68 74 NicotDica-dmatX-77 0.25+240.25% 0 63 64 86 92 67 68 74 NicotDica-dmatX-77 0.25+240.25% 0 63 64 89 95 52 71 88 NicotDica-dmatX-77	Treatment		10]	Prmi	FISU	Ruch	9/			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		oz/A					/0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				4.5		F	٨	41	30	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nicosulfuron+X-77									
Nicosul furon+X-77 0.000120% 0 67 67 16 13 57 62 0 Nicosul furon+Scoil 0.12+1% 0 88 91 3 6 93 92 8 Nicosul furon+Scoil 0.50+1% 0 93 98 23 36 97 97 8 Nicosul furon+Scoil 0.12+1+0.25% 0 46 50 83 85 49 51 74 NicotDica-dma+X-77 0.12+40.25% 0 61 58 90 94 53 53 88 63 NicotDica-dma+X-77 0.25+1+0.25% 0 66 65 83 84 55 58 63 NicotDica-dma+X-77 0.25+2+0.25% 0 68 64 90 95 62 71 88 NicotDica-dma+X-77 0.50+2+0.25% 0 68 64 90 95 62 71 81 84 91 70 75 54 NicotDica-dma+X-77 0.50+4+0.25% 0 81 83 91 <t< td=""><td>Nicosulfuron+X-77</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>	Nicosulfuron+X-77					-				
Nicosul furon+Scoli 0.50+1% 0.93 98 23 36 97 97 8 Nicosul furon+Scoli 0.50+1% 0.93 98 23 36 97 97 8 Nicosul furon+Scoli 0.50+1% 0.93 98 23 36 97 97 8 Nico+Dica-dma+X-77 0.12+1+0.25% 0 61 58 90 94 53 53 88 Nico+Dica-dma+X-77 0.12+4+0.25% 0 61 58 90 94 53 53 88 Nico+Dica-dma+X-77 0.25+1+0.25% 0 66 65 83 84 55 56 63 Nico+Dica-dma+X-77 0.25+2+0.25% 0 68 64 90 95 62 71 88 Nico+Dica-dma+X-77 0.50+1+0.25% 0 79 83 85 91 70 75 54 Nico+Dica-dma+X-77 0.50+2+0.25% 0 81 83 91 95 75 79 87 Nico+Dica-dma+Scoil 0.12+1+1% <td< td=""><td>Nicosulfuron+X-77</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td></td<>	Nicosulfuron+X-77									4
Nicosul furon+Scoli 0.50+1% 0.93 98 23 36 97 97 8 Nicosul furon+Scoli 0.50+1% 0.93 98 23 36 97 97 8 Nicosul furon+Scoli 0.50+1% 0.93 98 23 36 97 97 8 Nico+Dica-dma+X-77 0.12+1+0.25% 0 61 58 90 94 53 53 88 Nico+Dica-dma+X-77 0.12+4+0.25% 0 61 58 90 94 53 53 88 Nico+Dica-dma+X-77 0.25+1+0.25% 0 66 65 83 84 55 56 63 Nico+Dica-dma+X-77 0.25+2+0.25% 0 68 64 90 95 62 71 88 Nico+Dica-dma+X-77 0.50+1+0.25% 0 79 83 85 91 70 75 54 Nico+Dica-dma+X-77 0.50+2+0.25% 0 81 83 91 95 75 79 87 Nico+Dica-dma+Scoil 0.12+1+1% <td< td=""><td>Nicosulfuron+Scoil</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Q</td></td<>	Nicosulfuron+Scoil									Q
Nicosulfuron+Scoil 0.30+1% 0.30 53 50 53 55 55 57 74 Nico+Dica-dma+X-77 0.12+1+0.25% 0 52 52 80 88 47 48 74 Nico+Dica-dma+X-77 0.12+4+0.25% 0 52 52 80 88 47 48 74 Nico+Dica-dma+X-77 0.12+4+0.25% 0 61 58 90 94 53 53 88 Nico+Dica-dma+X-77 0.25+1+0.25% 0 66 65 83 84 55 58 63 Nico+Dica-dma+X-77 0.25+4+0.25% 0 68 64 90 95 62 71 88 Nico+Dica-dma+X-77 0.50+4+0.25% 0 85 87 88 90 73 81 84 Nico+Dica-dma+X-77 0.50+4+0.25% 0 81 83 91 95 75 79 87 Nico+Dica-dma+Scoil 0.12+1+1% 0 53 63 85 91 95 58 66 Nic	Nicosulfuron+Scoil									8
Nico+Dica-dma+X-770.12+1+0.25%040505050748074Nico+Dica-dma+X-770.12+2+0.25%052528088474874Nico+Dica-dma+X-770.12+4+0.25%061589094535388Nico+Dica-dma+X-770.25+1+0.25%066658384555863Nico+Dica-dma+X-770.25+2+0.25%063648692676874Nico+Dica-dma+X-770.25+2+0.25%068649095627188Nico+Dica-dma+X-770.50+1+0.25%079838591707554Nico+Dica-dma+X-770.50+4+0.25%081839195757987Nico+Dica-dma+Xcoil0.12+1+1%053638591595866Nico+Dica-dma+Scoil0.12+2+1%050618892475481Nico+Dica-dma+Scoil0.12+4+1%053569293484988Nico+Dica-dma+Scoil0.25+2+1%06384846770Nico+Dica-dma+Scoil0.25+2+1%06384846770Nico+Dica-dma+Scoil0.25+2+1%0848591948482Nico+Dica-dma+Scoil0.50+1+1%0858787	Nicosulfuron+Scoil									
Nico+Dica-dma+X-77 $0.12+2+0.25\%$ 0 52 52 80 80 87 743 783 Nico+Dica-dma+X-77 $0.12+4+0.25\%$ 0 61 58 90 94 53 53 88 Nico+Dica-dma+X-77 $0.25+1+0.25\%$ 0 66 65 83 84 55 58 63 Nico+Dica-dma+X-77 $0.25+2+0.25\%$ 0 63 64 86 92 67 68 74 Nico+Dica-dma+X-77 $0.25+2+0.25\%$ 0 68 64 90 95 62 71 88 Nico+Dica-dma+X-77 $0.50+1+0.25\%$ 0 79 83 85 91 70 75 54 Nico+Dica-dma+X-77 $0.50+2+0.25\%$ 0 85 87 88 90 73 81 84 Nico+Dica-dma+X-77 $0.50+2+0.25\%$ 0 81 83 91 95 75 79 87 Nico+Dica-dma+Scoil $0.12+1+1\%$ 0 53 63 85 91 59 58 66 Nico+Dica-dma+Scoil $0.12+4+1\%$ 0 53 56 92 93 48 49 88 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 78 81 89 97 74 84 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 78 81 89 93 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 85 87 87 91 <	Nico+Dica-dma+X-77									
Nico+Dica-dma+X-77 $0.12+4+0.25\%$ 0 61 58 90 94 53 53 56 Nico+Dica-dma+X-77 $0.25+1+0.25\%$ 0 66 65 83 84 55 58 63 Nico+Dica-dma+X-77 $0.25+2+0.25\%$ 0 63 64 86 92 67 68 74 Nico+Dica-dma+X-77 $0.25+4+0.25\%$ 0 68 64 90 95 62 71 88 Nico+Dica-dma+X-77 $0.50+1+0.25\%$ 0 79 83 85 91 70 75 54 Nico+Dica-dma+X-77 $0.50+2+0.25\%$ 0 85 87 88 90 73 81 84 Nico+Dica-dma+X-77 $0.50+2+0.25\%$ 0 81 83 91 95 75 79 87 Nico+Dica-dma+Scoil $0.12+1+1\%$ 0 53 56 92 93 48 49 88 Nico+Dica-dma+Scoil $0.12+2+1\%$ 0 50 61 88 92 47 54 81 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 78 81 89 93 70 74 84 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 78 81 89 94 63 68 90 Nico+Dica-dma+Scoil $0.50+1+1\%$ 0 85 87 87 87 91 87 77 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 0 84 85 <	Nico+Dica-dma+X-77									
Nico+Dica-dma+X-77 $0.25+1+0.25\%$ 0 66 65 83 84 33 35 63 74 Nico+Dica-dma+X-77 $0.25+2+0.25\%$ 0 63 64 86 92 67 68 74 Nico+Dica-dma+X-77 $0.25+2+0.25\%$ 0 68 64 90 95 62 71 88 Nico+Dica-dma+X-77 $0.50+1+0.25\%$ 0 85 87 88 90 73 81 84 Nico+Dica-dma+X-77 $0.50+2+0.25\%$ 0 81 83 91 95 75 79 87 Nico+Dica-dma+X-77 $0.50+4+0.25\%$ 0 81 83 91 95 75 79 87 Nico+Dica-dma+Scoil $0.12+1+1\%$ 0 53 63 85 91 59 58 66 Nico+Dica-dma+Scoil $0.12+2+1\%$ 0 50 61 88 92 47 54 81 Nico+Dica-dma+Scoil $0.25+1+1\%$ 0 50 63 84 88 46 70 70 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 78 81 89 93 70 74 84 Nico+Dica-dma+Scoil $0.50+1+1\%$ 0 69 72 89 94 63 68 90 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 0 84 85 91 94 84 82 86 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 0	Nico+Dica-dma+X-77									
Nico+Dica-dma+X-77 $0.25+2+0.25\%$ 0 63 64 86 92 67 30 74 Nico+Dica-dma+X-77 $0.25+4+0.25\%$ 0 68 64 90 95 62 71 88 Nico+Dica-dma+X-77 $0.50+1+0.25\%$ 0 79 83 85 91 70 75 54 Nico+Dica-dma+X-77 $0.50+2+0.25\%$ 0 85 87 88 90 73 81 84 Nico+Dica-dma+X-77 $0.50+4+0.25\%$ 0 81 83 91 95 75 79 87 Nico+Dica-dma+Scoil $0.12+1+1\%$ 0 53 63 85 91 59 58 66 Nico+Dica-dma+Scoil $0.12+1+1\%$ 0 50 61 88 92 47 54 81 Nico+Dica-dma+Scoil $0.12+1+1\%$ 0 50 63 84 88 46 70 70 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 78 81 89 93 70 74 84 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 78 81 89 93 75 80 89 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 69 72 89 94 63 68 90 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 0 84 85 91 94 84 82 86 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 0 84 8										
Nico+Dica-dma+X-77 $0.25+4+0.25\%$ 0 688 644 90 95 02 71 53 Nico+Dica-dma+X-77 $0.50+1+0.25\%$ 0 79 83 85 91 70 75 54 Nico+Dica-dma+X-77 $0.50+2+0.25\%$ 0 85 87 88 90 73 81 84 Nico+Dica-dma+X-77 $0.50+4+0.25\%$ 0 81 83 91 95 75 79 87 Nico+Dica-dma+Xcoil $0.12+1+1\%$ 0 50 61 88 92 47 54 81 Nico+Dica-dma+Scoil $0.12+2+1\%$ 0 50 61 88 92 47 54 81 Nico+Dica-dma+Scoil $0.12+2+1\%$ 0 50 63 84 86 70 70 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 78 81 89 93 70 74 84 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 78 81 89 93 70 74 84 Nico+Dica-dma+Scoil $0.25+4+1\%$ 69 72 89 94 63 68 90 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 84 85 91 94 84 82 86 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 84 85 91 94 84 82 86 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 0 84 85 91 94	Nico+Dica-dma+X-77									
Nico+Dica-dma+X-77 $0.50+1+0.25\%$ 0 79 83 85 87 88 91 73 81 84 Nico+Dica-dma+X-77 $0.50+2+0.25\%$ 0 81 83 91 95 75 79 87 Nico+Dica-dma+Scoil $0.12+1+1\%$ 0 53 63 85 91 59 58 66 Nico+Dica-dma+Scoil $0.12+1+1\%$ 0 50 61 88 92 47 54 81 Nico+Dica-dma+Scoil $0.12+2+1\%$ 0 50 61 88 92 47 54 81 Nico+Dica-dma+Scoil $0.12+4+1\%$ 0 53 56 92 93 48 49 88 Nico+Dica-dma+Scoil $0.25+1+1\%$ 0 50 63 84 88 46 70 70 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 78 81 89 93 70 74 84 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 85 87 87 91 87 77 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 84 85 91 94 84 82 86 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 </td <td></td>										
Nico+Dica-dma+X-77 $0.50+2+0.25\%$ 0 85 87 88 90 73 71 87 Nico+Dica-dma+X-77 $0.50+4+0.25\%$ 0 81 83 91 95 75 79 87 Nico+Dica-dma+Scoil $0.12+1+1\%$ 0 53 63 85 91 59 58 66 Nico+Dica-dma+Scoil $0.12+2+1\%$ 0 50 61 88 92 47 54 81 Nico+Dica-dma+Scoil $0.12+2+1\%$ 0 53 56 92 93 48 49 88 Nico+Dica-dma+Scoil $0.25+1+1\%$ 0 53 56 92 93 48 49 88 Nico+Dica-dma+Scoil $0.25+1+1\%$ 0 53 81 89 93 70 74 84 Nico+Dica-dma+Scoil $0.25+1+1\%$ 0 69 72 89 94 63 68 90 Nico+Dica-dma+Scoil $0.50+1+1\%$ 0 85 87 87 87 91 87 77 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 84 85 91 94 84 82 86 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 0 84 85 91 93 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 0 84 86 <td>Nico+Dica-dma+X-77</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Nico+Dica-dma+X-77									
Nico+Dica-dma+X-77 $0.50+4+0.25\%$ 0 81 83 91 93 73 73 75 67 Nico+Dica-dma+Scoil $0.12+1+1\%$ 0 53 63 85 91 59 58 66 Nico+Dica-dma+Scoil $0.12+2+1\%$ 0 50 61 88 92 47 54 81 Nico+Dica-dma+Scoil $0.12+4+1\%$ 0 53 56 92 93 48 49 88 Nico+Dica-dma+Scoil $0.25+1+1\%$ 0 50 63 84 88 46 70 70 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 78 81 89 93 70 74 84 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 69 72 89 94 63 68 90 Nico+Dica-dma+Scoil $0.50+1+1\%$ 0 85 87 87 87 91 87 77 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 84 85 91 94 84 82 86 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil $1+0.25\%$ 0 0 84 86 <t< td=""><td>Nico+Dica-dma+X-77</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Nico+Dica-dma+X-77									
Nico+Dica-dma+Scoil $0.12+1+1\%$ 0 53 63 85 91 39 50 60 Nico+Dica-dma+Scoil $0.12+2+1\%$ 0 50 61 88 92 47 54 81 Nico+Dica-dma+Scoil $0.12+4+1\%$ 0 53 56 92 93 48 49 88 Nico+Dica-dma+Scoil $0.25+1+1\%$ 0 50 63 84 88 46 70 70 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 78 81 89 93 70 74 84 Nico+Dica-dma+Scoil $0.25+4+1\%$ 0 69 72 89 94 63 68 90 Nico+Dica-dma+Scoil $0.50+1+1\%$ 0 85 87 87 91 87 77 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 84 85 91 94 84 82 86 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+X-77 $1+0.25\%$ 0 0 0 84 86 0 72 Dicamba-dma+X-77 $2+0.25\%$ 0 0 0 86 90 0 62 Dicamba-dma+X-77 $1+0.25\%$ 0 0 0 86 89 0 0 Dicamba-dma+X-01 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Nico+Dica-dma+Scoil 0.12+2+1% 0 50 61 88 92 47 54 61 Nico+Dica-dma+Scoil 0.12+4+1% 0 53 56 92 93 48 49 88 Nico+Dica-dma+Scoil 0.25+1+1% 0 50 63 84 88 46 70 70 Nico+Dica-dma+Scoil 0.25+2+1% 0 78 81 89 93 70 74 84 Nico+Dica-dma+Scoil 0.25+4+1% 0 69 72 89 94 63 68 90 Nico+Dica-dma+Scoil 0.50+1+1% 0 85 87 87 87 91 87 77 Nico+Dica-dma+Scoil 0.50+2+1% 0 84 85 91 94 84 82 86 Nico+Dica-dma+Scoil 0.50+4+1% 0 81 83 91 93 75 80 89 Nico+Dica-dma+X-77 1+0.25% 0 0 0 84 86 0 72 Dicamba-dma+X-77 4+0.25% </td <td>Nico+Dica-dma+Scoil</td> <td>0.12+1+1%</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Nico+Dica-dma+Scoil	0.12+1+1%								
Nico+Dica-dma+Scoil 0.12+4+1% 0 53 56 92 93 43 49 50 Nico+Dica-dma+Scoil 0.25+1+1% 0 50 63 84 88 46 70 70 Nico+Dica-dma+Scoil 0.25+2+1% 0 78 81 89 93 70 74 84 Nico+Dica-dma+Scoil 0.25+4+1% 0 69 72 89 94 63 68 90 Nico+Dica-dma+Scoil 0.50+1+1% 0 85 87 87 87 91 87 77 Nico+Dica-dma+Scoil 0.50+2+1% 0 84 85 91 94 84 82 86 Nico+Dica-dma+Scoil 0.50+4+1% 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil 0.50+4+1% 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil 0.50+4+1% 0 81 83 91 93 75 80 89 Dicamba-dma+X-77<										
Nico+Dica-dma+Scoil $0.25+1+1\%$ 0 50 63 84 83 40 74 84 Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 78 81 89 93 70 74 84 Nico+Dica-dma+Scoil $0.25+4+1\%$ 0 69 72 89 94 63 68 90 Nico+Dica-dma+Scoil $0.50+1+1\%$ 0 85 87 87 91 87 77 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 84 85 91 94 84 82 86 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 93 75 80 89 Dicamba-dma+X-77 $1+0.25\%$ 0 0 0 87 80 0 75 Dicamba-dma+X-77 $2+0.25\%$ 0 0 0 86 87 0 0 62 Dicamba-dma+X-77 $2+0.25\%$ 0 0 0 86 89 0 86 Dicamba-dma+Scoil $1+1\%$ 0 0 0 86 89 0 0 90 Dicamba-dma+Scoil <t< td=""><td></td><td>0.12+4+1%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		0.12+4+1%								
Nico+Dica-dma+Scoil $0.25+2+1\%$ 0 78 81 89 93 70 74 01 Nico+Dica-dma+Scoil $0.25+4+1\%$ 0 69 72 89 94 63 68 90 Nico+Dica-dma+Scoil $0.50+1+1\%$ 0 85 87 87 87 91 87 77 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 84 85 91 94 84 82 86 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+X-77 $1+0.25\%$ 0 0 0 87 80 0 72 Dicamba-dma+X-77 $2+0.25\%$ 0 0 0 87 80 0 75 Dicamba-dma+X-77 $4+0.25\%$ 0 0 0 86 89 0 62 Dicamba-dma+Scoil $1+1\%$ 0 0 0 86 89 0 0 86 Dicamba-dma+Scoil $2+1\%$ 0 0 0 0 0 0 0 0 Untreated 0 0 0 0 0 0 0 0 0 0 Dicamba-dma+Scoil $2+1\%$ 0 <td></td>										
Nico+Dica-dma+Scoil $0.25+4+1\%$ 0.35 72 03 31 91 87 77 Nico+Dica-dma+Scoil $0.50+1+1\%$ 0 85 87 87 87 91 84 82 86 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 84 85 91 94 84 82 86 Nico+Dica-dma+Scoil $0.50+2+1\%$ 0 81 83 91 93 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 93 75 80 89 Dicamba-dma+X-77 $1+0.25\%$ 0 0 0 84 86 0 72 Dicamba-dma+X-77 $2+0.25\%$ 0 0 0 87 80 0 75 Dicamba-dma+X-77 $4+0.25\%$ 0 0 0 80 87 0 0 62 Dicamba-dma+Scoil $1+1\%$ 0 0 0 86 89 0 0 86 Dicamba-dma+Scoil $2+1\%$ 0 0 0 90 0 0 0 0 Untreated 0 0 0 0 0 0 0 0 0 0 LSD 5% 13 11 8 8 14 12 12	Nico+Dica-dma+Scoil	0.25+2+1%								
Nico+Dica-dma+Scoil 0.50+1+1% 0 83 67 67 67 67 84 82 86 Nico+Dica-dma+Scoil 0.50+2+1% 0 84 85 91 94 84 82 86 Nico+Dica-dma+Scoil 0.50+4+1% 0 81 83 91 93 75 80 89 Dicamba-dma+X-77 1+0.25% 0 0 0 84 86 0 72 Dicamba-dma+X-77 2+0.25% 0 0 0 87 88 0 75 Dicamba-dma+X-77 4+0.25% 0 0 0 88 87 0 0 62 Dicamba-dma+X-77 1+1% 0 0 0 86 89 0 62 Dicamba-dma+Scoil 1+1% 0 0 0 86 89 0 0 86 Dicamba-dma+Scoil 2+1% 0 0 0 90 90 90 90 90 Dicamba-dma+Scoil 4+1% 0 0 0 0 <td>Nico+Dica-dma+Scoil</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Nico+Dica-dma+Scoil									
Nico+Dica-dma+Scoil $0.50+2+1\%$ 0.64 0.50 51 91 75 80 89 Nico+Dica-dma+Scoil $0.50+4+1\%$ 0 81 83 91 93 75 80 89 Dicamba-dma+X-77 $1+0.25\%$ 0 0 0 84 86 0 72 Dicamba-dma+X-77 $2+0.25\%$ 0 0 0 87 88 0 75 Dicamba-dma+X-77 $4+0.25\%$ 0 0 0 80 87 0 0 Dicamba-dma+Scoil $1+1\%$ 0 0 0 86 89 0 62 Dicamba-dma+Scoil $2+1\%$ 0 0 0 86 89 0 0 Dicamba-dma+Scoil $2+1\%$ 0 0 0 91 94 0 990 Dicamba-dma+Scoil $4+1\%$ 0 0 0 0 0 0 0 Untreated 0 13 11 8 8 14 12 12 LSD 5% 13 11 8 8 14 12 12										
Nico+Dica-dma+Scoil $0.50+4+1\%$ 0.61 0.50 51 56 0.72 Dicamba-dma+X-77 $1+0.25\%$ 0 0 0.84 86 0 72 Dicamba-dma+X-77 $2+0.25\%$ 0 0 0.87 88 0 75 Dicamba-dma+X-77 $4+0.25\%$ 0 0 0.80 87 0 0.62 Dicamba-dma+Scoil $1+1\%$ 0 0 0.86 89 0 62 Dicamba-dma+Scoil $2+1\%$ 0 0 0.86 89 0 86 Dicamba-dma+Scoil $2+1\%$ 0 0 0.91 94 0 90 Dicamba-dma+Scoil $4+1\%$ 0 0 0.91 94 0 90 Untreated 0 0 0 0 0 0 0 0 LSD 5% 13 11 8 8 14 12 12										
Dicamba-dma+X-77 1+0.25% 0 0 0 0 0 75 Dicamba-dma+X-77 2+0.25% 0 0 0 87 88 0 0 90 Dicamba-dma+X-77 4+0.25% 0 0 0 92 95 0 90 Dicamba-dma+Scoil 1+1% 0 0 0 88 87 0 62 Dicamba-dma+Scoil 1+1% 0 0 0 86 89 0 86 Dicamba-dma+Scoil 2+1% 0 0 0 91 94 0 90 Dicamba-dma+Scoil 4+1% 0 0 0 0 0 0 0 0 Untreated 0<	Nico+Dica-dma+Scoil									
Dicamba-dma+X-77 2+0.25% 0 0 0 0,7 00 0 90 Dicamba-dma+X-77 4+0.25% 0 0 0 92 95 0 0 62 Dicamba-dma+Scoil 1+1% 0 0 0 80 87 0 0 62 Dicamba-dma+Scoil 2+1% 0 0 0 86 89 0 86 Dicamba-dma+Scoil 2+1% 0 0 0 91 94 0 90 Dicamba-dma+Scoil 4+1% 0 0 0 0 0 0 0 0 Untreated 0 13 11 8 8 14 12 12 LSD 5% 13 11 8 8 14 4 4 4	Dicamba-dma+X-77		-							
Dicamba-dma+X-77 4+0.25% 0 0 0 0 0 0 0 62 Dicamba-dma+Scoil 1+1% 0 0 0 80 87 0 0 62 Dicamba-dma+Scoil 2+1% 0 0 0 86 89 0 0 86 Dicamba-dma+Scoil 2+1% 0 0 0 91 94 0 90 Dicamba-dma+Scoil 4+1% 0 0 0 0 0 0 0 0 Untreated 0 13 11 8 8 14 12 12 LSD 5% 13 11 8 4 4 4 4	Dicamba-dma+X-77									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dicamba-dma+X-77									
Dicamba-dma+Scoil 2+1% 0 0 0 80 89 0 0 90 Dicamba-dma+Scoil 4+1% 0 0 0 91 94 0 90 90 Untreated 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 <t< td=""><td>Dicamba-dma+Scoil</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Dicamba-dma+Scoil									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dicamba-dma+Scoil							-		
Untreated 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dicamba-dma+Scoil									
LSD 5% 13 11 8 8 14 12 12		0	0	0	0	0	0	0	0	
LSD 5%				10	11	0	0	14	12	12
	LSD 5%									
	# of REPS		4	. 4	4	4	- 4		T	

Summary

Corn was not injured by any treatment. Wild-proso millet and field sandbur control by nicosulfuron phytotoxicity was antagonized by dicamba at certain rates when applied with the adjuvant Scoil, but not X-77. However, nicosulfuron control of grasses never less when applied with Scoil than with X-77. Russian thistle and wild buckwheat control by nicosulfuron alone was poor. Broadleaf weed control was increased when nicosulfuron was tank mixed with dicamba and similiar regardless of dicamba rate or adjuvant at the July 16 evaluation. At the August 14 evaluation, Russian thistle control generally recovered with dicamba rate.

Weed control in corn from preplant incorporated herbicides, Casselton. An experiment was conducted to evaluate weed control from existing and recently developed herbicides in corn. 'Interstate 343A' corn was seeded May 11, 1992. Treatments were applied on May 11 with 75 F, 51% relative humidity, partly cloudy sky and 7 mph wind. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 17 gpa at 40 psi through 8002 flat fan nozzles. The experiment was a randomized complete block design with four replicates/treatment.

Treatment ^a				June					July 2	3		
	Rate	Fxtl	KOCZ	Wimu	Colq	Cocb	Fxti	KOCZ	Wimu	Colq	Cocb	
	lb/A					% cc	ontrol					
EPTC + Diclormid	4	81	54	66	83	0	98	58	50	90	20	
Alachlor	3	77	66	69	57	10	74	51			30	
Alachlor + Cyanazine-DF	3+1.5	75	84	86	89	13	79	60	49		13	
SAN-582H	1.5	93	73	89	75	15			50		0	
SAN-582H + Cyanazine-DF	1.5+1.5	92	88				94	68	72		18	
Acetochlor + Dichlormid	1.8			96	89	40	92	83		84	20	
Acet. + Dichlormid + Cyan-DF		86	88	80	88	26	96	84	73	80	18	
MON 8421		92	92	94	90	25	87	85	88	85	15	
	2	90	76	85	86	23	87	59	55	57	0	
MON 8421 + Cyanazine	2+1.5	88	96	94	76	26	91	91	75	86	0	
Jntreated		0	0	0	0	0	0	0			0	
C.V.%											:	
_SD 5%		12	19	15	23	99	14	34	39	32	78	
-50 5%		9	11	12	14	16	7	11	14	11	16	

Dichlormid is a safener, SAN-582H - proposed common name = dimethenamide is an acetanilide herbicide, MON-8421 is a microencapsulated formulation of acetochlor.

Alachlor generally gave less control and acetachlor greater control than other acetanalide herbicides tested. However, when cyanazine was added little differences were observed. MON 8421 is a microencapsulated formulation of acetachlor. Weed control from MON 8421 applied alone was lower for the later evaluation than the initial evaluation. This observation was not noted to the same degree with other herbicides including treatments containing cyanazine.

Weed control in corn from preemergence acetanilide herbicides, Casselton. An experiment was conducted to evaluate weed control from acetanilide herbicides with and without cyanazine. 'Interstate 343A' corn was seeded May 12, 1992. Preemergence herbicides were applied on June 13 with 63 F, 56% relative humidity, partly cloudy sky and 6 mph wind. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 17 gpa at 40 psi through 8002 flat fan nozzles. The experiment was a randomized block design with four replicates/treatment.

		June 26						July 28					
reatment	Rate	Grft& Yeft	косz			Cocb	Grft& Yeft	косz	Wimu	Colq	Cock		
	Ib/A					%	control						
	3.5	76	33	18	48	0	75	80 74	0 54	45 55	13 25		
Alachlor Alachlor + Cyanazine	3.5+1.5	76	78	66	63	15	73 63	16	0	10	0		
Vetolachlor	3	36	8	0	6 48	0	70	55	49	35	15		
Metolachlor + Cyanazine	3+1.5	58	49	59 13	23	0	90	61	33	35	0		
Propachlor	4	65 85	39 94	91	94	31	78	78	60	58	25		
Propachlor + Cyanazine	4+1.5 1.2	69	61	30	35	0	71	63	10	30	0		
Acetochlor + Dichlormid	1.2	65	45	45	45	0	78	78	60	58	25 35		
Acetochlor + Dichlormid	2.2	87	71	49	57	57	93	96	75	74 40	40		
Acetochlor + Dichlormid Acet + Dichlor + Cyan	1.2+1.5	93	96	98	86	72	85	78 97	73 91	66	35		
Acet + Dichlor + Cyan	1.8+1.5	95	99	90	93	43	93 91	97	99	86	45		
Acet + Dichlor + Cyan	2.2+1.5	97	99	93	96	68 0	79	70	32	50	0 :		
SAN-582H	1.25	80	63	30	46 43	0	86	80	38	65	8		
SAN-582H	1.38	75	67 89	20 90	78	26	93	89	85	68	18		
SAN-582H	1.5	89 81	91	78	76	28	94	97	97	85	46		
SAN-582H + Cyanazine	1.25+1.5 1.75	69	53	38	28	0	85	79	40	40	0		
MON-8421 ^a	2	76	56	40	47	0	88	79	50	50	8 94		
MON-8421		59	99	97	99	79	64	96	97	96 0	94		
Alachlor+MON-12000+MON-13 Untreated		0	0	0	0	0	0	0	0	U			
		11	36	30	34	53	8	12	23	24	57		
C.V.% LSD 5%		11	33	22	26	16	9	13	17	18	30		

^aAcetochlor + Dichlormid = Surpass (ICI), SAN-582H = Frontier (proposed common name - dimethenamid), MON-8421 = micro-encapsulated formulation of acetochlor, MON-12000 is a sulfonylurea herbicide - trade name 'Permit' (Monsanto), Dichlormid and MON13900 are safeners, MON-12000+MON-13900 will be marketed as "Battalion", Alachlor+MON-12000+MON13900 will be marketed as "Tophand".

Ten days following herbicide application, a total of 1.75 inches of precipitation had accumulated. No crop injury was recorded from any treatment. Foxtail control was similar from most treatments without cyanazine. Foxtail control was greatest from acetochlor plus cyanazine. Cyanazine generally increased broadleaf weed control with acetanilide herbicides. Treatments containing acetochlor generally had the highest weed control and appeared more active on weed species present than other herbicide treatments. Most herbicide treatments provided poor common cocklebur control. Alachlor plus MON-12000 plus MON 13900 provided excellent control of all broadleaf weeds but gave poor grass control.

Weed control in corn from nicosulfuron with herbicides and adjuvants, Casselton. An experiment was conducted to evaluate weed control from nicosulfuron with various herbicides and commercial adjuvants. 'Interstate 343A' corn was seeded May 12, 1992. The early postemergence treatment was applied to 3-leaf corn, 1- to 2.5-inch foxtail, 0.5 inch redroot pigweed, 3 inch wild mustard, 1- to 3.5-inch kochia, 1- to 2.5-inch common lambsquarters, and 1- to 4-inch common cocklebur on June 9 with 71 F, 64% relative humidity, partly cloudy sky and 4 mph wind. Postemergence treatments were applied to 4-leaf corn, 2- to 5-inch foxtail, 1- to 2-inch redroot pigweed, 4- to 10-inch wild mustard, 2- to 6-inch kochia, 1.5- to 3-inch common lambsquarters, and 2- to 5-inch common cocklebur on June 13 with 72 F, 78% relative humidity, partly cloudy sky and 6 mph wind. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 40 psi through 8001 flat fan nozzles. The experiment was a randomized complete block design with four reps/treatment.

		-	June 2	July 28				
Treatment ^a	Rate	Grft& Yeft	косг	Cola	Grft	Yeft		Z Colo
						····		2 0010
	oz/A			%	control			
Pendimethalin + Cyanazine (EPOST)	16+32	89	98	99	83	75	91	
Metribuzin + Dicamba dma	1.5+8	35	94	99	44	36		99
Metribuzin + 2,4-D dma	1.5+8	20	71	97	29	24	99	99
Nicosulfuron + Scoil + UAN 28%	0.25+2%+4%	95	99	92	29 97	73	80	99
Nicosulfuron + Bromoxynil + X-77	0.25+4+2%	78	99	99	70	31	99	70
Nico + Bromoxynil + X-77 + UAN 28%	0.25+4+2%+4%	92	99	99 99	70		73	68
Nicosulfuron + Bromoxynil + Mor-Act	0.25+4+2%	68	99	99	85	40 68	78 85	69
Nico + Brox + Mor-Act + UAN 28%	0.25+4+2%+4%	88	99	99	83	60		83
Nicosulfuron + Bromoxynil + Scoil	0.25+4+2%	80	99 97	99	90	60	86	84
Nico + Bromoxynil + Scoil + UAN 28%	0.25+4+2%+4%	83	99	99	90	58	9 9 99	99
Nico + Bromoxynil (Gel) + Scoil	0.25+4+2%	94	99	99	98	92	99	99
lico + Bromoxynil (Gel) + Scoil	0.25+6+2%	98	99	99	98 96	92 86		99
Vicosulfuron + MON-12000 + X-77	0.25+0.25+2%	65	94	21	98 91		99	99
Nico + MON-12000 + X-77 + UAN 28%	0.25+0.25+2%+4%	73	80	20	96	79	99	0
Vicosulfuron + MON-12000 + Scoil	0.25+0.25+2%	90	90	8	96	87	90	63
Nicosulfuron + Atrazine + Scoil	0.25+6+2%	96	99			78	99	59
lico + Atrazine + Scoil + UAN 28%	0.25+6+2%+4%	94	99	99 99	99	94	99	99
licosulfuron + 2,4-D dma + X-77	0.25+5.25+0.25%	69	99 81		99	94	99	99
Vicosulfuron + 2,4-D ioe + X-77	0.25+3+0.25%	83	96	66	80	53	73	99
Intreated	0.23+3+0.23%			84	88	79	96	99
		0	0	0	0	0	0	0
D.V.%		14	7	23	5	8	4	5
SD 5%		15	9	26	6	7	4	6

^aX-77 = nonionic surfactant, Mor-Act = petroleum oil with 17% emulsifier; 2,4-D dma = Savage, 2,4-D ioe = Salvo; and Scoil = methylated seed oil; dma = dimethylamine; ioe = isooctyl ester.

Nicosulfuron did not injure corn regardless of accompanying herbicide or adjuvant. However, nicosulfuron was applied at one-half the commercial rate to provide a control level for differentiation among adjuvants. Complete control of redroot pigweed, wild mustard and common cocklebur was observed with all treatments. Nicosulfuron with Scoil treatments were generally superior to other treatments. Scoil with nicosulfuron and bromoxynil enhanced foxtail and kochia control compared to Mor-Act and X-77. Treatments containing the gel formulation of bromoxynil resulted in greater foxtail control at June 26 and greater yellow foxtail control at July 28. Treatments containing MON-12000 gave poor common lambsquarters control. Treatments containing atrazine showed the greatest long season weed control. Reduction in grass control was observed when some broadleaf herbicides were tank-mixed with nicosulfuron. Nicosulfuron plus bromoxynil plus Scoil gave greater control of green and yellow foxtail on July 28 than nicosulfuron plus broxoxynil plus X-77 plus 28% nitrogen.

Weed control in corn, Carrington. An experiment was conducted to evaluate weed control from available and experimental herbicides and commercial adjuvants. 'Cargill 809' corn was seeded May 21, 1992. Eradicane was applied on May 21 uder clear skies, 58 F air temperature, 56% relative humidity, 19 mph wind, 57 F soil temperature at 2 inches and good subsurface moisture. Incorporation was performed immediatly after application. Preemergence treatments were applied on May 28 with 87 F, 50% relative humidity, no cloudy sky and 23 mph wind. Postemergence treatments were applied to V3-V4 leaf corn, 3- to 5-leaf foxtail, 4 leaf redroot pigweed, 4- to 6 leaf comon lambquarters, 2-inch kochia, and 4-leaf prostrate pigwed on June 12 with 77 F, 46% relative humidity, no cloudy sky and 10 mph wind. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 17 gpa (8002 flat fan nozzles) for soil applied treatments and 8.5 gpa (8001 flat fan nozzles) for post applied treatments at 40 psi. The experiment was a RCB design with four replications/treatment.

					July				_			
Treatment ^a	Rate	Fxtl	KOCZ					Wimu	Wibv			
	lb/A	% control										
EPTC + Dichlormid (PPI) Propachlor + Cyanazine (PRE) Acetochlor + Dichlormid (PRE) Acetochlor + Dichlormid (PRE) Acet + Dichlor + Cyanazine (PRE) Acet + Dichlor + Cyanazine (PRE) SAN-582H (PRE) SAN-582H + Cyanazine (PRE) SAN-582H + Cyanazine (PRE) MON 8421 (PRE) Alachlor + MON-12000 + MON-13900 (PRE) Nicosulfuron + Scoil(POST) Nicosulfuron + Scoil(POST) Nico + Bromoxynil+Scoil (POST) Nico + MON-12000 + X-77 + 28%N (POST) Nico + MON-12000 + Scoil (POST) Nico + MON-12000 + Scoil (POST)	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	90 0 3 5 8 9 0 4 8 5 0 0 73 81 74 81 66 74	23 0 28 21 0 0 0 0 0 25 91 94 97 99 87 96	18 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	91 0 0 0 8 0 0 11 0 0 13 0 0 86 95 0 0	86 10 0 5 9 0 0 8 5 0 13 90 95 97 98 94	81 3 5 0 5 0 3 0 0 8 90 88 88 88 88 91 91 0	52 0 5 0 32 10 8 8 30 8 50 99 74 99 99 99 99 99 50	25 0 0 10 3 0 4 0 0 30 43 50 85 90 62 85 90			
Alachlor(PRE)/MON-12000+X-77 (POST) Alachlor(PRE)/MON-12000 + Scoil(POST) Alachlor(PRE)/2,4-D dma (POST) Alachlor(PRE)/2,4-D ioe (POST) Untreated	1.5/0.26oz+0.25% 1.5/0.26oz+2% 1.5/0.33 1.5/0.188	0 0 0 0	5 39 48 94 0	0 50 71 98 0	0 0 66 98 0	0 34 40 75 0	29 28 55 0	50 74 99 0	32 35 70 0			
C.V.% LSD 5%		25 9	26 13	19 13	16 17	14 12	15 19	18 24	2 1			

 $^{\overline{a}}$ Acetochlor + Dichlormid = Surpass (ICI), SAN-582H = Frontier (Sandoz), MON-8421 = microencapsulated formulation of acetochlor, MON-12000 = Permit, X-77 = nonionic surfactant, 2,4-D dma = Savage, 2,4-D ioe = Salvo, Scoil = methylated seed oil, dma = dimethylamine, ioe = isooctyl ester.

Failure of most preemergence herbicides was due to lack of precipitation for several weeks after application. Scoil enhanced foxtail control from nicosulfuron more than X-77. Most postemergence treatments containing nicosulfuron, bromoxynil, or atrazine controlled kochia, redroot pigweed, prostrate pigweed, or wild mustard. Nicosulfuron alone was weak on Russian thistle. MON-12000 is weak on common lambsquarters. Much greater Russian thistle and wild buckwheat control was observed with nicosulfuron+ MON-12000+Scoil than either herbicide alone. Treatments containing atrazine or bromoxynil controlled wild buckwheat. 2,4-D iso gave greater control of drought stressed weeds than 2,4-D dma.

Wild proso millet in corn, Leonard. An experiment was conducted to evaluate weed control, including wild proso millet, from nicosulfuron with various herbicides and commercial adjuvants. 'Dahlgren 5962' corn was seeded May 10, 1992. Early postemergence treatments were applied to 2-leaf corn, 0.5- to 1.5-inch wild proso millet, 0.5- to 1.5-inch foxtail, and 1- to 4-inch Russian thistle on June 9 with 76 F, 56% relative humidity, partly cloudy sky and 5 mph wind. Postemergence treatments were applied to 4-leaf corn, 0.5- to 3.5-inch wild proso millet, 0.5- to 3.5-inch foxtail, and 1- to 4-inch Russian thistle on June 13 with 78 F, 62% relative humidity, partly cloudy sky and 5 mph wind. to 4-inch Russian thistle on June 13 with 78 F, 62% relative humidity, partly cloudy sky and 3 mph wind. Post-directed treatments were applied to 9-leaf corn, 3- to 5-inch wild proso millet, 3- to 6-inch foxtail, and 2- to 6-inch Russian thistle on June 26. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 40 psi through 8001 flat fan nozzles.

Treatment ^a		July 7					
	Rate	Wipm	Yeft	Ruth			
	oz/A		% control				
Pendimethalin + Cyanazine (EPOST) Pendimethalin + Cyanazine (EPOST) Nicosulfuron + X-77 Nicosulfuron + X-77 + UAN 28% Nicosulfuron + Preference Nicosulfuron + Preference + UAN 28% Nicosulfuron + Mor-Act Nicosulfuron + Mor-Act + UAN 28% Nicosulfuron + MSO + UAN 28% Nicosulfuron + MSO + UAN 28% Nicosulfuron + Meth-Oil Nicosulfuron + Meth-Oil + UAN 28% Nicosulfuron + Scoil + UAN 28% Nicosulfuron + Scoil + UAN 28% Nicosulfuron + Scoil + UAN 28% Nicosulfuron + Bromoxynil + Scoil Nico + Bromoxynil + Scoil + UAN 28% Nicosulfuron + MON-12000 + Scoil Nico + MON-12000 + Scoil + UAN 28% Nicosulfuron + Atrazine + Scoil Nico + Atrazine + Scoil + UAN 28% Paraquat + X-77 (Directed) Paraquat + 2,4-D dma + X-77 (Directed) Paraquat + Dicamba + X-77 (Directed) Paraquat + Dicamba + X-77 (Directed) Paraquat + Metribuzin (Directed) Jntreated	$\begin{array}{c} 16+24\\ 24+32\\ 0.25+0.25\%\\ 0.25+0.25\%+4\%\\ 0.25+0.25\%+4\%\\ 0.25+0.25\%+4\%\\ 0.25+2\%\\ 0.25+2\%+4\%\\ 0.25+2\%+4\%\\ 0.25+2\%+4\%\\ 0.25+2\%+4\%\\ 0.25+2\%+4\%\\ 0.25+2\%+4\%\\ 0.25+2\%+4\%\\ 0.25+2\%+4\%\\ 0.25+2\%+4\%\\ 0.25+4+2\%+4\%\\ 0.25+0.25+2\%+4\%\\ 0.25+6+2\%+4\%\\ 0.25+6+2\%+4\%\\ 4+0.25\%\\ 4+8+0.25\%\\ 4+8+0.25\%\\ 4+1.125\end{array}$	70 82 46 56 46 66 61 76 85 90 91 96 94 95 90 95 73 86 97 98 85 95 98 85 95 98 43 0	73 87 56 63 52 68 65 78 86 93 95 97 97 97 97 97 97 97 97 97 97 97 97 97	85 92 41 63 28 56 53 61 71 81 75 83 89 94 94 97 91 88 98 94 97 91 88 98 94 75 80 95 99			
S.V.% SD 5%		11 12	0 10 12	0 16			

^aX-77 = nonionic surfactant, Preference = surfactant, Mor-Act = petroleum oil with 17% emulsifier (Wilbur-Ellis), MSO, Meth-Oil ans Scoil = methylated seed oil.

No corn injury was recorded from any treatment. Only the highest rate of pendimethalin plus cyanazine gave over 80% weed control. Nicosulfuron did not injure corn regardless of accompanying herbicide or adjuvant. However, nicosulfuron was applied at one-half the commercial rate to provide a control level for differentiation among adjuvants. Nicosulfuron with methylated seed oil adjuvants (Scoil, MSO, Meth-Oil) controlled all species similarly and generally gave control superior to other adjuvants. Mor-Act generally gave greater weed control than nonionic surfactants. However, 28% nitrogen generally improved control more for less effective adjuvants than for more effective adjuvants. Nicosulfuron plus Scoil, MSO, or Meth-Oil without 28% nitrogen gave better grass control than nicosulfuron plus 28% nitrogen plus X-77, Preference, or Mor-Act. Wild proso millet control was less with treatments containing nicosulfuron and MON-12000 compared to treatments containing atrazine or bromoxynil. Post-directed treatments with paraquat adaquately controlled all weed species.

Postemergence grass and broadleaf weed control, Casselton 1992. 'McCall' soybeans were seeded May 12. Treatments were applied to 2nd trifoliolate soybeans, 6- to 12-inch tall kochia, 4- to 8-inch tall common lambsquarter, 6- to 13-inch tall wild mustard, and 2- to 5-inch tall foxtail on June 20 with 72 F, 70% RH, a partly cloudy sky, and 5-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Weed densities were foxtail 10 plants per sq ft, kochia greater than 3 plants per sq ft, wild mustard 0.1 plant per sq ft, and common lambsquarter 1 plant per sq ft.

				July 1	.7	
Treatment	Rate oz/A	Sobe	Fota	<u>KOCZ</u>	Wimu	<u>Colq</u>
Bent&Acif+Poast-Plus®+28N Imazethapyr+Sun-itII+28N Lactofen+PO+Poast-Plus Lactofen+Sun-itII+Poast-Plus Thif+Bent+Poast-Plus Thif+Bent+Poast-Plus+Scoil Imep+Bent+Flua&Fenx+Sun-itII Imep+Bent+Poast-Plus+Sun-itII Untreated	15+3+2.5% 0.75+0.18G+2.5% 3+0.25G+3 3+0.18G+3 0.06+8+3 0.06+8+3+0.18G 0.3+8+2.5+0.18G 0.3+8+3+0.18G 0	15 16 9 4	78 89 75 79 94 94 99 83 0	80 98 87 78 47 44 72 78 0	99 99 99 99 99 99 94 89 0	88 77 28 41 95 87 46 50 0
C.V. % LSD 5% # OF REPS		55 8 4	8 9 4	13 12 4	10	17

Summary

Lactofen and bentazon & acifluorfen + sethoxydim (Poast-Plus) caused a burn to the soybeans, but plants recovered later in the Thifensulfuron + bentazon + Poast-Plus was equally as effective with or without Scoil adjuvant. Imazethapyr + bentazon were more effective for foxtail control when applied with fluazifop & fenoxaprop than Poast Plus. Kochia control was the greatest with imazethapyr + Sunit-II + 28% N. Common lambsquarter control was generally greatest for treatments with bentazon at 15 oz/A or at 8 oz/A when with thifensulfuron, not when with imazethapyr.

Imazethapyr plus bentazon in soybeans, Casselton 1992. 'McCall' soybeans were seeded May 12. Treatments were applied to first trifoliolate soybeans, 1- to 3-inch tall foxtail and common lambsquarter, 1- to 4-inch tall kochia, and 2- to 5-inch tall wild mustard on June 12 with 86 F. 63% RH, partly cloudy sky, and 5-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four

		Jul	y 5				July	17				
Rate	Sobe	Fxt1	KOCZ	Cola	Sobe	Ext1	KOC7	L/imu	Colo	Au	gust	31
oz/A							- %	winnu	LOIQ	Fxtl	KOCZ	Colq
.3+.186 .3+.25% .3+.186+19 .3+.25%+19 .3+12+.186 .3+12+.25% .3+12+.186+1 .3+12+.25%+1 .3+186+4 .3+.186+4+12 .3+.186+4+23	93 0 91 31	77 56 82 64 60 48 73 58 71 85 79	98 95 99 99 97 97 99 99 99 99 99 74	68 59 65 70 99 99 96 99 68 76 53	3 4 4 4 4 3 4 1 1 6 3	71 53 77 44 38 29 51 30 60 74 59	% - 99 94 99 99 99 98 98 99 99 99 99	95 95 99 98 99 98 99 98 98 98 98 98	40 27 30 39 98 99 91 99 51 46 30	75 49 73 54 48 31 45 31 71 76 69	97 92 98 95 99 86 97 94 94 98 98	54 31 38 45 93 93 79 96 60 50 38
		0	99	99	0	0	95	99	99	0		96
		-		97	0	0	94	97	91	0		89
0	0	0	0	0	0	0	0	0	0	0	0	0
							3 4 4			27	6	17 15 4
	oz/A .3+.186 .3+.25% .3+.186+19 .3+.25%+19 .3+12+.186 .3+12+.25% .3+12+.25% .3+12+.25%+1 .3+12+.25%+1 .3+.186+4 .3+.186+4+23 .12+.25% 12+.186 0	oz/A .3+.186 3 .3+.25% 3 .3+.186+19 0 .3+.25% 1 .3+12+.186 0 .3+12+.25% 1 .3+12+.25%+19 3 .3+12+.25%+19 3 .3+.186+4 0 .3+.186+4+19 1 .3+.186+4+23 1 12+.25% 0 12+.186 0 0 0	Rate Sobe Fxt1 oz/A .3+.186 3 77 .3+.25% 3 56 .3+.186+19 0 82 .3+.25% 1 64 .3+12+.186 0 60 .3+12+.25% 1 48 .3+12+.25% 1 48 .3+12+.25%+19 3 58 .3+186+4 0 71 .3+.186+4 1 79 12+.25% 0 0 12+.186 1 0 0 0 0 12+.186 1 1 .3+.18G+4+23 1 79 12+.25% 0 0 12+.186 1 0 0 0 0	oz/A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rate Sobe Fxtl KOCZ Cold Sobe oz/A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RateSobeFxt1KOCZColqSobeFxt1KOCZoz/A	RateSobeFxt1KOCZColqSobeFxt1KOCZWimuoz/A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RateSobe Fxt1KOCZColqSobeFxt1KOCZWimuColqFxt1oz/A	RateSobeFxt1KOCZColqSobeFxt1KOCZWimuColqFxt1KOCZoz/A

Summary

Bentazon generally antagonized foxtail control from imazethapyr applied with X-77 or Sun-it II. Imazethapyr control of foxtail and common lambsquarters was greater when applied with Sun-it II than X-77. The inclusion of ammonium sulfate in the spray solution did not generally influence weed control or overcome bentazon antagonism. These results differ from those in 1991 where ammonium sulfate reduced the antagonism from bentazon. Foxtail control was less in 1992 than 1991 possibly because of their advanced growth and the dense population of kochia may have intercepted the spray from contacting the foxtail. The low control may have prevented expression of differences among treatments.
Bentazon plus sethoxydim in soybeans, Casselton 1992. 'McCall' soybeans were seeded May 12. Treatments were applied to 2nd trifoliolate soybeans, 4- to 6-leaf green and yellow foxtail, 8- to 10-inch tall wild mustard, 3- to 7-inch tall kochia, and 2- to 6-inch tall common lambsquarter on June 20 with 65 F, 65% RH, a partly cloudy sky, and no wind. Treatments were applied with a bicycle-wheel-type plot sprayer sky, and no wind. Treatments were applied with a bicycle wheel-type plot sprayer length of 10 by 30 ft plots. The experiment was a randomized complete block design the four replicates.

111 V 17

with four replicates.

				JULY	./	
			Grft8	4		
		Sohe	Yeft	KOCZ	Wimu	Colq
	Rate	JUDE	1010	% -		
Treatment	oz/A			/0		
Bent+Thif+Poast-Plus®+P0+28N Bent+Thif+Poast-Plus+P0+28N Bent+Thif+Poast-Plus+P0+28N Bent+Thif+Poast-Plus+P0+28N Bent+Thif+Poast-Plus+28N Bent+Thif+Poast-Plus+28N Bent+Thif+Poast-Plus+28N Bent+Thif+P0+28N/Poast-Plus+Dash Bent+Thif+P0+28N/Poast-Plus+Dash Bent+Thif+P0+28N/Poast-Plus+Dash Bent+Thif+P0+28N/Poast-Plus+Dash Bent+Thif+P0+28N/Poast-Plus+Dash Bent+Thif+P0+28N/Poast-Plus+Dash Bent+Thif+P0+28N/Poast-Plus+Dash Bent+Thif+P0+28N/Poast-Plus+Dash Bent+Thif+P0+28N/Poast-Plus+Dash	$\begin{array}{c} 8+.03+2.9+1.25\%+2.5\%\\ 8+.045+2.9+1.25\%+2.5\%\\ 12+.03+2.9+1.25\%+2.5\%\\ 12+.045+2.9+1.25\%+2.5\%\\ 8+.03+2.9+2.5\%\\ 8+.045+2.9+2.5\%\\ 12+.03+2.9+2.5\%\\ 12+.045+2.9+2.5\%\\ 8+.03+1.25\%+2.5\%/2.9+1.2\\ 8+.045+1.25\%+2.5\%+2.5\%/2.9+1.2\\ 8+.045+1.25\%+2.5\%/2.9+1.2\\ 8+.045+1.25\%+2.5\%/2.9+1.25\%+2.5\%/2.9+1.2\\ 8+.045+1.25\%+2.5\%/2.9+1.25\%+2.5\%/2.9+1.2\\ 8+.045+1.25\%+2.5\%/2.9+1.25\%+2.5\%/2.9+1.25\%+2.5\%/2.9+1.25\%+2.2\%/2.9+1.25\%+2.2\%/2.9+1.25\%+2.2\%/2.9+1.20\%+2.2\%/2.9+1.2\%/2.9+1.2\%/2.9+1.2\%/2.9+1.2\%/2.9+1.2\%/2.9+1.2\%/2.9+1.2\%/2.9/2.9+1.2\%/2.9+1.2\%/2.9+1.2\%/2.9+1.2\%/2.9+1.2\%/2.9\%/2.9\%/2.9\%/2.9\%/2.9\%/2.9\%/2.9\%/2$	5% 6	96 95 98 96 95 93 96 95 97 94 94 89 0	68 73 61 77 67 72 69 75 67 69 66 60 99 0	96 95 92 92 96 92 96 94 91 93 92 99 99	85 88 91 88 91 87 87 88 76 81 76 79 75 0
Untreated		75				10 11
C.V. %		6	4			4
LSD 5% # OF REPS		4	4	. 4	4	4

Summary None of the treatments caused important injury to soybeans. Yellow foxtail control exceeded 90% regardless if Poast-Plus was applied with only 28% N; 28% N and petroleum oil adjuvant (PO), or Dash adjuvant. Imazethapyr controlled kochia and wild mustard better than the other treatments, but common lambsquarter control wild mustard better with bentazon + thifensulfuron applied as a tank mixture with Poast-Plus.

Bentazon plus thifensulfuron in soybeans at Casselton, 1992. soybeans were seeded May 12. The experiment area was treated with sethoxydim at 3 oz ai/Aplus oil on June 5 for control of grass weeds. Treatments were applied to 2nd trifoliolate soybeans, 4- to 10-inch tall kochia, 8- to 12inch wild mustard, and 1- to 3-inch redroot pigweed on June 20 with 65 F, 65% RH, a partly cloudy sky, and no wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Weed densities were foxtail greater than 10 plants per square ft, kochia greater than 3 plants per square ft, and wild mustard and common lambsquarters 1 plant per square ft.

Treatment	Rate oz/A	Sobe	Ju1 KOCZ	Wimu	Colq
Bentazon+Thifensulfuron+X-77+28N Bentazon+Thifensulfuron+X-77+28N Bentazon+Thifensulfuron+X-77+28N Bentazon+Thifensulfuron+X-77+28N Bentazon+X-77+28N Thifensulfuron+X-77+28N Thifensulfuron+X-77+28N Bentazon&Acifluorfen+28N Imazethapyr+Sun-itII+28N Bentazon+Imazethapyr+Sun-itII+28N Imazethapyr+Sun-itII Imazethapyr+Sun-itII Imazethapyr+Sun-itII Imazethapyr+Sun-it+28N Untreated C.V. % LSD 5% # OF REPS	8+0.03+0.25%+2.5% 8+0.06+0.25%+2.5% 12+0.03+0.25%+2.5% 12+0.06+0.25%+2.5% 12+0.25%+2.5% 0.3+0.25%+2.5% 0.6+0.25%+2.5% 15+2.5% 15+2.5% 1+0.18G+2.5% 8+0.5+0.18G+2.5% 0.5+0.18G+2.5% 0.5+0.18G+2.5% 0.5+0.18G+2.5%	1 5 6 10 1 0 7 14 0 19 8 14 15 0 63 6	31 49 48 56 35 38 65 79 33 99 96 99 99 99 0 12 10	% 96 98 98 98 83 90 96 99 99 99 99 99 99 99 99 33 3	50 80 50 72 29 34 75 90 36 83 60 74 66 0 15 12
		4	4	4	4

Summary

None of the herbicide treatments caused important injury to soybeans. All treatments containing imazethapyr at 0.5 or 1 oz/A gave complete control The large weeds at treatment probably accounts for the low control of common lambsquarters with all herbicides and kochia with all herbicides except imazethapypr.

Weed control in soybeans from preplant incorporated herbicides, Casselton. An experiment was conducted to evaluate weed control from existing and recently developed herbicides in soybeans. 'McCall' soybeans was seeded May 12, 1992. Treatments were applied on May 11 with 77 F, 50% relative humidity, partly cloudy sky and 7 mph wind. Treatments were applied to an 8 ft wide area the size of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 17 gpa at 40 psi through 8002 flat fan nozzles. The experiment was a randomized complete block design with four replicates per treatment.

			KOOT	Wimu	July 2	Cola F	Rrpw	Corw	SB inj	
eatment ^a	Rate	Fxtl	KOCZ				_			
	Ib/A				% cc	ontrol				
							99	99	0	
	0.9	98	92	5	0		99	99	0	
rific	0.9+0.75+1qt	99	99	99	60		99	99	0	
rific + Bentazon + PO	0.9	99	76	15	10		99	99	11	
rifluralin	0.38	94	99	98	99	99	99	99	25	
-6285 (4F)	0.38	99	99	99	99	99	99	99	4	
6285 (75WG)		99	99	99	99	99		99	ò	
6285 (4F) + Trifluralin	0.38+0.5	99	99	99	99	99	99	99	0	
-6285 (75WG) + Trimuralin	0.38+0.5	99	99	99	99	99	99	99	0	
Flumetsulam/Trifluralin	0.91	99	99	99	99	99	99		õ	
Flumetsulam/Trifluralin	1.03	97	99	99	99	99	99	99	0	
Flumetsulam/Metolachior	1.68	98	92	99	99	97	9	99	0	
Flumetsulam/Metolachior	1.92	9	99	99	99	99	99	99	0	
Flumetsulam/Metolachlor	2.16	0	0	0	0	0	0	0	0	
Untreated								•	47	
		3	10	8	20	5	0	0	4/	
C.V.%		4	13	9	21	6	0	0	'	;
LSD 5%										
				1	Auc	just 3			CR	ini
		Fr	tl KOC	CZ Win	nu Co	cb Col	q Rrp	w Co	W SD	ny
Treatment ^a	Rate									
	11.74				%	contro	10			
	Ib/A							49	0	
		9	9 81	8	3	85	99			
Trific	0.9	9		99	74		99			
Trific + Bentazon + PO	0.9+0.75+1qt		9 69	8	8	79	99			
Trifluralin	0.9		7 99	99	99	99	99			
F-6285 (4F)	0.38		7 99	99	99	99				
F-6285 (75WG)	0.38		9 99	99	99	99				
E 6285 (4F) + Triffuralin	0.38+0.5		9 99			99				
F-6285 (75WG) + Triflurali	n 0.38+0.5		9 99			99				
Flumetsulam/Trifluralin	0.31		19 99 99 99			9 99				
Flumetsulam/Trifluralin	1.03		63 76			0 88			-	
Flumetsulam/Metolachlor	1.68		99 90			9 80	9 0	•	9 0	
Flumetsulam/Metolachlor	1.92		99 90 98 90			9 9:	2 9		9 0	
Flumetsulam/Metolachlor	2.16			0		0	C) () (
			0 0	U						
Untreated				8	2	1 8	(
01/9/			5 8 7 9				0 (C	11 ()
C.V.% LSD 5% Flumetsulam = will be m			7 9							and an influence
LOU 5%						-	a. for	wahle	formula	ation of triffura

All treatments containg F-6285 or flumetsulam gave long season control of all weeds. Crop injury was observed from F-6285 in the initial rating but no crop injury was observed in the final rating. Subsequent flushes of cocklebur emerged after bentazon application.

Weed control in soybeans from imazethapyr with lactofen and adjuvants. Casselton. An experiment was conducted to evaluate weed control from imazethapyr with different adjuvants and tank-mixtures with lactofen. 'McCall' soybeans were seeded May 12, 1992. Postemergence treatments were applied to V1 (3-5 inch) soybeans, 4- to 10-leaf (1-4 inch) foxtail, 2 to 10 inch diameter wild mustard, 0.5- to 2 inch comon lambquarters, 1 to 5-inch kochia, 4- to 6-leaf (1.5- to 3-inch cocklebur), and 2- to 3-leaf (1 to 2 inch Venice mallow, on June 11 with 76 F, 79% relative humidity, cloudy sky and 4 mph wind. Bentazon was aplied 7 days before grass herbicides. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 40 psi through 8001 flat fan nozzles. The experiment was a randomized complete block design with four replications/treatment.

		6-26-92					8-03-92						
Treatment ^a	Rate	Fxtl	KOCZ	Colq	Vema	Fxtl	KOCZ	Colq	Vema	Coci			
	oz/A	% control											
Imazethapyr + X-77	0.5+0.25%	68	86	30	41	49	99	33	38	43			
Imazethapyr + X-77 + 28%N	0.5+0.25%+2%	69	89	24	48	50	99	21	43	46			
Imazethapyr + Preference + X-77	0.5+0.25%	64	89	28	36	48	99	16	35	40			
Imazethapyr + Preference + 28%N	0.5+0.25%+2%	77	96	45	43	54	99	39	39	45			
Imazethapyr + Mor-Act	0.5+1.5pt	85	97	61	43	65	99	48	41	59			
Imazethapyr + Mor-Act + 28%N	0.5+1.5pt+2%	83	96	70	54	65	99	51	49	58			
Imazethapyr + MSO	0.5+1.5pt	91	96	63	50	74	99	63	50	56			
Imazethapyr + MSO + 28%N	0.5+1.5pt+2%	88	97	66	54	81	99	61	49	60			
Imazethapyr + Meth-Oil	0.5+1.5pt	87	96	76	51	84	99	79	47	58			
Imazethapyr + Meth-Oil + 28%N	0.5+1.5pt+2%	92	97	81	51	85	99	84	48	60			
Imazethapyr + Sun-It II	0.5+1.5pt	94	97	82	53	89	99	76	48	64			
Imazethapyr + Sun-It II + 28%N	0.5+1.5pt+2%	96	97	84	55	83	99	75	49	65			
Imazethapyr + Sethoxydim + Sun-It II	0.5+1.3+1.5pt	92	96	80	50	76	99	89	48	68			
Imazethapyr + Fluazifop + Sun-It II	0.5+1.6+1.5pt	88	96	73	54	73	99	78	48	58			
Imazethapyr + Fenoxaprop + Sun-It II	0.5+1.3+1.5pt	89	96	60	49	81	99	60	45	65			
Imazethapyr + Quizalofop + Sun-It II	0.5+0.54+2%	89	96	91	48	83	99	89	44	71			
Imazethapyr + Fusion + Sun-It II	0.5+2+1.5pt	95	97	66	50	84	99	70	46	75			
Imazethapyr + Clethodim + Sun-It II	0.5+1.06+1.5pt	75	96	70	48	80	99	85	44	69			
Imaz + Lactofen + X-77 + 28%N	0.5+1+0.25%+2%	96	98	71	48	75	99	84	44	78			
Imaz + Lactofen + X-77 + 28%N	0.5+1.5+0.25%+2%	91	98	95	61	76	99	94	59	64			
Imaz + Lactofen + X-77 + 28%N	0.5+2+0.25%+2%	78	98	83	69	76	99	89	66	85			
Bentazon/Sethoxydim + Sun-It II	0.75lb+1.3+1.5pt	93	97	60	96	86	99	58	96	59			
Bentazon/Fluazifop + Sun-It II	0.75+1.6+1.5pt	89	99	66	96	79	99	64	96	55			
Bentazon/Fenoxaprop + Sun-It II	0.75+1.3+1.5pt	95	97	61	97	92	99	51	97	58			
Bentazon/Quizalofop + Sun-It II	0.75+0.54+2%	92	99	75	96	74	99	55	96	56			
Bentazon/Clethodim + Sun-It II	0.75+1.06+1.5pt	94	96	63	97	86	99	55	97	54			
Bentazon/Fusion + Sun-It II	0.75+2+1.5pt	96	97	65	97	85	99	55	97	58			
Bentazon/Fusion + Sun-It II	0.75+2.7+1.5pt	96	96	64	95	88	99	53	95	60			
Bentazon/Fusion + Sun-It II	0.5+2.7+1.5pt	95	97	75	95	90	99	56	95	58			
Untreated		0	0	0	0	0	0	0	0	0			
C.V.%		8	3	15	9	14	0	22	9	15			
LSD 5%		9	4	13	8	13	0	15	7	12			

^aX-77 and Preference = nonionic surfactant; Mor-Act = petroleum oil, MSO, Meth-Oil, Sun-It II = methylated seed oil.

No soybean injury was observed with any treatments. Complete control was observed on wild mustard at both ratings and common cocklebur on the first rating. Methylated seed oil adjuvants with imazethapyr generally increased weed control over other adjuvant types. Grass control from imazethapyr and grass herbicides was variable. Foxtail control was reduced when imazethapyr was tank-mixed with lactofen at the high rate in the initial rating. Weed control in soybeans, Mooreton. An experiment was conducted to evaluate weed control from Broadstrike or imazethapyr with different adjuvants and tank-mixtures with lactofen. 'Dawson' soybeans were seeded May 7. Preplant incorporated herbicides were applied and incorporated on May 6 with 74 F, 25% relative humidity, no clouds and 22 mph wind velocity. Preemergence herbicides were applied May 14 with 72 F, 39% relative humidity, 25% cloud cover, and 8 mph wind. Postemergence treatments were applied to VC to V1 soybeans, 4- to 8-leaf (1-3 inch) foxtail, 1 to 4 inch wild mustard, 1- to 4 inch comon lambquarters, 1 to 2.5 inch redroot pigweed, and 1 to 2 inch cocklebur on June 8 with 71 F, 61% relative humidity, 30% cloudy sky and 6 mph wind. Bentazon was applied 7 days before grass herbicides. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 17 gpa at 40 psi through 8002 flat fan nozzles for soil applied treatments and 8.5 gpa at 40 psi through 8001 flat fan nozzles for post applied treatments. The experiment was a randomized complete block design with four replications/treatment.

JICK design with four representation		·		6	-26-92			
reatment ^a	Rate	Fxtl	Corw	Rrpw	Colq	Cocb	Sb inj	
	oz/A			% c	ontrol			
	04A							
	0.9 lb	98	28	96	84	16	0	
rifluralin (PPI)	0.91 lb	99	99	99	99	99	15	
Flumetsulam/Trifluralin (PPI)	1.03 lb	99	99	99	99	99	24	
Flumetsulam/Trifluralin (PPI)	1.68 lb	93	99	99	99	99	11	
Flumetsulam/Metolachlor (PRE)	1.92 lb	96	99	99	99	99	18	
Flumetsulam/Metolachlor (PRE)	2.16 lb	96	99	99	99	99	11	
Flumetsulam/Metolachlor (PRE)	0.5+0.25%+2%	78	40	93	15	99	6	
mazethapyr + X-77 + 28%N	0.5+0.25%+2%	83	40	95	40	99	0	
Imazethapyr + Preference + 28%N	0.5+0.25%+2%	87	48	99	44	99	0	
Imazethapyr + Mor-Act + 28%N	0.5+1.5pt+2%	91	59	99	55	99	0	
mazethapyr + MSO + 28%N	0.5+1.5pt+2%	84	59	99	41	99	5	
Imazethapyr + Meth-Oil + 28%N	0.5+1.5pt+2%	96	76	99	64	99	0	
Imazethapyr + Sun-It II + 28%N	0.5+1.5pt+2%	90	54	99	30	99	0	
Imazethapyr + Sethoxydim + Sun-It II	0.5+1.3+1.5pt	90	65	99	54	99	0	
Imazethapyr + Fluazifop + Sun-It II	0.5+1.6+1.5pt	97	68	99	61	99	0	
Imazethapyr + Fenoxaprop + Sun-It II	0.5+1.3+1.5pt	97	54	99	33	99	0	
Imazethapyr + Quizalotop + Sun-It II	0.540.541270	90	70	99	53	99	0	
Imazethapyr + Fusion + Sun-It II	0.5+2+1.5pt	93	59	99	56	99	0	
Imazethapyr + Clethodim + Sun-it II	0.5+1.06+1.5pt		66	98	56	99	5	
lmaz + Lactofen + X-77 + 28%N	0.5+1+0.25%+2%	94	81	99	61	99	6	
Imaz + Lactofen + X-77 + 28%N	0.5+1.5+0.25%+2%	92	92	99	83	99	16	
Imaz + Lactofen + $X-77 + 28\%N$	0.5+2+0.25%+2%	95	92 76	31	40	99	0	
Bentazon/Sethoxydim + Sun-It II	0.75lb+1.3+1.5pt	89	73	19	30	99	0	
Bentazon/Fluazifop + Sun-It II	0.75+1.6+1.5pt	92	63	18	59	99	0	
Bentazon/Fenoxaprop + Sun-It II	0.75+1.3+1.5pt	91	44	24	45	99	0	
Bentazon/Quizalofop + Sun-It II	0.75+0.54+2%	88		24	45	99	. 0	
Bentazon/Clethodim + Sun-It II	0.75+1.06+1.5pt	99	38	14	36	99	0	
Bentazon/Fusion + Sun-It II	0.75+2+1.5pt	96	55	14	49	99	0	
Bentazon/Fusion + Sun-It II	0.75+2.7+1.5pt	98	46		59	99	0	
Bentazon/Fusion + Sun-It II	0.5+2.7+1.5pt	98	46	6	0	99	õ	
		0	0	0	U	U		
Untreated					10	4	19	
0.11.11		9	21	11			11	
C.V.% LSD 5%		11	19	12	12	5		

^aFlumetsulam = DE-498 (Trade name - Broadstrike by DowElanco), X-77 and Preference = nonionic surfactant; Mor-Act = petroleum oil, MSO, Meth-Oil, Sun-It II = methylated seed oil.

Treatments containing flumetsulam adaquately controled all weeds. Some crop injury was observed. However, conditions were extremely wet following application and some part of the study had standing water. Methylated seed oil adjuvants with imazethapyr generally increased weed control over other adjuvant types. Common lambsquarters control was increased when lactofen was added to imazethapyr. Foxtail control was not affected from imazethpyr/grass herbicide tank-mixtures.

Lanceleaf sage control from imazethapyr and lactofen in soybeans, Oriska. An experiment was conducted to evaluate lanceleaf sage control from imazethapyr and lactofen applied alone, in combination, and with various adjuvants. 'Pioneer 9061' soybeans was seeded May 18. Early postemergence herbicides were applied to V2 (4 to 7 inch) soybeans, 2 to 3 inch lanceleaf sage, 2 to 6 inch wild mustard, and 2 to 5 inch marshelder on June 23 with 68 F, 52% relative humidity, partly cloudy sky and 4 mph wind. Postemergence herbicides were applied to V3 (6 to 9 inch) soybeans, 4 to 6 inch lanceleaf sage, 4 to 8 inch wild mustard, and 3 to 7 inch marshelder on June 27, with 72 F, 58% relative humidity, partly cloudy sky and 5 mph wind. Treatments were applied to an 8.5 ft wide area the size of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 40 psi through 8001 flat fan nozzles. Data is an average of two locations. The experiment was a randomized complete block design with four replicates/treatment/location.

			igust 10			
Treatment ^a		<u>2 to</u>	3 inch Lals		6 inch Lals	
	Rate	Lais		Lais	SB inj	
	oz/A					
	02/A		%	control		
Imazethapyr + Sun-It II	0.25+1.5 pt	64				
Imazethapyr + Sun-It II	0.5+1.5 pt	64	0	73	0	
Imazethapyr + Sun-It II	0.75+1.5 pt	90	0	95	0	
Imazethapyr + Sun-It II + 28%N	0.75+1.5pt+2qt	90	0	97	0	
Imazethapyr + Sun-It II	1+1.5 pt	97	0	95	0	
Imazethapyr + X-77	0.5+0.25%	96	0	98	0	
Imazethapyr + X-77 + 28%N		63	0	44	0	
Imazethapyr + Preference	0.5+0.25%+2qt	71	0	53	0	
Imazethapyr + Preference + 28%N	0.5+0.25%	60	0	50	0	
Imazethapyr + Mor-Act	0.5+0.25%+2qt	66	0	38	0	
Imazethapyr + Mor-Act + 28%N	0.5+1.5pt	76	0	76	0	:
Imazethapyr + MSO	0.5+1.5pt+2qt	80	0	82	0	
Imazethapyr + MSO + 28%N	0.5+1.pt	93	0	88	0	
Imazethapyr + Ms0 + 28%N	0.5+1.5pt+2qt	95	0	93	0	
mazethapyr + Meln-Oll	0.5+1.5pt	90	0	93	0	
Imazethapyr + Meth-Oil + 28%N	0.5+1.5pt+2qt	90	0	90		
Lactofen + Mor-Act	1+1.5pt	21	0	90	0	
Lactofen + Mor-Act	1.5+1.5pt	52	3		2	
Lactofen + Mor-Act	2+1.5pt	70	6	18	7	
Lactofen + Mor-Act	2.5+1.5pt	70		36	13	
Lactofen + Mor-Act	3+1.5pt	86	9	50	17	
Imazethapyr + Lactofen + Mor-Act	0.5+1+1.5pt	81	12	77	21	
Imazethapyr + Lactofen + Mor-Act	0.5+1.5+1.5pt		0	90	0	
Imazethapyr + Lactofen + Mor-Act	0.5+2+1.5pt	90	0	93	0	
Untreated	or a rispe	93	7	93	9	
		0	0	0	0	
C.V.						
LSD (0.05)		2	7	10	9	
a		4	2	11	4	

^aX-77 and Preference = nonionic surfactant, Mor-Act = petroleum oil with 17% emulsifier, Sun-It II, MSO and Meth-Oil = methylated seed oil.

Lactofen only at 3 oz/A gave over 85% control to lanceleaf sage at the 2 to 3 inch stage. Imazethapyr at 0.5 oz/A plus Sun-It II gave 90% control of 2 to 3 inch or 5 to 6 inch lanceleaf sage. Methylated vegetable oil adjuvants enhanced imazethapyr activity over petroleum oil adjuvants or nonionic surfactants. Imazethapyr applied with methylated vegetable oil adjuvants gave 90% lanceleaf sage control applied with or without 28% liquid nitrogen. Combinations of imazethapyr and lactofen gave greater lanceleaf sage control that either herbicide applied alone at the same rate.

55

Weed control in dry edible beans, Cavalier. An experiment was conducted to evaluate weed control from Broadstrike or imazethapyr with different adjuvants and tank-mixtures with lactofen. Half of each plot was planted 'Upland' navy and 'Agassiz' dry beans on May 18. Preplant incorporated herbicides were applied and incorporated on May 12 with 53 F, 65% relative humidity, cloudy sky and 10 mph wind velocity. Preemergence herbicides were applied May 22 with 61 F, 63% relative humidity, 85% cloud cover, and 7 mph wind. Postemergence treatments were applied to V1 dry beans, 4- to 10-leaf (1-6 inch) foxtail, 1 to 5 inch wild mustard, 2 to 5 inch field pennycress, 2 to 4 inch sheperdspurse, 0.5 to to 1.5 inch comon lambquarters, 0.5 to 1.5 inch redroot pigweed, 2 to 10 leaf wild buckwheat (1 to 4 inch), 0.5 to 3 inch kochia, 1 inch smartweed, 1 to 3 inch wild oats and 1 to 3 inch barnyardgrass on June 12 with 71 F, 76% relative humidity, 10% cloudy sky and 4 mph wind. Bentazon was applied 7 days before grass herbicides. Treatments were applied to an 8 ft wide area the length of 10 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 17 gpa at 40 psi through 8002 flat fan nozzles for soil applied treatments and 8.5 gpa at 40 psi through 8001 flat fan nozzles for post applied treatments. The experiment was a randomized complete block design ith four replications/treatment.

ith four replications/treatment.										7-23-	92		
		Evtl	Bygr	Wiot	5-26-92 Wibw	Colq	Nfcf	Fxtl	Bygr	Wiot	Wibw	Colq	Nfc
reatment ^a	Rate	FXU	uyg.						1				
	oz/A						· % c	ontro)				
	02/A							95	97	86	87	97	72
	0.91 lb	79	86	60	91	95	99	95	99	96	94	99	83
umetsulam/Trifluralin (PPI)	1.03 lb	81	93	74	87	90	99	95	0	10	0	13	25
umetsulam/Trifluralin (PPI)	1.68 lb	25	48	19	5	5	13	0	0	10	0	13	25
metsulam/Metolachior (PRE)	1.92 lb	33	53	11	10	16	20	20	18	18	0	15	2
motsulam/Metolachior (PRE)	2.16 lb	42	64	31	24	16	31	75	85	70	38	56	2
umetsulam/Metolachior (Phc)	0.5+0.25%+2%	85	80	64	53	48	34	73	83	71	33	54	2
$x_{270} + x_{-11} + 20^{-10}$		81	75	78	73	63	36	83	88	76	55	65	4
azothanyr + Preference + 20%	0.5+1.5pt+2%	85	85	79	74	65	34	86	92	88	45	51	3
hazethapyr + Mor-Act + 20%	0.5+1.5pt+2%	87	92	81	79	71	39	89	96	91	66	71	• 6
nazothanyr + MSO + 28%IN	0.5+1.5pt+2%	91	97	80	76	74	40	97		94	74	74	· 6
nazethapyr + Meth-Oil + 28%N	0.5+1.5pt+2%	98	99	92	91	89	39	91	94	90	75	74	. 6
azethanyr + Sun-It II + 20%	0.5+1.3+1.5pt	91	90	89	78	78	39	91		95	78	66	:
naz + Sethoxydim + Sun-It II	0.5+1.6+1.5pt	96	99	89	79	79	40	93		80	74	66	
maz + Fluazifop + Sun-It II	0.5+1.3+1.5pt	84	94	71	85	83	37	93		84	80	73	!
maz + Fenoxaprop + Sun-It II	0.5+0.54+2%	85	93	60	86	79	36			91	71	65	
maz + Quizalofop + Sun-It II	0.5+2+1.5pt	90	96	88		78	39				49	34	
maz + Fusion + Sun-It II	0.5+1.06+1.5pt	88	90	92	85	75	38					48	
maz + Clethodim + Sun-It II	0.5+1+.25%+	82	90	65	87	81	71					39	
max + 1 actofen + X-77 + 28%N	0.5+1.5+0.25%+2	% 72	88	39	85	88						81	
maz + Lactofen + X-77 + 28%	0.5+1.5+0.25%+2%	68	85	21	89	92						45	
maz + Lactofen + X-77 + 28%	0.75lb+1.3+1.5pt	98		80) 52	63						46	
Bontazon/Sethoxydim + Sun-It II	0.75+1.6+1.5pt	93		56	5 33	49						54	
Bentazon/Fluazifop + Sun-It II	0.75+1.3+1.5pt	93		56	5 33	49			-			5	
Bentazon/Fenoxaprop + Sun-IL II	0.75+0.54+2%	83	3 90) 55	5 39				0 94			5	
Bontazon/Quizalofop + Sun-IL II	0.75+1.06+1.5pt	9	9 99	9	7 31			-	4 99		-		
Bentazon/Clethodim + Sun-It II	0.75+1.00+1.00+	9		9 9	0 49	55			9 9	-	-		
Bentazon/Fusion + Sun-It II	0.75+2+1.5pt	9	-		6 48	5	-	•	2 9	-			2
Bentazon/Fusion + Sun-It II	0.75+2.7+1.5pt	9			3 30) 4	9 2	-	94 9	•	-	0	
Bentazon/Fusion + Sun-It II	0.5+2.7+1.5pt	0				0	C) (0 0	0	0	U	
Untreated								•	16 7	, 1	8 23	3 3	3
		g			1 16				6 8				1
C.V.%		1	11 1	9 1	12 13				•				
LSD 5%										nionic	surfac	tant:	Mo

^aFlumetsulam = DE-498 (Trade name - Broadstrike by DowElanco), X-77 and Preference = nonionic surfactant; M petroleum oil with 17% emulsifier, MSO, Meth-Oil, Sun-It II = methylated seed oil.

=

Prepaint incorporated (PPI) treatment of flumetsulam/trifluralin at the highest rate controlled most weeds except wild oats. PRE treatments did not provide same level of control as PPI treatments. Methylated seed oil adjuvants with imazethpyr generally increased weed control over other adjuvant types. Grass control was reduced when lactofen was tank-mixed with imazethapyr. Lactofen incresed common lambsquarters control with imazethapyr. Grass control was variable when imazethapyr/graminice tank-mixures.

Imazamethabenz in weed free sunflower, Fargo 1992 'Interstate 3311' sunflowers were seeded May 18. Ethafluralin at 1 lb/A (Granular formulation) was applied and field cultivator + harrow incorporated on May 14 for general weed control. Treatements (2-41f) were applied to 2- to 4-leaf sunflowers, 1- to 3-inch tall green foxtail and kochia, and 1- to 2inch tall redroot pigweed on June 11 with 85 F, 60% RH, clear sky, and 15mph wind. Treatments (6-81f) were applied to 6- to 8-leaf sunflowers, 5to 6-leaf foxtail, 4- to 6-inch tall kochia and redroot pigweed on June 26 with 68 F, 45% RH, clear sky, and 1- to 3-mph wind. Weed populations were less than one plant per square ft. Treatments were applied with a bicyclewheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. experiment was a randomized complete block design with four replicates. The

Treatment	Rate oz/A		owth ction %	ug 21 Malformed heads
<pre>Imazamethabenz-LC + X-77 (2-41f) Imazamethabenz-LC + X-77 (2-41f) Imazamethabenz-LC + Sun-it II (2-41f) Imazamethabenz-SG + X-77 (2-41f) Imazamethabenz-SG + X-77 (2-41f) Imazamethabenz-SG + Sun-it II (6-81f) Imazamethabenz-SG + Sun-it II (6-81f)</pre>	3+0.25% 6+0.25% 3+0.25G 6+0.25G 3+0.25% 6+0.25% 3+0.25G 6+0.25G 12+0.25G 3+0.25G 6+0.25G 12+0.25G 12+0.25G 12+0.25G 12+0.25G 0	0 3 3 4 4 9 5 3 3 3 4 157 NS	2 0 5 0 3 0 0 3 2 1 0 0 188 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<u># OF REPS</u>		4	4	4

Summary

The experiment was free of weeds so no weed control evaluations were taken. None of the treatments caused important growth reduction or head malformations. The sunflowers were not harvested for seed yield because of excessive depredation by birds. Imazamethabenz LC up to 6 oz/A and the SG up to 12 oz/A did not injure sunflowers. The cool conditions in 1992 may have reduced the potential for injury.

57

Weed control in flax, Fargo 1992. 'Neche' flax was seeded May 6. Treatments were applied to 4- to 6-inch tall flax, 3-inch green and yellow foxtail, 0.5- to 1-inch redroot pigweed, 2-inch common lambsquarter, and 1- to 2-inch kochia on June 8 with 72 F, 40% RH, clear sky, and 8- to 10-mph wind. Treatments were applied with a bicyclewheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was randomized complete block design with four replicates.

				July	1		Augu	ist 2	1	Sept 13
Treatment	Rate oz/A	Flax	Fota	Rrpw	Colq	<u>KOCZ</u> %	Flax	<u>Fota</u>	<u>KOCZ</u>	<u>Yield</u> bu/A
MCPA bee + Seth + Scoil MCPAbee+Thif+Seth+Scoil MCPA bee+Thif+Seth+PO MCPAdma+Thif+Seth+PO Brox+Thif+Seth+Scoil Bromoxynil+Thif+Seth+PO Sethoxydim + Scoil MCPA-dma+Thif + Scoil Imep + MCPA dma + Scoil Imazethapyr + Scoil Bent+MCPAdma+Seth+Scoil Not-treated C.V. % LSD 5% # OF REPS	$\begin{array}{c} 4+3+0.18G\\ 4+0.06+3+0.18G\\ 4+0.06+3+0.18G\\ 4+0.06+3+0.18G\\ 4+0.06+3+0.18G\\ 4+0.06+3+0.18G\\ 4+0.06+3+0.18G\\ 4+0.06+3+0.18G\\ 0.2+4+0.18G\\ 0.2+4+0.18G\\ 0.2+0.18G\\ 8+4+3+0.18G\\ 0\end{array}$	9 28 25 19 21 34 38 0 16 24 41 14 0 53 16 4	99 97 97 98 95 98 95 99 18 72 85 94 0 8 94 0	75 99 99 99 99 99 99 99 98 94 80 0 6 7 4	99 99 99 99 99 99 99 99 99 55 99 0 6 6	50 99 99 97 98 0 99 95 99 97 0 6 7 4	1 1 3 1 4 1 4 0 0 3 4 0 0 3 4 0 0 158 NS 4	98 93 90 92 89 99 0 80 85 92 0 6 6 4	0 94 98 96 95 95 96 87 95 77 0 8 95 77 0 8 9 4	18.8 24.4 23.0 23.7 23.4 21.4 21.0 14.7 16.8 20.6 21.7 21.6 15.1 14.5 NS 4

^anot part of statistical analysis as two replicates were not harvestable because of excessive weed growth.

Summary

The wild mustard evaluated on July 4 was removed from the table as control was 99% for all treatments except when not treated. Treatments containing bromoxynil and imazethapyr alone caused greater than 30% flax injury at the early evaluation, but recovered for the late evaluation. Thifensulfuron was less injurious to flax when applied without sethoxydim than with sethoxydim. Thifensulfuron at 0.06 oz/A applied with MCPA amine (dma) or ester (bee) or bromoxynil effectively (> 90%) controlled all broadleaf weeds. Flax injury and weed control was similar for comparable herbicides applied with Scoil or petroleum oil (PO) adjuvants. The results indicate that thifensulfuron at 0.06 oz/A in mixture with MCPA + adjuvant would give effective broadleaf weed control (including redroot pigweed and kochia) without important injury to flax. The inclusion of sethoxydim to thifensulfuron and MCPA would provide grass MCPA applied with weed control, but also increase potential injury to flax. imazethapyr generally reduced injury to flax, control of foxtail and kochia,; but increased common lambsquarter control.

Weed control in seedling alfalfa from imazethapyr, Fargo. An experiment was conducted to evaluate weed control and effect of imazethapyr on alfalfa establishment. 'Vernal' alfalfa was seeded April 29, 1992. Early postemergence herbicides were applied to 0.5- to 2-inch alfalfa, 1.5-inch green foxtail, 4inch diameter waterpod, 1- to 8-inch field pennycress, 1- to 8-inch sheperd's-purse, 1.5- to 2-inch redroot pigweed, 1-inch prostrate pigweed, 0.5- to 1.5-inch common lambsquarters, 1- to 2-inch common purslane, 1- to 2.5-inch kochia, 0.5- to 1-inch diameter prickly lettuce, pre-bolt curly dock, 0.5- to 1.5-inch common mallow, 2- to 6-inch Canada thistle, 4-inch diameter perennial sowthistle, 2to 7-inch common milkweed on May 27 with 69 F, 58% relative humidity, partly cloudy sky and 3 mph wind. Postemergence herbicides were applied to 1- to 4-inch alfalfa, 2- to 4-inch green foxtail, 4- to 8-inch diameter waterpod, 6- to 14-inch field pennycress, 6- to 14-inch sheperd's-purse, 2- to 4-inch redroot pigweed, 1- to 3-inch prostrate pigweed, 2- to 4-inch common lambsquarters, 1- to 3-inch common purslane, 2- to 8-inch kochia, 0.5- to 1.5-inch diameter prickly lettuce, 14- to 20-inch curly dock, 1- to 2.5-inch common mallow, 1-inch sunflower, 0.5- to 1-inch common ragweed, 4- to 8-inch Canada thistle, 6- to 14-inch diameter perennial sowthistle, 5- to 12-inch common milkweed on June 1, with 74 F, 61% relative humidity, partly cloudy sky and 2 mph wind. Treatments were applied to an 16 ft wide area the size of 20 by 30 ft plots with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 40 psi through 8001 flat fan nozzles. The experiment had four replicates/treatment.

					July	20			
Treatment ^a	Rate	Prpw	Colq	Сори	Prie	Cath	Comw	Alfa Inj	
Early Postemergence	oz/A			%	contro				
Imazethapyr + Sun-It II + UAN 28%					·				
Imazethapyr + Sun-It II + UAN 28%	0.5+2%+2%	98	93	93	97	31	0	0	
mazethapyr + Sun-It II + UAN 28%	0.75+2%+2%	97	96	96	99	40	0	0	
mep + Brox + Sun-It II + UAN 28%	1+2%+2%	99	99	99	98	49	0	0	
mep + Seth + Sun-It II + UAN 28%	0.5+3+2%+2%	99	99	99	99	57	0	0	
Intreated	0.5+3+2%+2%	99	99	99	97	25	0	0	
		0	0	0	0	0	0	0	
C.V.%							•	0	
SD 5%		3	2	3	3	6	0	0	
ostemergence		3	2	3	3	2	0	0	
mazethapyr + Sun-It II + UAN 28%							° i	0	
mazethapyr + Sun-It II + UAN 28%	0.5+2%+2%	93	90	90	95	23	0	0	
mazethapyr + Sun-It II + UAN 28%	0.75+2%+2%	94	94	95	99	33	0	0	
mep + Brox + Sun-It II + UAN 28%	1+2%+2%	99	99	99	98	40	0	0	
nep + Seth + Sun-It II + UAN 28%	0.5+3+2%+2%	99	99	99	99	50	0	0	
Intreated	0.5+3+2%+2%	99	99	99	97	33	0	0	
		0	0	0	0	0		0	
.V.%									
SD 5%		4	2	3	4	6	0	0	
		4	3	3	5	3		0	

^aSun-It II = methylated seed oil, Seth=sethoxydim, Brox = bromoxynil.

Complete weed control was observed for green foxtail and yellow foxtail, waterpod, field pennycress, sheperd's-purse, redroot pigweed, kochia, curly dock, common mallow, common sunflower, common ragweed, and perennial sowthistle. All treatments gave greater than 90% control of prostrate pigweed, common lambsquarters, common purslane, and prickly lettuce. All treatments gave poor control of Canada thistle and had no activity on common milkweed. No crop injury was observed at evaluation and alfalfa was established with minimal impact from weeds.

'Valley' oats, Nonionic surfactant with glyphosate (Honcho), Fargo 1992. Nonionic surfactant with grypnosate (Honcho), Fargo 1992. Variey bats, 'White' proso millet, and 'Siberian' foxtail millet were seeded in adjacent strips as bioassay species on May 7. Treatments were applied across the species to 6-leaf oats, 4- to 6-leaf proso millet, 5- to 6-leaf foxtail millet, and 3- to 6-inch tall kochia on June 12 with 85 F, 65% RH, partly cloudy sky, and 3- to 5-mph wind. Treatments were applied with a bicycle wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

was a randomized comp			June	10			July	19	
Tuestmont	Rate	Oat	Fxmi	Prmi	KOCZ	0ats %	Fxmi	Prmi	KOCZ
<u>Treatment</u> Glyphosate+X-77 Glyphosate+R-11 Glyphosate+Penetrator Glyphosate+Preference Glyphosate+Kenetic(silicone) Glyt+Silwet L-77(silicone) Glyphosate+Spray BoosterS Glyphosate+Activator 90 Glyphosate+Add-wet Glyphosate+Add-wet Glyphosate+Add-wet Glyphosate+SA-90C Maximizer Untreated C.V. % LSD 5% # OF REPS	oz/A 1+1% 1+1% 1+1% 1+1% 1+1% 1+1% 1+1% 1+1% 1+1% 1+1% 1+1% 1+1% 0		23	14	14 48 4 16 6 8 50 26 18 0 25 14 0 0 51 12	75 95 41 85 73 72 68 87 89 10 89 80 14 0	9	13	0 0 40 14

Summary

Species control increased from the June 19 to July 9 rating, but relative control with the various adjuvants was similar at both evaluations. Within the silicone, Silwet L-77 appeared more effective than Kenetic for most species except oats. Oats stand was uniform and thus evaluations were precise. Glyphosate (Honcho) control of oats was greater when applied with R-11, Preference, Spray Booster S, Activator 90, and Add-wet than when applied with the other surfactants.

Nonionic surfactant with glyphosate (Honcho), Carrington 1992. 'Grandin' hard red spring wheat, 'Linton' flax, and 'Sunup' proso millet were seeded May 11. Treatments were applied to flag-leaf wheat, 12- to 14-inch tall flax, 5- to 6leaf proso millet, and 3- to 8-inch tall broadleaf weeds on June 26 with 66 F, 46% RH, clear sky, and 9 mph wind. Treatments were applied with a bicyclewheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

		July 18						
Tweatment		July 8		Wht			Broadle	af
Treatment	Rate	A11 SI	pecies	inj	Flax	Prmi	weeds	
	oz/A			%	6			
Clumbooster V 77								
Glyphosate+X-77	1.5+1%	46	73	95	15	59	10	
Glyphosate+R-11	1.5+1%	61	72	98	45	76	15	
Glyphosate+Penetrator	1.5+1%	17	27	68	4	24	3	
Glyphosate+Preference	1.5+1%	68	76	96	55	84	9	
Glyphosate+Li-700	1.5+1%	43	63	93	10	26	Ő	
Glyphosate+Kenetic(silicone)	1.5+1%	38	66	88	5	40	8	
Glyphosate+Silwet L-77(silicone)	1.5+1%	78	91	95	44	93	68	
Glyphosate+Spray Booster S	1.5+1%	62	84	96	23	66	21	
Glyphosate+Activator 90	1.5+1%	68	88	99	26	69	24	
Glyphosate+Spray Fuse 90	1.5+1%	26	40	84	6	29		:
Glyphosate+Add-wet	1.5+1%	68	87	93	28	80	10	
Glyphosate+Activator Plus	1.5+1%	64	83	99			28	
Glyphosate+SA-90C Maximizer	1.5+1%	13			18	69	6	
	1.5+1%	13	31	63	0	11	1	
C.V. %		22	20	11	C 1			
LSD 5%		33	26	11	61	28	97	
# OF REPS		24	25	14	19	23	22	
" OI INLES		4	4	4	4	4	4	

Summary

Surfactants differed in their enhancement of Honcho (glyphosate formulated without a surfactant) toxicity to plant species. The generally effective adjuvants for enhancement of grass species control by glyphosate were: R-11, Preference, Silwet L-77, Spray Booster S, Activator 90, Add-wet, and Activator Plus. The silicone type surfactants each differed because Silwet L-77 tended to be the most effective adjuvant and kenetic intermediate among surfactants. Nonionic surfactant with glyphosate (Honcho), Dickinson, 1992. 'Dumont' oats, 'Stoa' hard red spring wheat, 'Common red' proso millet, and 'Neche' flax were seeded in adjacent strips as bioassay species on May 20. Treatments were applied across the species to 6- to 8-inch tall crops on June 25 with 70 F, partly cloudy sky, and 0- to 10-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 5 ft wide area the length of 10 by 20 ft plots. The experiment was a randomized complete block design with four replicates.

				July 27						
		Wheat		July 8			Wheat			
Treatment	Rate	inj	Flax	Oats	Prmi	Ruth		Flax	Uats	Prmi
Treatment	oz/A					%	,			
ol sheeter ¥ 77	1+1%	13	10	20	28	0	23	12	22	22
Glyphosate+X-77	1+1%	46	53	48	38	10	51	39	44	35
Glyphosate+R-11	1+1%	11	8	18	16	0	20	9	21	12
Glyphosate+Penetrator Glyphosate+Preference	1+1%	49	38	46	54	10	56	35	52	59
Glyphosate+Li-700	1+1%	16	15	21	35	0	30	15	28	34
Glyphosate+Kenetic(silicone)	1+1%	34	10	41	38	5	39	16	38	27
Glyphosate+Silwet L-77(silicone)		75	55	61	70	26	85	23	58	69
Glyphosate+Spray BoosterS	1+1%	35	24	36	39	9	50	28	39	41
Glyphosate+Activator 90	1+1%	38	38	45	45	5	44	26	38	46.
Glyphosate+Spray Fuse 90	1+1%	10	3	20	24	0	14	5	17	10
Glyphosate+Add-wet	1+1%	48	49	48	53	11	49	30	42	36
Glyphosate+Activator Plus	1+1%	45	30	41	44	6	48	29	43	39
Glyphosate+SA-90C Maximizer	1+1%	4	1	13	18	0	7	2	14	15
C.V. %		44	41	36	43	127	34	41	31	40
LSD 5%		20	15	18	24	12	19	12	16	20
# OF REPS		4	4	4	4	4	4	4	4	4

Summary

Control was generally low because of the low glyphosate (Honcho) rate and the dry conditions at treatment. Preference and Silwet L-77 generally enhanced glyphosate more than R-11, Kenetic, Spray Booster S, Activator 90, Add-wet and Activator Plus; which generally were more effective than X-77, Penetrator, Li-700, Spray Fuse 90, and Maximizer.

Nonionic surfactant with glyphosate (Honcho), Hettinger 1992. 'Butte 86' hard red spring wheat, 'Hybrid Pearl' proso millet, and a mixture of soybean cultivars were seeded in adjacent strips on various dates around May 26. Treatments were applied to 2- inch tall wheat and flax, 6-inch tall proso millet, 4-leaf sunflowers and barley, and 3.5-leaf oats on July 14 with 84 F, clear sky, and 10-mph wind. Treatments were applied with a bicycle-wheel -type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 5 ft wide area the length of 10 by 20 ft plots. Treatments were not replicated.

				Aug	ust !	5			
T		Whea	t						
<u>Treatment</u>	Rate	inj	Suf1	Prmi	Oat	Bar1	Sobe	Flax	
	oz/A				- %				
Clyphocoto V 77	1 14								
Glyphosate+X-77	1+1%	25	30	0	50	0	0	50	
Glyphosate+R-11	1+1%	25	20	20	50	0	0	85	
Glyphosate+Penetrator	1+1%	40	50	30	10	10	0	0	
Glyphosate+Preference	1+1%	20	75	50	70	0	45	80	
Glyphosate+Li-700	1+1%	30	25	50	25	Õ	0	70	
Glyphosate+Kenetic(silicone)	1+1%	50	10	50	80	Õ	Ő	75	
Glyphosate+Silwet L-77(silicone)	1+1%	80	88	80	0	75	80	75	
Glyphosate+Spray BoosterS	1+1%	40	20	50	50	0			
Glyphosate+Activator 90	1+1%	25	30	35			0	75	
Glyphosate+SprayFuse90					30	20	10	80	
	1+1%	20	20	20	0	0	10	20	
Glyphosate+Add-wet	1+1%	75	30	50	50	30	20	50	
Glyphosate+Activator Plus	1+1%	30	25	50	35	0	20	50	
Glyphosate+SA-90C Maximizer	1+1%	25	75	50	10	10	20	30	
# of Done									
# of Reps		1	1	1	1	1	1	1	

Summary

Treatments were not replicated so differences may be a chance occurance, but Silwet L-77 generally was the most effective adjuvant for enhancement of glyphosate (Honcho) for all species except oats. However, Kenetic was the most effective adjuvant with glyphosate for oats, but not for the other species. Preference was one of the generally effective surfactants. Nonionic surfactant with glyphosate (Honcho), Minot 1992. 'Siberian' foxtail millet, 'Excel' barley, and 'McCall' soybeans were seeded in adjacent strips as bioassay species on June 26. Treatments were applied across the species to 6- to 6.5-leaf foxtail millet, flag-leaf barley, and 3 trifoliolate soybeans on Aug 6 with 60 F, partly cloudy sky, and 0- to 8mph wind. Treatments were applied with a bicycle wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates. Soybean stand was poor making evaluation difficult.

			Aug	ust 17	7		gust a	
Treatment	Rate	Grft	Fxmi	Brly	Sobe	Fxmi	Brly	Sobe
	oz/A				- %			
Glyphosate+X-77 Glyphosate+R-11 Glyphosate+Penetrator	1.5+1% 1.5+1% 1.5+1%	99 99 99	99 99 99	89 93 81	80 85 80	98 94 79	96 95 83	64 64 49
Glyphosate+Preference Glyphosate+Li-700	1.5+1% 1.5+1%	99 99	99 99	95 82	90 82	99 97	97 96	76 68
Glyphosate+Kenetic(silicone) Glyphosate+Silwet L-77(silicone)	1.5+1%	96 99	99 99 99	75 84 88	68 81 85	96 90 96	91 92 95	43 48 76
Glyphosate+Spray BoosterS Glyphosate+Activator 90 Glyphosate+Spray Fuse 90	1.5+1% 1.5+1% 1.5+1%	99 99 97	99 99 97	93 76	85 75	76 76	97 74	59 54
Glyphosate+Add-wet Glyphosate+Activator Plus	1.5+1%	99 99	99 99	86 88	85 81	90 95	94 93	68 58
Glyphosate+SA-90C Maximizer	1.5+1%	94	94	51	55	71	60	25
C.V. % LSD 5%		2 3	2 2	14 16	16 17	19 23	13 16	36 28
# OF REPS		4	4	4	4	4	4	4

Summary

Control of grass species generally was high reducing variation among the treatments. However, Penetrator, Spray Fuse 90, and Maximizer were generally less effective than the other surfactants for species control with glyphosate (Honcho), August 27 evaluation.

Nonionic surfactant with glyphosate (Honcho), Williston 1992. 'Grandin' hard red spring wheat, 'Girard' safflower, 'Clark' flax and 'Dawn' proso millet were seeded in adjacent strips as bioassay species on May 27 into a tilled seedbed that was fallow in 1991. Soil was a Max loam with a pH of 6.9 and 2.1% organic matter. Treatments were applied across the species to 4.5 leaf wheat, 2- to 4-leaf safflower and millet, 3- to 4-inch flax, and 1- to 2-inch tall Russian thistle on June 19 with 60 F, 72% RH, 10 mph wind, cloudy sky, 67 F soil temperature taken at a depth of 4 inches, and dry plant and soil surfaces. A hooded motorized-bicycle type sprayer was used to deliver 8.5 gpa at 32 psi through 8001 nozzles to an 7 ft wide area the length of 10 by 25 ft plots. Rainfall total of 0.4 inch fell on June 27 and another 0.4 inch was received on June 28. The experiment was a randomized complete block design with four replicates. Russian thistle density was approximately 2 plants per square ft.

		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		July :					July	28	
<u>Treatment</u> Ra	te	Flax inj	Prmi	Wheat	t Safl	Ruth	Fla		Wheat		
02	/A					%	<u>inj</u>	<u> </u>	<u>1nj</u>	<u>Safl</u>	RUTH
Glyphosate+X-77 1.5 Glyphosate+R-11 1.5 Glyphosate+Penetrator 1.5 Glyphosate+Preference 1.5 Glyphosate+Li-700 1.5 Glyt+Kenetic(silicone) 1.5 Glyt+Silwet L-77(silicone) 1.5 Glypt+Spray Booster S 1.5 Glyphosate+Activator 90 1.5 Glyphosate+SprayFuse 90 1.5 Glyphosate+Add-wet 1.5 Glyphosate+Add-wet 1.5 Glyphosate+Activator Plus 1.5 Glyphosate+Activator Plus 1.5 Glypt+SA-90C Maximizer 1.5 C.V.% LSD 5% # Of Reps	+1% +1% +1% +1% -1% -1% -1% -1% -1% -1%	98 99 93 99 96 98 99 99 99 99 99 99 99 99 99 34 4	87 86 89 92 93 91 89 88 90 90 91 90 79 6 8 8 4	97 95 97 97 96 99 96 97 93 98 97 76 3 3 4	98 97 95 97 98 99 97 97 98 96 97 96 2 2 4	88 93 45 79 74 49 97 83 82 30 94 85 20 18 17 4	97 99 99 99 99 99 99 99 99 99 70 6 7	70 71 88 85 80 86 68 80 85 88 76 83 64 14 15 4	97 96 95 98 97 97 99 97 98 93 98 93 98 97 73 5 6 4	99 98 98 99 98 99 98 97 99 98 98 98 98 1 2 4	83 91 30 63 63 29 93 76 79 14 90 81 16 21 18 4

Summary

Control

was generally quite complete which masked surfactants. However, surfactant Maximizer was less effective than the other surfactants with glyphosate (Honcho) for control of most species. Proso millet and Russian thistle control with glyphosate was not complete and Silwet L-77, R-11, and Add-wet were among the most effective for Russian thistle, but not for Proso millet. Glyphosate control of Proso millet was in the 80% range when applied with Penetrator, Preference, Li-700, Kenetic, Spray Booster S, Acitvator 90, Spray Fuse 90, and Activator Plus. The surfactant characteristic for effectiveness apparently differs with the species. For example, glyphosate with Silwet L-77 gave 93% Russian thistle control, but only 68% proso millet control, while with Kenetic Russian thistle control was only 29% and proso millet control 86%.

'Valley' oats, 'White' <u>Salt Surfactant with gryphosate (nonchof, rargo 1997</u>. valley Oats, white proso millet, and 'Siberian' foxtail millet were seeded in adjacent strips as bioassay species on May 7. Treatments were applied across the species to 6-leaf Salt surfactant with glyphosate (Honcho), Fargo 1992. Dioassay species on May /. Ireatments were applied across the species to 6-leaf oats, 4- to 6-leaf proso millet and common lambsquarter, 5- to 6-leaf foxtail millet, 3- to 6-inch tall kochia, 4-leaf redroot pigweed, 4- to 8-inch tall wild mustard, and 3- to 5-leaf foxtail on June 12 with 85 F, 65% RH, a partly cloudy sky, and 3- to 5-mph wind. Treatments were applied with a bicycle-wheel-type plot spraver delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide sky, and 3- to 5-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

block design	21	00	k	d	e	S	1	y	I	
--------------	----	----	---	---	---	---	---	---	---	--

block design with four			June	19 Domi	KOCZ C	ats F	<u>xmi P</u>	rmi K	002
	1100 0	Oats	Fxm1	Print	%				
Treatment	oz/A				01	70	83	61	35
Glyphosate+X-77(NIS) Glyphosate+Cayuse+R-11 Glyphosate+CenexSAS(Premix) Glypt+SulfacDG+Spray fuse 90 Glyphosate+EXPS Glyphosate+EXPS2 Glyphosate+EXPDP Glyphosate+Dispatch C.V. %	1+1% 1+0.5%+1% 1+2% 1+pH5+1% 1+2% 1+2% 1+2% 1+2% 1+2%	45 66 59 15 70 71 59 58 11 7	53 71 61 26 74 75 68 68 68 13 9 4	8	21 63 55 69 65 38 55 18 10 4	70 96 96 10 97 98 94 96 2 2 2 4	96 97 25 98 99 95 96 6 6 4	94 92 20 96 98 90 94 2 2 4	91 87 0 94 95 69 85 16 13 4
ISD 5%									

The glyphosate was the Honcho formulation. All salt adjuvants, except Sulfac DG enhanced species control beyond that with only X-77 at the July 9 evaluation. # OF REPS At the June 19 evaluation when control was less complete, cayuse, ExpS, and ExpS2 appeared more effective than the other salt adjuvants in enhancement of glyphosate phytotoxicity.

<u>Salt surfactant with glyphosate (Honcho), Carrington</u>. 'Grandin' hard red spring wheat, 'Linton' flax, and 'Sunup' proso millet were seeded in adjacent strips as bioassay species on May 11. Treatments were applied across the species to flag-leaf wheat, 12- to 14-inch tall flax, 5- to 6-leaf millet, and 3-to 8-inch tall broadleaf weeds on June 26 with 72 F, 42% RH, partly cloudy sky, and 8.5 mph wind. Treatments were applied with a bicycle wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

					J	uly 1	8	
Treatment	Dete	July			Wheat			Broadleaf
The women's	Rate	AII	spect	ies		Flax	Prmi	weeds
Glyphosate+CenexSAS(Premix) Glyt+SulfacDG+Spray Fuse 90 Glyphosate+AMS+X-77 Glyphosate+EXPS Glyphosate+EXP S2 Glyphosate+EXPDP Glyphosate+Dispatch Glyphosate C.V. % LSD 5%	oz/A 1.5+1% 1.5+0.5%+1% 1.5+2% 1.5+pH5+1% 1.5+11.6+1% 1.5+2% 1.5+2% 1.5+2% 1.5+2% 1.5+2%		74 93 93 94 92 88 84 90 - 88 1	87 93 96 35 97 94 91 89 68 -		28 69 65 57 65 53 51 66 11 25 17	85 93 98 49 100 86 85 95 96 46 17 20	31 46 42 5 59 64 61 29 20 4 54 28
# OF REPS				4	4	4	4	
						7	4	4

Summary

Control of most species by glyphosate (Honcho formulation which does not contain a surfactant) was enhanced more by most salt adjuvants compared to glyphosate applied alone except for Sulfac DG + Spray Fuse 90. Glyphosate gave 90% or more proso millet control when applied with Cayuse + R-11, Cenex SAS, Ammonium sulfate (AMS) + X-77, experimental DP and Dispatch.

<u>Salt surfactant with glyphosate (Honcho), Dickinson 1992</u>. 'Stoa' hard red spring wheat, 'Neche' flax, 'Dumont' oats, and 'Common red' proso millet were seeded in adjacent strips as bioassay species on May 20. Treatments were applied across species to 6- to 8-inch tall crops on June 25 with 70 F, a partly cloudy sky, and 0-to 10-mph wind. Treatments were applied with a bicycle-wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 5 ft wide area the length of 10 by 25 ft plots. The experiment was a perdemized complete block decise length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

		-	JI	uly 8		_		Jul	y 27	
		Wheat					heat			
Tweetmont	Rate		Flax	Oats	Prmi		inj	Flax	Uats	Prmi
Treatment	oz/A					- % -				
Glyphosate+X-77(NIS) Glyphosate+Cayuse+R-11 Glyphosate+CenexSAS(Premix) Glyt+SulfacDG+Spray fuse 90 Glyphosate+AMS+X-77 Glyphosate+EXP S Glyphosate+EXP S2 Glyphosate+EXP DP Glyphosate+Dispatch Glyphosate	1+1% 1+0.5%+1% 1+2% 1+pH5+1% 21 1+11.6+1% 1+2% 1+2% 1+2% 1+2% 1+2% 1+0	18 50 55 11 23 48 56 35 33 6	16 55 44 11 23 44 53 23 36 6	20 43 41 14 34 58 64 35 41 8	26 35 48 4 35 35 39 24 33 4	3 15 16 20 14 15 28 6 19 1	32 62 55 11 52 63 92 63 61 18	32 43	84 66 63	48
		39	32	37	54	76	27			
C.V. % LSD 5%		20 4		19 4	23 4	13	20 4			
# OF REPS		4						1000	ALT S	

Summary

Glyphosate (Honcho) control of most species was enhanced by the salt adjuvants compared to Glyphosate alone, with X-77, or Sulfac + Spray Fuse 90. Exp S2 generally was the most effective adjuvant with Honcho for control of grass species. Ammonium sulfate (AMS) + X-77 similar to most other salt adjuvants. Interpretation based upon the July 22 evaluation as the response to glyphosate was still in progress at the July 8 evaluation.

Salt surfactant with glyphosate (Honcho), Hettinger 1992. 'Butte 86' hard red spring wheat, 'Hybrid Pearl' proso millet, a mixture of soybeans, sunflower, oat, barley, and flax were seeded in adjacent strips May 26. Treatments were applied to 24-inch tall wheat, 6-inch tall proso millet, 4-inch tall soybeans, 4-leaf sunflower and barley, 3.5-leaf oats, and 2-inch tall flax on July 14 with 84 F, clear sky, and 10 mph wind. Treatments were applied with a bicycle wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles. One replicate of each specie was treated and evaluated.

<u>Treatment</u>	Rate oz/A	Wheat inj	Suf1	Prmi	<u>0at</u> - % -	Barl	Sobe	Flax
Glyphosate+X-77(NIS) Glyphosate+Cayuse+R-11 Glyt+CenexSAS(Premix) Glyt+SulfacDG+Spray fuse 90 Glyphosate+AMS+X-77 Glyphosate+EXPS Glyphosate+EXPS2 Glyphosate+EXPDP Glyphosate+Dispatch Untreated	1+1% 1+0.5%+1% 1+2% 1+pH5+1% 1+11.6+1% 1+2% 1+2% 1+2% 1+2% 1+2%	50 75 20 50 90 85 50 50 0	70 50 90 20 85 50 90 75 50 0	20 80 10 20 85 90 80 90 0	50 75 85 75 50 99 85 85 85 10	10 80 0 85 90 85 80 70 0	50 50 90 - 70 90 80 90 50 -	60 85 90 0 80 95 95 90 80 10

Summary

All salt adjuvants generally enhanced plant species control by glyphosate (Honcho) compared to when applied with only X-77 or sulfax DG + Spray Fuse 90. Glyphosate at 1 oz/A applied without surfactant was not effective in controlling any of the plant species.

Salt surfactant with glyphosate (Honcho), Minot 1992. 'Siberian' foxtail millet, 'Excel' barley, and 'McCall' soybean were seeded in adjacent strips June 26. Treatments were applied to 6- to 6.5-leaf foxtail millet, 14- to 16-inch tall barley, and 3rd trifoliolate soybean on August 6 with 60 F, a partly cloudy sky with fog, 0- to 8-mph wind, and wet conditions from heavy dew. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

			August	t 17		A	igust	27
Treatment	Rate oz/A	Grft	Sbmi	Brly	Sobe	Fxtl	Brly	<u>Sobe</u>
Glyphosate+X-77(NIS) Glyphosate+Cayuse+R-11 Glyphosate+CenexSAS(Premix) Glyt+SulfacDG+Spray fuse 90 Glyphosate+AMS+X-77 Glyphosate+EXPS Glyphosate+EXPS2 Glyphosate+EXPDP Glyphosate+Dispatch Untreated	1.5+1% 1.5+0.5%+1% 1.5+2% 1.5+pH5+1% 1.5+11.6+1% 1.5+2% 1.5+2% 1.5+2% 1.5+2% 1.5+2%	99 92	97 99 92 98 99 99 99 99 99	83 97 98 61 97 99 99 97 98 0	61 65 79 50 81 78 76 59 68 0	70 89 94 73 89 95 94 93 91 0	86 97 99 98 99 99 97 98 0	30 38 64 23 64 61 55 38 51 0
C.V. % LSD 5% # OF REPS		5 7 4	5 7 4	11 14 4	19 17 4	12 14 4	5 7 4	36 22 4

Summary

All salt adjuvants enhanced grass species controlled by glyphosate (Honcho) compared to when applied with X-77, except for Sulfac DG + Spray Fuse 90. However, control of soybean was only enhanced by Cenex SAS, Ammonium sulfate (AMS) and ExpS.

Salts with glyphosate (Honcho), Williston 1992. 'Grandin' hard red spring wheat, 'Girard safflower, 'Clark' flax and 'Dawn' white proso millet were seeded on May 27 into a tilled seedbed that was fallow in 1991. Soil type was a Max loam soil with a pH of 6.9 and 2.1% organic matter. Treatments were applied to 4.5-leaf wheat, 2- to 4-leaf safflower and proso millet, 3- to 4-inch tall flax, and 1- to 2-inch tall Russian thistle on June 19 with 60 F, 72% RH, 10 mph wind, cloudy sky, and 57 F soil temperature at a depth of 4 inches with dry plant and soil surfaces. A hooded motorized bicycle type sprayer was used to deliver 8.5 gpa at 32 psi through 8001 nozzles to and 7 ft wide area the length of a 10 by 25 ft plots. A total Rainfall of 0.4 inch fell on June 27 and another 0.4 inch was recieved on June 28. The experiment was a randomized complete block design with four replicates. Control ratings were on July 2 and July 28. Russian thistle density was

Treatment	Rate oz/A	Flax inj	Prmi	July Wht inj	2 Saf1		Flax inj	Ji Prmi	uly 2 Wht inj	8 Safl	RUTH
Glyphosate+X-77(NIS) Glyphosate+Cayuse+R-11 Glyphosate+CenexSAS(Premix) Glyt+SulfacDG+Spray fuse 90 Glyphosate+AMS+X-77 Glyphosate+EXPS2 Glyphosate+EXPDP Glyphosate+Dispatch Glyphosate C. V.% LSD 5% # Of Reps	1.5+1% 1.5+0.5%+1% 1.5+2% 1.5+pH5+1% 1.5+11.6+1% 1.5+2% 1.5+2% 1.5+2% 1.5+2% 1.5	93 98 98 78 85 99 99 51 10 10	88 89 94 88 74 91 91 	95 98 93 79 89 95 96 - 60 13 13 13 4	86 94 95 80 84 92 90 - 64 15 15 4	66 91 83 23 69 84 85 - 25 19	94 99 98 80 85 99 99 50 11 11 11 4	71 63 58 93 56 65 61 - 61 34 26 4	96 99 91 91 98 98 - 75 9 10 4	93 96 99 98 94 97 97 97 74 14 15 4	70 91 86 9 56 82 88 - 6 22 16 4

Summary

Glyphosate (Honcho) control of Russian thistle was reduced when applied with Sulfac DG + Spray Fuse 90, and AMS (ammonium sulfate) + X-77 compared to when applied with only X-77. However, Sulfac DG + Spray Fuse 90 increased proso millet control by glyphosate at the July Glyphosate applied with adjuvants in CaCl2 at 2.2 g/L carrier, Fargo 'Valley' oats, 'White' proso millet, and 'Siberian' foxtail millet were seeded in adjacent strips as bioassay species on May 7. Treatments were applied across the species to 9- to 10-leaf oats, 3- to 5-inch tall proso millet, 8-inch tall foxtail millet, 8- to 12-inch tall kochia, 4- to 6-inch tall redroot pigweed and common lambquarters, and 10- to 12-inch tall wild mustard on June 22 with 65 F, 57% RH, cloudy sky, and 5 mph wind. Rain occurred approximately 5 hours after treatment. Treatments were applied with a bicycle-wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates.

			July	/ 5		Jı	11 30)
And the same of the same of the same	Rate	Dats	Fomi	Prmi		Oats	Fomi	KOCZ
Treatment					%			
Roundup Roundup+X-77 Roundup+RA-600 Roundup+Emurpha 877 Roundup+AMS+X-77 Roundup+SurfacDG+X-77 ^a Roundup+ExpS Roundup+ExpPM Roundup+Exp-PM Roundup+Exp-PD Roundup+Cayuse+X-77 Honcho+X-77 Honcho+X-77 Honcho+Emurpha 877 Honcho+Emurpha 877 Honcho+ExpS Honcho+ExpS Honcho+ExpN Honcho+Exp-PD C.V. % LSD 5% # OF REPS	oz/A 1 1+.25% 1+.25% 1+.25% 1+22+.25% 1+2% 1+1.5% 1+2.6% 1+2.6% 1+2.6% 1+2.6% 1+2.6% 1+2.6% 1+2.6% 1+2.1% 1+1% 1+1% 1+1% 1+1% 1+2% 1+2%	13 73 54 33 96 78 98 79 95 71 66 90 78 73 98 76 94 88 94	13	15 15	14 34 20 18 73 40 81 66 64 77 39 35 60 53 35 81 54 69 27 19	7	18 62 58 50 97 70 99 87 93 99 72 76 95 82 81 99 89 96 12 14 4	15

^a pH=2.8 pH; was not adjusted to pH 5.

Summary

Surfactants enhanced species control with Roundup, but to a less extent than ammonium sulfate (AMS), ExpS, Exp-PM, or Exp-PD. Surfactant X-77 was more effective than RA-600 or Emurpha 877 with Roundup, but less effective than RA-600 or Emphra 877 with Honcho.

Quizalofop (Pantera) plus adjuvants Experiment 1, Fargo 1992. 'Valley' oats, 'White' proso millet, and 'Siberian' foxtail millet were seeded in adjacent strips as bioassay species on May 7. Treatments were applied across the species to 9- to 10-leaf oats, 5-leaf foxtail millet, and 3- to 5-inch tall proso millet on June 22 with 64 F, 57% RH, cloudy sky, and 5-mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four replicates with four replicates.

Treatment	Rate		une 2				st 30	
	oz/A	<u>0at</u>	<u>Ftmi</u>	Prmi	<u>0at</u> %	<u> </u>	Prmi	Yeft
Quizalofop(UBI)+X-770Quizalofop(UBI)+Scoil0Quizalofop(UBI)+Scoil0Quizalofop(UBI)+VO0Quizalofop(UBI)+VO0Quizalofop(UBI)+PO0Quizalofop(UBI)+PO0Quizalofop(UBI)+PO0Quizalofop(UBI)+PO0Quizalofop(UBI)+PO0Quizalofop(UBI)+PO0Quizalofop(UBI)+PO0	.12+.25% .25+.25% .12+.12G .25+.12G .12+.12G .25+.12G .12+.12G .25+.12G .12+.12G .25+.12G .25+.12G	61 66 62 68 63 65 68 62 68	62 73 83 72 82 75 85 73 83	40 55 53 75 50 60 50 75 40 67	85 98 84 98 77 94 91 98 87 96	60 96 82 98 83 97 97 98 94 99	30 60 27 86 27 65 33 94 42 93	25 45 50 82 52 68 52 79 53 84
C.V. % LSD 5%		3	4	20	9	12	20	24
# OF REPS		3 4	6 3	19 3	11 4	18 3	19 3	24 3

Summary

Quizalofop (Pantera) phytotoxicity was generally greater when applied with an oil than surfactant X-77 adjuvant. Differences among oil adjuvants in enhancement of Pantera generally were not significant at a given Quizalofop

Quizalofop (Pantera) plus adjuvants Experiment 2, Fargo 1992.. 'Valley' oats, 'White' proso millet, and 'Siberian' foxtail millet were seeded in adjacent strips as bioassay species on May 7. Treatments were applied across the species to 5- to 6-leaf oats, 2- to 5-leaf proso millet, and 3- to 5-leaf foxtail millet on June 9 with 82 F, 60% RH, a partly cloudy sky, and 5- to 8-mph wind. Treatments were applied with a bicycle-wheeltype plots sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25ft plots. The experiment was a randomized complete block design with four replicates.

			June 26			
Treatmont	Rate	Oats	Fomi	Prmi		
Treatment	oz/A		%	64		
Quizalofop(UBI)+X-77	0.12+0.25% 0.25+0.25%	67 87	76 95	88		
Quizalofop(UBI)+X-77 Quizalofop(UBI)+Scoil	0.12+0.12G	80 95	88 99	86 99		
Quizalofop(UBI)+Scoil Quizalofop(UBI)+VO	0.25+0.12G 0.12+0.12G	83	91	90		
Ouizalofop(UBI)+VO	0.25+0.12G 0.12+0.12G	97 69	99 89	99 82		
Quizalofop(UBI)+PO Quizalofop(UBI)+PO	0.25+0.12G	97	99 93	99 90		
Quizalofop(UBI)+PO(UBI) Quizalofop(UBI)+PO(UBI)	0.12+0.12G 0.25+0.12G	76 97	93	96		
		6	4	6		
C.V. % LSD 5%		8 4	5 4	4		
# OF REPS						

Summary

Quizalofop (Pantera) at 0.25 oz/A applied with all adjuvants except X-77 gave 95% or more control of all plant species. Control of foxtail and proso millet was similar for quizalofop at 0.12 oz/A when applied with all adjuvants, except X-77 which was less effective. However, oat control with quizalofop at 0.10 oz/A generally was greater with Scoil or emulsifiable vegetable oil adjuvants than petroleum oil or X-77.

Comparison of ME/EE with broadleaf herbicides, Fargo 1992. 'Neche' flax, Amaranth, Quinoa, and safflower were seeded in adjacent strips as bioassay species on May 8. Treatments were applied across the species to 3- to 6inch tall flax, 1- to 3-inch tall amaranth and redroot pigweed, 2- to 6inch tall quinoa, 2- to 4-inch tall common lambsquarter, 3- to 5-inch tall safflower, and 1- to 5-inch tall kochia on June 10, with 79 F, 55% RH, a partly cloudy sky, and 5- to 15-mph wind. Treatments were applied with a bicycle wheel type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 25 ft plots. The experiment was a randomized complete block design with four

Treatment	Rate		Jun	e 24	
	oz/A	Flax	Rrpw	Saf1 %	KOCZ
Bentazon+ME Bentazon+ME Acifluorfen+ME Acifluorfen+ME 2,4-Ddma+ME Dicamba-Na+ME Bentazon+EE Bentazon+EE Acifluorfen+EE Acifluorfen+EE 2,4-Ddma+EE 2,4-Ddma+EE Dicamba-Na+EE Untreated	8+.18G 12+.18G 2+.18G 4+.18G 3+.18G 4+.18G 2+.18G 12+.18G 2+.18G 2+.18G 4+.18G 3+.18G 4+.18G 2+.18G 2+.18G 2+.18G 2+.18G 0	26 3 99 99 68 66 82 13 9 97 99 72 74 87 0	87 85 99 99 85 88 90 77 78 99 99 99 82 92 91 0	% 99 99 99 93 93 93 92 99 99 99 99 99 99 99 99 99 99 99 99	94 95 98 91 88 99 91 94 98 98 98 98 98 90 92 99 0
LSD 5% # OF REPS		13 11 4	11 14 4	2 3 4	3 3 4

Summary

Redroot pigweed was evaluated and its response to herbicides was similar to that of commercial amaranth. However, commercial amaranth was more tolerant than redroot pigweed to bentazon. All herbicides controlled all species regardless if applied with the methyl (ME) or the ethyl (EE) ester of a seed oil with emulsifier.

75

<u>Comparison of ME/EE with Imazethapyr, Casselton 1992.</u> 'McCall' soybeans were seeded May 8. Treatments were applied to second trifoliolate soybeans, 4-to 6-leaf foxtail, 3- to 6-inch tall kochia, 2- to 3-inch tall common lambsquarter, 6-inch to bud wild mustard, and 5-inch tall cocklebur on June 21 with 60 E 50% PH a cloudy that and 20 mph wind. Treatments were applied with lampsquarter, 6-fills to bud wild mustard, and 5-fills tarrestocklebut on oune 21 with 60 F, 50% RH, a cloudy sky, and 20 mph wind. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	experiment was a range			7*	1, 17			Augu	<u>st 13</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Treatment		Sobe		KOCZ	<u>Wimu</u> - %	Colq	<u>Fxt1</u>	<u>KOCZ</u>
	Imazethapyr+Bent+ME Imazethapyr+NAHCO3+ME Imazethapyr+Bent+28N+ME Imazethapyr+Acif+ME Imazethapyr+EE Imazethapyr+Bent+EE Imazethapyr+NAHCO3+EE Imazethapyr+Bent+28N+EE Imazethapyr+Acif+EE Untreated C.V. % LSD 5%	$\begin{array}{c} 0.4+.18G\\ 0.4+12+.18G\\ 0.4+.36\%+.18G\\ 0.4+12+4\%+.18G\\ 0.4+12+4\%+.18G\\ 0.4+.18G\\ 0.4+.18G\\ 0.4+12+.18G\\ 0.4+12+.18G\\ 0.4+12+4\%+.18G\\ 0.4+4+.18G\end{array}$	4 6 0 10 4 3 1 1 10 0 93 5	60 80 64 85 90 61 86 69 76 0 11	78 93 81 92 90 87 90 55 90 0 16 18	91 99 93 99 97 91 99 87 99 0 3 4	45 73 40 94 66 60 53 35 80 0 25 31	49 72 61 76 86 39 76 65 65 66 0 25 22	61 63 68 53 83 56 80 59 45 0 27 23

Imazethapyr applied with methyl (ME) or ethyl (EE) ester of seed oils generally was equally as effective for controlling all species. Bentazon generally was antagonistic to imazethapyr control of all species and the inclusion of 28% N fertilizer did not reduce antagonism from bentazon. Acifluorfen antagonized kochia control by imazethapyr at the August 13 evaluation.

Mon-12037 response to oils, Fargo 1992. Amaranth and safflower were seeded on April 20 in an area with a history of high redroot pigweed and kochia infestations. Treatments were applied to 1- to 3-inch tall amaranth, 3-to 6-inch tall safflower, 1- to 3-inch redroot pigweed, and 1- to 5-inch kochia. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Grass species were controlled with a broadcast application of sethoxydim 2 weeks prior to treatment. The data are an average of visual evalutions, 2 and 4 weeks after treatment.

<u>Treatment</u> ^a	Rate oz/A	KOCZ	Saf1	AMAZ	Rrpw
MON-12037+PO(AT300)OMON-12037+PO(A02)OMON-12037+PO(A02)OMON-12037+VO(AT300)OMON-12037+VO(AT300)OMON-12037+VO(A02)OMON-12037+VO(A02)OMON-12037+MSO(AT300)OMON-12037+MSO(AT300)OMON-12037+MSO(AT300)OMON-12037+MSO(AO2)OMON-12037+MSO(AO2)OMON-12037+AT300FOMON-12037+AT300FOMON-12037+AT300FOMON-12037+AT300FOMON-12037+AT300FO	2.512+2% 2.256+2% 2.512+2% 2.556+2% 2.556+2% 2.512+2% 2.556+2% 2.512+2% 2.556+2% 2.512+2% 2.556+2% 2.512+.3% 2.56+.3% 2.56+.3%	94 84 89 90 93 87 93 85 91 83 83 76 78 77 80 74	92 86 92 87 94 89 94 90 93 88 89 86 84 80 85 79	94 86 94 87 95 89 96 88 92 87 88 82 87 88 82 87 86 86 83	97 89 96 91 96 92 97 90 93 88 89 94 89 86 88 88 85
LSD 5%		9 11	5 6	4 5	4 5

^aEmulsifiable oils were applied at 2% by vol. PO= petroleum oil (11N); VO= vegetable oil (canola); and MSO= methylated seed oil (canola). Emulsifiers, Atplus 300F and AO2 were in the oil (15%) alone at 0.3% by

Summary

Mon-12037 at 0.512 oz/A, generally provided greater species control than Mon-12037 at 0.256 oz/A. Mon-12037 phytotoxicity tended to be enhanced most by vegetable oil and least by methylated seed oil. The emulsifiers Atplus 300F and AO2 alone or in combination with oils were similarily effective with Mon-12037 for control of all species.

77

Mon-12037 response to surfactants, Fargo 1992. Amaranth and safflower were seeded on April 20 in an area with a history of high redroot pigweed and kochia infestations. Treatments were applied to 1- to 3-inch tall amaranth, 3-to 6-inch tall safflower, 1- to 3-inch redroot pigweed, and 1- to 5-inch kochia. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Grass species were controlled with a broadcast application of sethoxydim 2 weeks prior to treatment. The data are an average of visual evalutions, 2 and 4 weeks

after treatment.	D. 1.	KOCZ	Saf1	AMAZ	Rrpw
Treatment	Rate	NUCL	%		
	oz/A		/0		
		00	88	90	86
MON-12037+X-77	0.512+0.25%	88	84	89	87
MON-12037+X-77	0.256+0.25%	82		94	91
MON-12037+MON-0818	0.512+0.25%	95	93	94	90
MON-12037+MON-0818	0.256+0.25%	87	88		90
MON-12037+SILWET L-77	0.512+0.25%	89	92	91	
MON-12037+SILWET L-77	0.256+0.25%	82	87	89	85
MON-12037+DC5309	0.512+0.25%	79	90	89	89
MON 12037+DC5303	0.256+0.25%	78	87	86	81
MON-12037+DC5309	0.512+0.25%	86	84	91	88
MON-12037+IGEPAL887	0.256+0.25%	72	82	89	88
MON-12037+IGEPAL887	0.512+0.25%	86	84	89	87
MON-12037+TRITON305	0.256+0.25%	76	77	87	84
MON-12037+TRITON305	0.512+0.25%	91	90	92	88
MON-12037+ETHOMEEN C/20	0.256+0.25%	86	85	92	89
MON-12037+ETHOMEEN C/20	0.512+0.25%	91	90	93	92
MON-12037+ETHOMEEN S/25	0.256+0.25%	82	88	91	90
MON-12037+ETHOMEEN S/25		79	81	91	89
MON-12037+HENKEL5457	0.512+0.25%	74	73	85	84
MON-12037+HENKEL5457	0.256+0.25%	83	83	92	91
MON-12037+HENKEL5451	0.512+0.25%	74	75	88	88
MON-12037+HENKEL5451	0.256+0.25%	91	93	94	94
MON-12037+PLURONIC-L64	0.512+0.25%	86	87	90	88
MON-12037+PLURONIC-L64	0.256+0.25%		90	91	90
MON-12037+PLURONIC 10R-5	0.512+0.25%	87	82	88	84
MON-12037+PLURONIC 10R-5	0.256+0.25%	84	02	00	04
		_		A	5
C.V.%		5	4	4	5
LSD 5%		6	4	5	5
LJU J/0					

Summary

Mon-12037 at 0.512 oz/A generally provided greater kochia and safflower control than at 0.256 oz/A. However, the increase in rate did not increase amaranth control and redroot pigweed control was increased only when the silicone (Silwet L-77 and DC-5309) and blockpolymer (Pluronic L64 and (Pluronic 10R-5) surfactants were included in the treatment. Mon-0818, the Ethomeen surfactants, and Pluronic L-64 provide greatest enhancement of kochia control by Mon-12037. These surfactants and the silicones (Silwet L-77 and DC-5309) provided the greatest Mon-12037 enhancement for safflower control. Surfactants of similar chemistry, generally were similar in the enhancement of Mon-12037 except for the silicones. The silicone surfactant, Silwet L-77 provided greater enhancement than DC-5309 for kochia control by Mon-12037.

Mon-12037 response to salts, Fargo 1992. Amaranth and safflower were seeded on April 20 in an area with a history of high redroot pigweed and kochia infestations. Treatments were applied to 1- to 3-inch tall amaranth, 3- to 6inch tall safflower, 1- to 3-inch redroot pigweed, and 1-to 5-inch kochia. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Grass species were controlled with a broadcast application of sethoxydim 2 weeks prior to treatment. The data are an average of visual evalutions, 2 and 4 weeks after treatment.

<u>Treatment</u> ^a	Data				
	<u>Rate</u>	KOCZ	Saf1	AMAZ	Rrpw
MON-12037+CACL2 MON-12037+CACL2 MON-12037+CACL2 MON-12037+X-77+NAHC03 MON-12037+X-77+NAHC03 MON-12037+NAHC03 MON-12037+NAHC03 CV	0.512+0.25% 0.256+0.25% 0.512+0.25% 0.256+0.25% 0.512 0.256 0.512+0.25% 0.256+0.25% 0.512 0.256 0.512+0.25% 0.512 0.256 0.512+0.25% 0.512+0.25% 0.512 0.256+0.25% 0.512+0.25% 0.512+0.25% 0.512 0.256+0.25% 0.512+0.25%	85 75 68 53 33 21 69 75 43 37 72 72 41 21 76 79 33 23 90 87 38 27	86 77 74 69 56 43 80 77 64 50 78 80 61 45 79 79 62 39 85 78 60 48	87 80 81 77 70 66 85 83 74 67 83 79 65 56 83 81 67 57 86 82 69 64	90 80 82 77 70 67 83 74 65 83 74 65 85 80 74 54 89 87 69 56 88 86 69 64
LSD (5%)		14 11	8 7	5 5	7 7
aNH4N03, NH4S04 and upon at 20	11 0100				/

4NO3, NH4SO4, and urea at 20 g/L, CACL2 at 2.2 g/L and NAHCO3 at 2.7 g/L.

Summary

Control of all species by Mon-12037 at 0.512 and 0.256 oz/A with all salts was enhanced by X-77. Amaranth and redroot pigweed control by Mon-12037 was not influenced by salts, except for a reduction from ammonium nitrate (NH4NO3). Urea, ammonium sulfate (NH4SO4), and ammonium nitrate generally decreased kochia control by Mon-12037 at 0.516 oz/A. However, only ammonium nitrate decreased kochia control with Mon-12037 at 0.256 oz/A. bicarbonate (NAHCO3) enhanced kochia control at both herbicide rates, while calcium chloride (CACL2) exhibited no effect. Safflower control by Mon-12037 at 0.256 oz/A was not influenced by salts, however at 0.512 oz/A nitrogen

Amaranth and Mon-12037 response to commercial adjuvants, Fargo 1992. safflower were seeded on April 20 in an area with a history of high redroot pigweed and kochia ingestation. Treatments were applied to 1- to 3-inch tall amaranth, 3- to 6-inch tall safflower, 1- to 3-inch redroot pigweed, and 1-to 5-inch kochia. Treatments were applied with a bicycle-wheel-type plot sprayer delivering 8.5 gpa at 35 psi through 8001 flat fan nozzles to a 7 ft wide area the length of 10 by 30 ft plots. The experiment was a randomized complete block design with four replicates. Grass species were controlled with a broadcast application of sethoxydim 2 weeks prior to treatment. The data are an average of visual evalutions, 2 and 4 weeks after treatment.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Data	KOCZ	Saf1	AMAZ	Rrpw
	MON-12037 MON-12037+X-77 MON-12037+PREFERENCE MON-12037+SILWET L-77 MON-12037+SILWET L-77 MON-12037+X-77+28%N MON-12037+X-77+UREA+NH4N03 MON-12037+HERBIMAX MON-12037+HERBIMAX MON-12037+SUNNITT II MON-12037+SUNNITT II MON-12037+SCOIL MON-12037+LI-700 MON-12037+EXP-60800	$\begin{array}{c} \text{oz/A}\\ \text{0.256}\\ \text{0.256+.25\%}\\ \text{0.256+.25\%}\\ \text{0.256+.25\%}\\ \text{0.256+.25\%}\\ \text{0.256+.25\%}\\ \text{0.256+.25\%}\\ \text{0.256+.25\%}\\ \text{0.256+1\%}\\ \text{0.256+1\%}\\ \text{0.256+1\%}\\ \text{0.256+1\%}\\ \text{0.256+1\%}\\ \text{0.256+1\%}\\ \text{0.256+1\%}\\ \end{array}$	30 65 74 73 66 59 50 72 71 83 73 58 79	73 79 82 76 65 64 79 80 86 80 65 78 9	87 85 84 83 83 81 85 83 91 85 83 88 5	85 84 83 82 82 81 85 84 88 83 82 86 4

Summary

Control of all species by Mon-12037 applied with any adjuvant was greater than when without an adjuvant. Generally, Mor-act provided the greatest enhancement of control of all species by Mon-12037. The addition of 28% N and urea+ammonium nitrate (NH4NO3), generally, reduced control of all species by Mon-12037. Differences among commercial adjuvants in enhancement of Mon-12037 were greater for kochia and safflower than for amaranth and redroot pigweed control.

Fall-applied trifluralin granules in conservation-till wheat, Carrington 1992. experiment was established on a Heimdal-Emrick loam with pH 6.7, 3.8% organic matter, and 5- to 6-inch standing wheat stubble. Trifluralin granules were applied either on October 18 or on November 16, 1991 using a Gandy airflow applicator. Trifluralin emulsifiable concentrate was applied either on Oct. 18 or Nov. 16 using a bicycle wheel sprayer delivering 8.5 gpa with 8001 nozzles. incorporated with a field cultivator, plots were first rototilled to destroy surface crop residues before herbicide application. On Oct. 18, air temperature was 37 F with sunny skies and dry soil; on Nov. 16, skies were sunny with 36 F and snowcover was 0 to 2 inches deep. Herbicide granules were either left on the surface or were incorporated once on Oct. 19 with a field cultivator operated 3 inches deep, a Haybuster undercutter operated 1.5 to 2 inches deep, a rotary hoe, or the undercutter followed by rotary hoe. Field cultivated plots were worked a second time with a Melroe culti-harrow (2 to 3 inches deep) on May 8, 1992. Glyphosate at 0.56 lb ai/A was applied May 12 to destroy emerged weeds. Grandin spring wheat was seeded 1.5 to 2 inches deep at 90 lb/A on May 10 using a Tye no-till drill. Wheat plants per m of row was determined May 22. Thifensulfuron&tribenuron at 0.25&0.125 oz ai/A and 2,4-D at 0.38 lb/A was applied June 8 over the entire experiment for broadleaf weed control. Visual estimates of percentage green foxtail control were taken June 11 and August 18. Foxtail plants per 0.25 m² (3 subsamples per plot) was determined June 13. Plots were combine-harvested Aug. 18 and yields adjusted to 12% moisture. Plot size was 15 by 35 ft and the experiment was a randomized complete block with

-1-

<u>Herbicide a</u>	pplic	cation		rbicide		Fox	tail	Fortail	
	Rate		inco	rporation	Wheath		trol	Foxtail	0
		Date	<u>m</u>	ethod	stand ^D		8/18	density	Grain
	16/A)				(plts/m)		%)—	6/13 (plt/m2)b	<u>yield</u>
Trif-10G	0.5	10/18	Field	cultivator				$(plt/m^2)^{D}$	(bu/A)
Trif-4EC (0.5	10/18	Field	cultivator	27	84	90	119	40.3
Trif-4EC (0.5	11/16	None	cultivator	24	78	78	253	34.5
	0.5	11/16	None		27	53	28	274	43.4
	0.75	11/16	None		26	56	62	230	51.6
Trif-10G	1	11/16	None		26	69	58	192	47.3
T 10	0.5	10/18	None		27	82	88	84	46.7
TICIA).5	10/18			18	69	83	96	45.5
TICAL).75	10/18	Rotary		28	86	86	116	43.2
Trif-10G	1	10/18	Rotary		26	89	92	56	38.8
T 10 100	.5	10/18	Rotary	noe	25	90	88	104	48.3
T 10	.75	10/18	Underc	utter	26	74	82	97	41.5
T 10	1		Underc	utter	24	80	89	74	41.5
T 10	.5	10/18	Underc		27	89	95	17	
T 1.0	.75	10/18	underc	ut/Rotary hoe	24	80	88	136	38.8
T 10	1	10/18	Underc	ut/Rotary hoe	27	90	92	24	39.1
Weedy check	1	10/18	Underci	ut/Rotary hoe	22	91	95	24	37.5
Weedy check	0	10/18	Field	cultivator	24	Ō	0	1032	39.2
	0	10/18	Underci	utter	25	Õ	Ő		33.4
C.V. %							U	404	40.1
LSD 5%					23	20	18	96	13.0
^a Trif-10G = 1 ^b Plts/m = whe	Tref1	an 10G	granule	es; Trif-4EC =	NS	22	21	36	7.7
Plts/m = whe		plants	ner m	of row.	= Treflan	emuls	ifiable	e concentrat	te
			per m	UT YOW.					

Fall-applied trifluralin granules in conservation-till wheat, Minot 1992. experiment was established on a Max-Williams loam with pH 5.6, 3.2% organic matter, 12-inch standing wheat stubble. Trifluralin granules were applied either on October 16 and 17, or on November 15 and 16, 1991 using a Gandy airflow applicator. Tri-fluralin emulsifiable concentrate was applied either Oct. 16 or Nov. 15 using a bicycle wheel sprayer delivering 8.5 gpa with 8001 nozzles. For herbicide treatments incorporated with a field cultivator, the plots were first rototilled to destroy surface crop residues before herbicide application. On Oct. 16, air temperature was 61 F with sunny skies and dry soil; on Oct. 17, air temperature was 33 F with sunny skies and dry soil; on Oct. 18 skies were sunny with 28 F and dry soil; on Nov. 15, skies were sunny with 34 F and 4 to 5 inches of snow; on Nov. 16, skies were sunny with 27 F and 4 to 5 inches of snow. Herbicide granules were either left on the surface or were incorporated once on Oct. 16 to 18 with a field cultivator operated 3 inches deep, a Haybuster undercutter operated 1.5 to 2 inches deep, a rotary hoe, or the undercutter followed by rotary hoe. Field cultivated plots were worked a second time with a field cultivator (2 to 3 inches deep) immediately before planting on May 8, 1992. Lloyd durum was seeded 1.5 to 2 inches deep at 96 lb/A on May 8 using a John Deere single-disc no-till drill. Glyphosate + 2,4-D (0.38 + 0.25 lb ai/A) was applied May 8 over the entire experimental area to control emerged weeds. Wheat plants per m of row was determined May 21. Bromoxynil&MCPA at 0.61&0.61 lb/A was applied June 10 over the entire experiment for broadleaf weed control. Visual estimates of percentage green foxtail control were taken on June 10 and Aug. 19. Foxtail plants per 0.25 m² (3 subsamples per plot) was determined on June 10. Plots were combine-harvested Aug. 19 and yields adjusted to 12% moisture. Plot size was 15 by 35 ft. The experiment was a randomized complete block with four replications.

5 09 55 100					Foxta	11	Foxtail	
			Herbicide		contr		density	Grain
Herbicide	applica	tion	incorporation	Wheatb	6/10 8	$\frac{01}{2}$	6/10	yield
Herbicide ^a	Dato	Date	method	stand	6/10 0	5/19	(plt/m2)	(bu/A)
Herbicide	(1b/A)	Dutte		(plts/m)	(%))—	(pro/me)	(,-,
	(1b/A)					00	220	29.2
	0 F	10/18	Field cultivator	35	82	86	243	35.1
Trif-G	0.5	10/10	Field cultivator	29	73	76		33.7
Trif-4EC	0.5	10/16	None	50	23	0	599	43.1
Trif-4EC	0.5	11/15	None	43	55	54	296	39.0
Trif-G	0.5	11/16	None	39	77	63	252	44.8
Trif-G	0.75	11/16		36	87	74	208	
Trif-G	1	11/16	None	36	84	77	200	39.7
Trif-G	0.5	10/18	None Rotary hoe	36	87	84	94	40.1
Trif-G	0.5	10/18		43	89	87	96	45.7
Trif-G	0.75	10/18	Rotary hoe	35	92	95	44	38.3
Trif-G	1	10/18	Rotary hoe	37	76	82	163	38.3
Trif-G	0.5	10/18	Undercutter	43	86	87	74	38.2
Trif-G	0.75	10/18	Undercutter	37	90	94	106	38.3
Trif-G	1	10/18	Undercutter		75	82	172	37.7
Trif-G	0.5	10/18	Under ed e/ the target		87	90	66	38.4
Trif-G	0.75	10/18			90	93	92	39.0
Trif-G	1	10/18	Undercut/Rotary		0	0	478	23.5
Weedy che		10/18	Field cultivator	· 38 49	ŏ	Ō	790	32.7
Weedy che	ck 0	10/18	Undercutter	49	U			
neeuy chi				17	11	7	51	12
C.V. %				17	12	7	44	6.2_
				9		/ ulcit	fiable conc	centrate.
LSD 5%	T	100	granules: Trif-4E	c = ret a	n 4E en	IUI SII	Table cone	

Trif-G = Treflan 10G granules; Trif-^bWheat stand measured as plants per m of row.

An

Fall-applied quinclorac for field bindweed control, Minot 1992. An experiment was established on a loam soil with pH 6.3, 3.4% organic matter, and 1 to 10 bindweed plants per square m. Treatments were applied September 24, 1991 using a bicycle wheel sprayer delivering 8.5 gal/A with 8001 nozzles when air temperature was 58 F, relative humidity was 51%, and field bindweed vines were 8 to 15 inches long and very green (slight frost injury in places). Wind was 5 to 12 mph (shield used) initially but later slowed to 0 to 3 mph. Plot size was 15 by 25 ft with a 10- by 25-ft area treated. The experiment was a randomized complete block with four

The entire experiment was fertilized with urea in April 1992 according to soil test recommendations for a 50 bu/A yield goal. The experiment was seeded to 'Stoa' hard red spring wheat at 70 1b/A and 1.5 to 2 inches deep on May 1 with no seedbed preparation tillage and a John Deere no-till drill. Weed control and crop injury were evaluated May 27 when wheat was 3- to 4-leaf, and field bindweed was 2 to 8 inches long. Wheat was bulk-harvested using a production-sized combine. Post-harvest evaluation of field bindweed control was not possible due to extremely low bindweed populations in the untreated check strips.

Theatman	-	Wheet	
<u>Treatment</u> ^a	Rate	Wheat	Field bindweed
	(1b/A)	injury	control
	(10/A)		—(%)———
Quinclorac+SunitII Quinclorac+SunitII	0.25+0.25G	0	100
Quinclorac+SunitII	0.33+0.25G	0	100
Quinclorac+SunitII	0.375+0.25G	0	
Quincloraci2 A D have	0.5+0.25G	Õ	100
Quinclorac+2,4-D-bee+Sun		0	100
Quinclorac+2, 4-D-bee+Sun		0	100
Quinclorac+Dicamba+Sunit		0	100
Quinclorac+Dicamba+Sunit			100
Quinclorac+Dicamba+Sunit	11 0.375+0.25+0.25G	0	100
Dicamba+SunitII	0.25+0.25G	0	100
Dicamba+SunitII	0.5+0.25G	0	96
2,4-D-bee+SunitII		0	100
Dicamba+2.4-D-bee+Suni+II	1+0.25G	0	99
uryphosate+X77+AS		0	100
Glyphosate&Dicamba+As	0.75+0.25%+1.5	0	98
Glyphosate&2,4-D+AS	0.545+1.5	0	98
Untreated	1.05+1.5	0	
C.V. %	0	0	98
<u>LSD 5%</u>		Õ	U
^a SunitIT		NS	1
SunitII = methylated s AGSCO; 2,4-D-bee = but	eed oil adjuvant con		2
AGSCO; 2,4-D-bee = butc Landmaster BW hombigid		D. Club	mulsifier, by
Landmaster BW herbicide 1b ae/gal 2.4-D amine	containing 0 9 1b 2014	Giyph	osate&2, 4-D =
ID ae/gal 2.4-D amine.	Glyphaset apt	yai giypho	sate plus 1 6

-D amine; Glyphosate&Dicamba = Fallowmaster herbicide containing 1.1 lb ae/gal glyphosate plus 0.5 lb ae/gal dicamba; AS =

Although no spring wheat injury or stand reductions were observable May Comments. 27, the farmer who combined the wheat noticed about six plots that had wheat significantly shorter than the rest of the plots. Since dicamba (the only herbicide in the experiment besides quinclorac leaving soil residues capable of injuring wheat) residues in the soil injure wheat primarily through stand reductions, and since quinclorac stunted wheat in a similar experiment conducted in 1990/91, quinclorac at 0.375 lb/A may have been the cause of this apparent wheat stunting noticed by the

Postemergence foxtail and broadleaf weed control in wheat, Minot 1992. Lloyd durum wheat was seeded no-till on May 6. Treatments were applied with a bicycle wheel sprayer delivering 8.5 gal/A with 8001 nozzles and 40 psi. Treatments involving propanil and diclofop were applied May 27 when conditions were as follows: 2.5- to 4-leaf durum (some tillering), 1- to 3-leaf (mostly 2-leaf) green foxtail, and 0.25to 0.5-inch-tall, 0.25- to 0.5-inch-diameter kochia, 59 F air temperature, 37% relative humidity, sunny skies, and wind 5 to 8 mph (shield used). Other treatments were applied June 3 when air temperature was 78 F, relative humidity was 70%, wind was 4 to 12 mph (shield used), skies were partly cloudy, soil was dry, durum was 3.5- to 5-leaf (tillering), green foxtail was 2- to 3.5-leaf, and kochia was 0.25 to 0.75 inch tall. Visual estimates of percentage crop injury and weed control were taken June 24 when durum was early boot. Plot size was 11 by 25 ft and the experiment was a randomized complete block design with four replications.

Was a randomized comp			Weed co	ntrol
Treatment ^a	Rate	Durum injury	Green foxtail (%)	Kochia
Treatment	(oz/A)			
	0.5&6	56	74 62	0 0
Fenoxaprop&MCPA	0.5&6+1	56 4	71	90
Fenx&MCPA+Dicamba Fenx&MCPA+Tribenuron	0.62&7.4+0.128	7	68	92
Fenx&MCPA(DAKOTA)+Thif&Trib	0.62&7.4+0.17&0.056	59	75	9
Fenx&MCPA+Bromoxynil	0.62&7.4+3 0.62&7.4+0.064	6	72	85
ForveMCDA+Metsulturon	0.62&7.4+0.75+0.072&0.02	4 14	74	91
Fonv&MCPA+Dica+Init&ITU	0.62&7.4+0.7540.0724	11	69	91 25
Eonv&MCPA+Triasulturon	0.75&3.5&1.2	61	64	25 59
Egnovanron&MCPA&Z,4-U	16+6+0.8	0	55	88
D'-1-FOD BOOVEML PA-DEE	1700 OEE	58	78 68	76
Eanv&MCPA+INIT&ITU(UILILIU)		0	59	55
Propanil-DF+MCPA-bee	16&4	U	55	
Propanil&MCPA		17	15	27
C.V. %		6	NS	23
LOD EN	containing 0.23 lb/gal	fonova	aprop plu	IS 2.81
$\frac{1505\%}{a}$ Fenoxaprop&MCPA = DAKOTA	containing 0.23 Ib/gal prop&MCPA&2,4-D = TILLER	contair	ning 0.38	lb/gal
Fonoya	nropameraz, +-0 - Hiller	7 0 4 D	octor.	Fenoxa-

lb/gal MCPA ester; Fenoxaprop&MCPA&2,4-D = IILLER containing 0.38 Ib/gal fenoxaprop plus 1.79 lb/gal MCPA plus 0.6 lb/gal 2,4-D ester; Fenoxa fenoxaprop plus 1.79 lb/gal MCPA plus 0.6 lb/gal fenoxaprop plus prop&MCPA+Thif&Trib = CHEYENNE containing 0.47 lb/gal fenoxaprop plus 2.13 lb/gal MCPA ester plus dry flowable Thif&Trib which is HARMONY EXTRA with a 2:1 ratio of thifensulfuron and tribenuron; Propanil&MCPA = STAM-PEDE CM containing 3.08 lb/gal propanil plus 0.77 lb/gal MCPA ester; Propanil-DF = dry flowable formulation of propanil; MCPA-bee = butoxyethyl ester of MCPA.

Summary. This experiment was intended for hard red spring wheat but was established in durum because no available HRSW field had sufficient foxtail populations. As expected, fenoxaprop treatments caused substantial durum injury, although injury from fenoxaprop mixed with tribenuron, thifensulfuron&tribenuron, metsulfuron, or tria-sulfuron was low. Foxtail control was only about 60 to 75% for all treatments. Low control probably was due to drought during and after treatment. Conditions were quite dry at time of evaluation and foxtail was strongly drought stressed. Kochia control was about 90% with treatments involving sulfonylurea herbicides (i.e. tribenuron, thifensulfuron&tribenuron, triasulfuron, but lower with other herbicides.

Longterm multi-crop quinclorac carryover study, Fargo 1992. An unreplicated experiment was established April 26, 1991 on a silty clay (4% sand, 53% silt, 43% clay) with pH 7.8 and 4.2% organic matter, cropped in 1990 to soybeans. Three 50- by 380ft plots were established with a 10-ft alley between each and dedicated to receive the following treatments over a 4-year period:

- 1. Quinclorac at 0.15 lb ai/A plus Scoil at 1.5 pints/A applied late May to early June when foxtail are 2 to 3 leaf. Crop is continuous wheat.
- 2. Quinclorac at 0.3 lb/A plus Scoil at 1.5 pints/A applied mid to latter August. Land to be fallowed in 1991 and odd years, cropped to wheat in 1992 and even years. Treatment simulates a late-summer field bindweed application.
- 3. Untreated check. Crop is continuous wheat.

Beginning in 1992, sugarbeets, flax, alfalfa/red clover, safflower, corn, soybeans, drybeans, sunflowers are to be seeded in a single drill or planter strip across the three treatments and at right angles to the long dimension of the original main plots. The remaining land not seeded to these eight crops is to be handled as indicated by the treatment descriptions. In 1993-95, an additional portion of the original plot will be planted to the eight bioassay crops. Sugarbeets will be seeded with a John Deere beet planter in 22-inch rows. Corn, sunflowers, soybeans, and drybeans will be seeded with a Hiniker no-till planter with disc openers set on 30-inch rows. Other crops will be seeded with a Haybuster no-till drill with 7-inch

Wheat will be harvested with a field-scale combine. Plots with wheat residues will be chisel plowed in the fall (6 to 7 inches deep) except for treatment 2 when the subsequent season calls for fallow. The fallow year of treatment 2 will be handled by a glyphosate application in late May to control all emerged vegetation followed by 4- to 5-inch-deep tillage (field cultivator or chisel plow) as needed to control weeds through the end of July. The wheat in all treatments will be treated postemergence as needed with broadleaf or grass herbicides other than quinclorac to reduce weed populations in subsequent bioassay crop plantings. All herbicides are applied with an ATV-mounted sprayer delivering 10 gal/A with 8002 extended range tips, 5 mph, and 28 psi.

Comments on 1992 Results

Early-season dry conditions followed by excessive June rains made growth and evaluation of the eight rotational crops difficult. Heavy rains in June coupled with cool temperatures left all of the experiment under water for significant periods and portions of the experiment for extended periods. Unfortunately, the quinclorac treated areas were lower and under water for longer periods than the untreated check. It was unclear in some cases whether unhealthy crop growth resulted from quinclorac carryover or waterlogging plus cool temperatures or a combination of the
(Dioassay) crops.				
		Year	1000	1994
	1991	1992	1993	1551
Operation				
Treatment 1 (Quincl	anac 0 15 1h/A.	cont. wheat)		
Treatment 1 (Quinci	0rdc 0.15 10/14			
Wheat planting	Apr. 26	Apr. 30		
Date	90	95		
Rate, 1b/A	Butte 86	Butte 86		
Cultivar	Dutte ou			
Quinclorac appl.	June 3	June 8		
Date	6-7 in.,	6-8 in.,		
Wheat stage	tillered	5-6 leaf		
		t tollow)		
Treatment 2 (Quinc	lorac 0.3 1b/A,	wheat-fallow)		
Wheat planting		Apr. 30		
Date		95		
Rate, 1b/A		Butte 86		
Cultivar		Sept. 4		
Wheat harvest	Aug. 15	School .		
Quinclorac appl.	. 01	Sept. 4		
Date	Aug. 21	ocper		
	anted chock)			
Treatment 3 (Untr	eated Checky			
Wheat planting	Apr. 26	Apr. 30		
Date	90	95		
Rate, 1b/A	Butte 86	Butte 86		
Cultivar	Ducce es			

<u>Table 1</u>. Field operations for the main plot area not planted to rotational (bioassay) crops.

Crop	1992	<u> </u>
Sugarbeets Cultivar Date Rate, seeds/A Depth, inches	KW1119, BJ 13 May 1, May 20 114,000 1-1.25	20 ^a
Flax Cultivar Date Rate, lb/A Depth, inches	Neche May 6 50 0.75	
Alfalfa/red clov Cultivar Date Rate, lb/A Depth, inches	ver Vernal/Arlingto May 7 13 0.75	n
Corn Cultivar Date Rate, seeds/A Depth, inches	Interstate 343 May 12 22,000 1.75	Ą
afflower Cultivar Date Rate, lb/A Depth, inches	Girard May 12 25 1-1.5	
oybeans Cultivar Date Rate, seeds/A Depth, inches	McCall May 18 180,000	
rybeans Cultivar Date Rate, seeds/A Depth, inches	Othello (pinto) May 19 70,000 1.25-1.5	
Date Rate, seeds/A epth. inches	Interstate 3311 May 20 22,000 1.25-1.5	1992. Dry conditions during the firs

Table 2. Planting information for rotational (bioassay) crops.

appried in 195				1 1.000	10	July 20	Sept. 22
Quinclorac			<u>aluate</u> Std	ed June Stunt-	10	Overall	General
application		In- jury	red	ing	Stage	injury	observation
Date Rate	Crop	Jury	Teu				
(1b/A)						45+	No injury
6/3/91 0.15	Sugarbeets	0	0	0	2 1f	45* 8	No injury
6/3/91 0.15	Flax	0	0	0	4-6 in	85	-
	Alfalfa/clover	0	0	0	2-3 in 4-5 lf	35	No injury
	Corn	U	0	0 4	4-5 11 4-5 1f	98	-
	Safflower	0	0 0	4	unifol	50	-
	Soybeans	0 0	0	0	unifol	67	
	Drybeans	0	Ő	Ō	2 1f	28*	No injury
	Sunflowers	•				15	No injury
0/01/01 0.2	Sugarbeets	15	0	0	2 1f	15 70	Delayed mat., stunted
8/21/91 0.3	Flax	0	35	40	4-6 in	100	-
	Alfalfa/clove	r -	99	20	2-3 in 4-5 lf	30	No injury
	Corn	0	0	0 50	4-5 11 4-5 1f	100	-
	Safflower	0	0 0		unifol	60	-
	Soybeans	0	0		unifol	78	-
	Drybeans				7 5 6	15	No injury
	Sunflowers g on sugarbeets	uncle	ar bec	ause i	t may hav	ve been du	e to provonged
*45% stuntin	g on sugarbeets g which was not	as se	vere i	n the	untreate	d plot; 28	jury in the plot
					given th	e lower in	jury in the plot
treated wit	th the high rate	of qu	inclor	rac.			
created wry							

<u>Table 3</u>. Injury to eight crops seeded in 1992 from soil residues of quinclorac applied in 1991.

Summer-applied quinclorac for field bindweed control, Minot 1991/92. Plot size was 15 by 25 ft and the experiment was randomized complete block design with three replications. Treatments were arranged in a split plot with treatment application date (early, mid, and late summer) serving as main plots. Soil type was a loam with pH 6.9 and 3.1% organic matter (0 to 2 inches). All treatments were applied with a 6bicycle wheel sprayer treating a 10-ft-wide area and delivering 8.5 gal/A with 8001 Environmental conditions at application were: Early-summer (E) treatments were applied when field bindweed was 5 to 10 in. tall, air temp was 70 F, relative humidity (RH) was 49%, wind was 0 to 4 mph, and soil was dry. Mid-summer (M) treatments were applied when bindweed was 12 to 18 in. long, air temp was 87 F, RH was 30%, wind was calm, and soil in the rooting zone was moist. Late-summer (L) treatments were applied when bindweed was 6 to 12 in. long, air temp was 72 F, RH was 63%, wind was 2 to 5 mph, and soil was dry.

The entire experiment was fertilized with urea in April 1992 according to soil test recommendations for a 50 bu/A yield goal. 'Stoa' hard red spring wheat was seeded May 1 at 70 lb/A and 1.5 inches deep with a John Deere single disc no-till drill and no spring preplant tillage. Wheat was harvested September 13 with a production sized combine. Post-harvest evaluation of field bindweed control was not possible due to extremely low bindweed populations in the untreated check strips.

No wheat injury attributable to herbicide treatments was observed May 27, 1992.

		1991							
Herbicide		applica-		_Fie	ld bi	indw	eed (evalua	ation
treatment ^a	Data	cation	1991			991			1992
<u>er catment</u>	Rate	date	tillage dates	6/12	7/9	8/7	9/4	9/24	5/27
Untreated(E)	(1b/A)						(%)-		9/ 2/
	0	5/30	7/10,8/15,9/24	0	0	-	-	0	2
	.25+0.05		7/10,8/15,9/24	42	99	-	_	45	33
Qucl+2,4-D-bee(E)	0.25+0.5		7/10,8/15,9/24	70	98	-	-	29	22
	0.25+0.5		7/10,8/15,9/24	74	98	-		54	63
	.25+1.05		7/10,8/15,9/24	89	94	_	_	45	43
Glyt&2,4-D(E) 0	.38&0.67		7/10,8/15,9/24	74	96	_		50	
Untreated(M)	0	7/9	5/30,8/15,9/24	_	-	0	_	0	48
	.25+0.05	7/9	5/30,8/15,9/24	_	_	95	-	-	23
	0.25+0.5	7/9	5/30,8/15,9/24	_	_	99	-	88	91
Qucl+Dica(M) 0	.25+0.5	7/9	5/30,8/15,9/24		-		-	73	80
Qucl+Glyt&24D(M) 0	.25+1.05	7/9	5/30,8/15,9/24	-		98	-	86	96
Glyt&2,4-D(M) 0	.38&0.67	7/9	5/30,8/15,9/24	-	-	98	-	73	69
Untreated(L)	0	8/15	5/30,7/10,9/24	-	-	98	-	83	90
	.25+0.05	8/15	5/30 7/10 0/24	-	-	-	0	0	0
	0.25+0.5	8/15	5/30,7/10,9/24	-	-	-	83	93	99
0. 1 0 0	0.25+1	8/15	5/30,7/10,9/24	-	-	-	99	97	94
	.25+0.5	8/15	5/30,7/10,9/24	-	-	-	98	95	97
	.25+1.05		5/30,7/10,9/24	-	-	-	98	97	96
	.38&0.67	8/15	5/30,7/10,9/24	-	-	-	96	93	96
	0.25+0.5	8/15	5/30,7/10,9/24	-	-	-	97	96	99
Dica+2, 4-D-dma(L)	0.25+0.5	8/15	5/30,7/10,9/24	-	- 3	-	93	97	100
C.V. %	0.25+1	8/15	5/30,7/10,9/24	-	-	-	98	97	95
Application date eff	Saat			8	3	2	7	15	27
Treatmonte within on	rect							**	**
Treatments within an LSD 5%	i applica	tion dat	e					**	**
All quinclorac trea				8	4	3	10	17	30
want quinciorac trea	itments w	ere appl	ied with SunitII				the second s		
									A D.
							DW	bowh-	4-U;
containing 0.9 lb a	e/gal gl	vphosate	plus 1 6 lb ag/			ster	-DW	herbi	cide

phosate plus 1.6 lb ae/gal 2,4-D amine.

Economics of Detectspray in full season fallow, West Fargo 1992. Detectspray¹ sprayer technology consists of sensors that measure infrared light reflected from Detectspray¹ green plant canopies and, with associated circuitry and a computer microprocessor, trigger solenoid valves to turn on allowing delivery of spray to nozzles on a spray boom. Each nozzle on the boom is fitted with a sensor mounted several inches ahead Nozzles are turned on and off individually with solenoid valves positioned immediately above each nozzle. When sufficient infrared light is reflected from green plant leaves and is detected by a particular sensor, the infor-mation is processed (using an ambient light reading taken from a sensor facing up-ward) and an electric signal is sent to that solenoid valve causing it to open and spray to flow through the nozzle. The sensors respond to all green tissue, so Detectspray has application as a fallow sprayer.

Detectspray hardware was mounted on an all-terrain vehicle (ATV) with 6 nozzles spaced 20 inches apart (10 ft effective spray swath). All treatments were applied at 5 gal spray solution per acre at 5 mph with 8001 extended range flat fan nozzles and 28 psi spray pressure. Plots were arranged in a randomized complete block design with four replications.

The experiment was established on a clay soil with pH 8.0 and 4.9% organic mat-Small grain stubble had been chisel plowed once in the fall of 1991, leaving 3125 lb/A of residue and 54% residue cover. Plot size was 20 by 220 feet with 13-ft alleys between plots as a buffer against spray drift. Plots were treated with two adjacent 10-ft-wide passes with the ATV sprayer, either broadcast or using the "selective" mode of Detectspray.

General treatment descriptions are given in Table 1. Treatments 4 to 8 involved preemergence triasulfuron or quinclorac at 0.21 and 12 oz ai/A, respectively, plus atrazine at 6 oz ai/A applied May 4. Postemergence herbicides to be used and rates needed were determined by the investigator for each individual treatment at time of application. Postemergence herbicide rates, dates, and mode of application are in the tables. All glyphosate applications included nonionic surfactant at 0.5% by vol plus ammonium sulfate at 1.5 lb/A. When dicamba was applied alone, nonionic surfactant was added at 0.5% by vol. The double boom of treatment 4 involves broadcast

Table 1. General description of planned treatments for full-season fallow experiments at West Fargo.

Treatment^a

Postemergence herbicides, broadcast as needed
 Postemergence herbicides, Detectspray as needed

3. Postemergence herbicides, broadcast once followed by Detectspray as needed

4. Postemergence herbicides, broadcast once followed by double boom as needed

- 5. Preemergence triasulfuron + atrazine, POST herbicides broadcast as needed 6. Preemergence triasulfuron + atrazine, POST herbicides Detectspray as needed
- 7. Preemergence quinclorac + atrazine, POST herbicides broadcast as needed
- 8. Preemergence quinclorac + atrazine, POST herbicides Detectspray as needed

^aTriasulfuron = AMBER by Ciba-Geigy, quinclorac = FACET by BASF; preemergence herbicides were applied broadcast May 5.

¹Detectspray is a trademark of Detectspray Limited, 215 Mann St., PO Box 84, Armidale NSW 2350, Australia.

application of a low rate of herbicide (usually glyphosate) required to kill small, more abundant weeds, together with a Detectspray application of a higher rate of herbicide to kill large weeds. A Detectspray operator would have both booms operating on one sprayer. Experimentally, the double boom application was simulated by two separate applications.

At the time of each Detectspray (selective mode) application, a circular, 15-cmdiam, leg-mounted quadrat was used to take 100 readings from each plot for each of the following parameters: frequency of occurrence of one or more weeds greater than 5 cm in height or width, density of weeds greater than 5 cm, density of weeds less than 5 cm, and percentage ground area occupied by green plant material (percentage cover). These readings sampled the entire length of each 220-ft plot.

Assumptions used in the economic calculations

1992 herbicide prices from Ostlund Chemical in Fargo: Glyphosate costs \$37.37/gal as Roundup RT Dicamba costs \$68.83/gal as Banvel Triasulfuron costs \$10.27/oz product as Amber (75DF) Atrazine costs \$2.55/1b product as atrazine (90DF) Quinclorac cost is unknown but is estimated at \$25/1b product as Facet (75DF) Nonionic surfactant costs \$17.25/gal as X-77 Ammonium sulfate costs \$.25/1b

Detectspray application done by a custom operator estimated at \$3.23/A. Includes custom broadcast price of \$2.48/A (U. of Minn. costs estimates) plus \$.75/A premium for Detectspray application (figure supplied by Kelly Johnson, Saskatchewan custom applicator, adjusted for U.S.-Canada exchange rate of approximately \$1.00:\$.75).

Standard broadcast application:

- *1. Sprayer owned and operated by the farmer: \$.76/A (this figure used in the calculations below unless otherwise stated)
- 2. Sprayer owned by farmer, operated by hired labor: \$1.28/A 3. Custom application: \$2.48/A
- (Estimates supplied by University of Minnesota)

Herbicides were applied in 3-L plastic bottles, one bottle per plot. filling the spray boom with each treatment, a mark was placed on the bottle at inital fluid level, thus enabling a measurement of spray volume required to treat

Summary comments. Cool temperatures throughout the growing season and dry weather during much of July and August slowed weed growth. Thus, only two postemergence applications were needed on most plots (Table 8). Two of three treatments in which Detectspray was used for the first application in early June required an additional treatment but only on a portion of the field ("spot spray").

Assuming that the farmer applies his own broadcasting treatments, the Detectspray treatments generally saved money, although savings were not excessively large. standard broadcast chemical fallow costed \$16.80 compared to \$14.63 for using Detectspray full season, resulting in a dollar savings of \$2.17/A (Table 8). In this comparison, full-season Detectspray reduced the amount of postemergence herbicide used by 52%. Broadcasting once followed by Detectspray thereafter saved \$1.51 compared to the standard broadcast treatment.

Applying triasulfuron plus atrazine preemergence followed by full-season Detectspray use saved \$1.27/A compared to the standard broadcast treatment and reduced

postemergence herbicide consumption by 81%. Applying triasulfuron plus atrazine preemergence has excellent promise as a means of reducing the need for subsequent postemergence treatments in fallow. The dry spring of 1992 probably provided insufficient activation of triasulfuron and atrazine. (Summary continued on page 14)

<u>Table 2</u>. Herbicide and application costs during the first postemergence application in the full-season fallow experiment at West Fargo. Broadcast application cost assumes the sprayer is farmer owned and operated.

	e plan ^a POST	Herbici Herbicides	<u>de treatmen</u> Rate (1b/A)	t appl [.] Date	ied Mode	Spray vol. red. (%)	Herbi- cide	Cost Appli- cation -(\$/A)—	Total
None S None E None E Trsu+Atra E Trsu+Atra S Qucl+Atra E	Brdcst Select BC1/Sel BC1/DB Brdcst Select Brdcst Select	Glyt+Dica Glyt+Dica Glyt+Dica Glyt+Dica Glyt+Dica Glyt+Dica Glyt+Dica Glyt+Dica Glyt+Dica	0.35+0.15 0.35+0.15 0.35+0.15 0.35+0.15 0.28+0.13 0.28+0.13 0.28+0.13 0.28+0.13	6/8 6/8 6/8 6/8 6/8 6/8 6/8 6/8	Brdcst Select Brdcst Brdcst Select Brdcst Select	16.5 15.4	7.75 2.82 7.75 7.75 6.45 .94 6.45 2.49	.76 3.23 .76 .76 3.23 .76 3.23 e mode"	8.51 6.05 8.51 8.51 7.21 4.17 7.21 5.72 of De-

^aBrdcst = standard broadcast application as needed; Select = "selective mode" of Detectspray as needed; BC1/Sel = one broadcast application followed by selective mode of Detectspray as needed; BC1/DB = one broadcast application followed by double boom as needed; Trsu = triasulfuron; Qucl = quinclorac; Atra = atrazine.

<u>Table 3</u>. Weed frequency, weed density, and spray volume reduction for the first application at West Fargo.

Herbici <u>treatment</u> PRE	ide t <u>plan^a</u> POST	Treat- ment applied	Date	Freq. of weeds >5 cm (%)	Density of weeds >5 cm —(weeds/s	Density of weeds <5 cm sq. m)	Spray vol. red. (%)
None None None Trsu+Atra Trsu+Atra Qucl+Atra Qucl+Atra C.V. LSD(0.1)	Brdcst Select BC1/Sel BC1/DB Brdcst Select Brdcst Select	Brdcst Select Brdcst Brdcst Select Select Select Select	6/8 6/8 6/8 6/8 6/8 6/8 6/8 6/8	18.0 16.8 15.0 17.8 10.8 7.5 14.2 9.3 40.1 6.7 ication as	14 13 12 13 7 6 10 7 40 5 needed; So		63.6 - - 85.4 61.4 37.7 19.0 elective
^a Brdcst = mode" of	standard Detectspi	any ac no	eded: F	3C1/Se1 = 0	ne broadcas eeded; BC1/	t applicati	ion fol- roadcast

mode" of Detectspray as needed; BC1/Se1 = one broadcast apprication for lowed by selective mode of Detectspray as needed; BC1/DB = one broadcast application followed by double boom as needed; Trsu = triasulfuron; Qucl = quinclorac; Atra = atrazine.

PRE	<u>nt plan^a POST</u>	<u>Herbic</u> Herbicides	<u>ide treatme</u> Rate (1b/A)	nt app Date	lied Mode	Spray vol. <u>red.</u> (%)	Herbi- cide	<u>Cost^a</u> Appli- <u>cation</u> -(\$/A)	Total
None None None None	Brdcst Select BC1/Sel BC1/DB	Glyt+Dica Glyphosate Glyt+Dica Glyphosate Dicamba	0.28+0.19	7/30 7/9 8/1 7/9	Brdcst Select Select Brdcst	49.8 52.9	7.53 .54 3.55 4.30	.76 .81 3.23	8.29 1.35** 6.78
Trsu+Atra Trsu+Atra Qucl+Atra Qucl+Atra C.V.	Brdcst Select Brdcst Select	Glyphosate Glyphosate Glyt+Dica Glyt+Dica	0.28 0.28 0.28+0.13 0.28+0.19	8/1 7/30 7/9 8/14 8/1	Select Brdcst Select Brdcst Select	54.0 62.1 79.2	1.68 4.30 .41 6.45 1.57	3.23 .76 .81 .76 3.23	9.21 5.06 1.22** 7.21 4.80

4.80

Table 4. Herbicide and application costs during the second postemergence application in the full-season fallow experiment at West Fargo. Broadcast application cost assumes the sprayer is farmer owned and operated.

SD(0.1)

Brdcst = standard broadcast application as needed; Select = "selective mode" of Detectspray as needed; BC1/Sel = one broadcast application followed by selective mode tectspray as needed; BCI/Ser = One broadcast application followed by selective mode of Detectspray as needed; BCI/DB = one broadcast application followed by double boom as needed; Trsu = triasulfuron; Qucl = quinclorac; Atra = atrazine. **Treatments handled as a "spot spray". Only one of the four replicate plots needed treating. This weedy plot was sprayed and the per-acre costs were calculated as

one fourth of the costs required to treat all four plots.

duction for the second	ncy, weed density, p d application at Wes	ercentage weed t Fargo	cover, a	and spray	volume re-
------------------------	--	---------------------------	----------	-----------	------------

Herbi <u>treatme</u> PRE	cide nt plan POST	Treat- ment applied	Date	Freq. of weeds >10 cm (%)	Density of weeds >10 cm	<10 cm	s %	Freq. of >3% cover	Spray vol. red.
None None	Brdcst Select	Brdcst Select	7/30 7/9	11.3	-(weeds/	/sq. m)— 6.8	4.4	-(%)	
None None	BC1/Se1 BC1/DB	Select Select	8/1 8/1	- 8.3 7.8	- 6.2 5.5	7.9 3.1	- 4.6	- 15.5	- 49.8** 52.9
Trsu+Atra Trsu+Atra Quc1+Atra	Brdcst Select	Brdcst Brdcst Select	7/30 7/30 7/9	6.3	4.5	3.0	4.0 - 2.5	16.5 - 11.0	54.0 - -
Qucl+Atra C.V.	Brdcst Select	Brdcst Select	8/14 8/1	2.8 3.8 95.8	1.6 2.8 97.7	2.5 4.0	2.0 1.2	- 6.5 6.8	62.1** - 77.2
$\frac{LSD(0.1)}{Brdcst} =$	standard	broadcas	t app	NS lication as	NS	106.5 NS	107.1 <u>NS</u>	83.2 NS	37.7

Brdcst = standard broadcast application as needed; Select = "selective mode" of Detectspray as needed; BC1/Sel = one broadcast application followed by selective mode of Detectspray as needed; BC1/DB = one broadcast application followed by double boom as needed; Trouver tripped for an application followed by double boom as needed; Trsu = triasulfuron; Qucl = quinclorac; Atra = atrazine. **Treatments handled as a "spot spray". Only one of the four replicate plots needed treating. This weedy plot was sprayed and the per-acre costs were calculated as one fourth of what they would have been if the all four plots were treated.

emergence herbicides more than was observed in this experiment. Assuming that the farmer pays hired labor to operate the sprayer (\$.52/A) or that the farmer has all broadcasting done by a commercial applicator widens the margin of

Growers considering the use of Detectspray on a particular fallow field will have reason to wonder how much chemical they will save compared to a broadcast applicasavings in favor of Detectspray. tion. A measurement of weed growth at the time of spraying could be helpful in making this determination if such a measurement correlated well with spray volume needed to treat the field. Several measures of weed growth correlated with volume reduction although the highest correlation coefficient was a modest .78 for the percentage of quadrats having greater than 3% cover (Table 9).

Table 6. Herbicide and application costs during the third postemergence application in the full-season fallow experiment at West Fargo. s the sprayer is farmer owned and operated.

assumes the s	sprayer					Conav	,	Cost	
Herbicide <u>treatment p</u> PRE F	e plan ^a POST	<u>Herbicic</u> Herbicides	<u>de treatment</u> Rate (1b/A)	t appl Date		Spray vol. <u>red.</u> (%)	Herbi- cide	Appli- cation -(\$/A)	Total
None S None B None B Trsu+Atra B Trsu+Atra S Oucl+Atra B	rdcst elect GC1/Sel GC1/DB Grdcst Gelect Grdcst Select	None Glyt+Dica None None Glyt+Dica None None	0.28+0.19	8/1 - - 8/1 -	Select Select	46.9 - 79.4 -	$ \begin{array}{c} 0 \\ 4.00 \\ 0 \\ 0 \\ 1.55 \\ 0 \\ 0 \end{array} $	0 3.23 0 0 3.23 0 0	0 7.23 0 0 4.78 0 0
									C De

LSD(0.1) Brdcst = standard broadcast application as needed; Select = "selective mode" of Detectspray as needed; BC1/Sel = one broadcast application followed by selective mode of Detectspray as needed; BC1/DB = one broadcast application followed by double boom as needed; Trsu = triasulfuron; Qucl = quinclorac; Atra = atrazine.

Table 7. Weed frequency, weed density, percentage weed cover, and spray volume reduction for the third application at West Fargo.

Herbic treatmen PRE	ide	Treat- ment applied	Date	Freq. of weeds >10 cm (%)	Density of weeds >10 cm —(weeds/	Density of weeds <10 cm 'sq. m)—	% cover	Freq. of >3% <u>cover</u> —(%)—	Spray vol. red.
None	Select	Select Select	8/1 8/1	9.8 5.0	7.5 3.4	2.5 3.3	4.9 1.5	20.5 10.3	46.9 79.4
Trsu+Atra C.V.	Select			95.8 NS	97.7 NS	106.5 NS	107.1 NS	83.2 NS ctive mo	37.7 19.0
LSD(0.1) Brdcst = Detectspi	standar ray as n			plication = one bro			followe	d by se	lective wed by

mode of Detectspray as needed; BC1/DB double boom as needed; Trsu = triasulfuron; Qucl = quinclorac; Atra = atrazine.

		PRE and		Fu	11 seaso	on cost	sa	
Herbie <u>treatmer</u>	<u>nt plan^D</u>	POST appli-	Broa	adcasting by POST	farmer Appli-		Brdcst by hired	Brdcst by custom ap-
PRE	POST	cations	herbicide	herbicide	<u>cation</u>	Total	<u>labor</u> Total	<u>plicator</u> Total
		(no.)			(\$/	(A) ——		Total
None None None Trsu+Atra Trsu+Atra Qucl+Atra	Brdcst Select BC1/Sel BC1/DB Brdcst Select Brdcst	2 2.25 2 3 3.25 3	0 0 0 4.60 4.60	15.28 7.36 11.30 13.73 10.75 2.90	1.52 7.27 3.99 3.99 2.28 8.03	16.80 14.63 15.29 17.72 17.63 15.53	17.84 14.63 15.81 18.24 19.19 16.05	20.24 14.63 17.01 19.44 22.79 17.25
<u>Qucl+Atra</u>	<u>Select</u>	3	26.42 <u>26.42</u>	12.90 <u>4.06</u>	2.28	41.60 37.85	43.16 38.37	46.76

Table 8. Total costs for full-season fallow experiment at West Fargo.

^aFull season costs were calculated three ways: Broadcasting by farmer assumes the farmer owns his sprayer and operates it (labor is "free"); Broadcast by hired labor custom applicator assumes the farmer hires a commercial applicator to do all broad-

Brdcst = standard broadcast application as needed; Select = "selective mode" of Detectspray as needed; BC1/Sel = one broadcast application followed by selective mode of Detectspray as needed; BC1/DB = one broadcast application followed by double boom as needed; Trsu = triasulfuron; Qucl = quinclorac; Atra = atrazine.

<u>Variable^a</u>	Datum points	Mean	Minimum value	Maximum value	Correlation coefficient
	(no.)				(r)
Frequency of weeds >10 cm	20				
	32	8.5	0	29	63
Density of					
weeds >10 cm	32	6.5	0	24	62
Density of					.02
weeds <10 cm	32	6.5	0	61	20
Average cover	20	3.2			30
Frequency of	20	3.2	0	14	76
>3% cover	20	13.9	0	50	- 70

Frequency of weeds >10 cm= number of times out of 100 samples that the stem of a weed greater than 10 cm tall or wide occurred inside the 15cm-diam quadrat; Density of weeds >10 cm or <10 cm = plants/m as determined by counts inside 100 15-cm-diam quadrats; Average cover = estimated percentage ground covered by green vegetation inside 100 15cm-diam quadrats; Frequency of >3% cover = number of quadrats out of 100 in which percentage ground cover was estimated above 3%. <u>Economics of Detectspray in full season fallow, Fargo 1992</u>. Detectspray¹ sprayer technology consists of sensors that measure infrared light reflected from green plant canopies and, with associated circuitry and a computer microprocessor, trigger solenoid valves to turn on allowing delivery of spray to nozzles on a spray boom. Each nozzle on the boom is fitted with a sensor mounted several inches ahead and facing downward. Nozzles are turned on and off individually with solenoid valves positioned immediately above each nozzle. When sufficient infrared light is reflected from green plant leaves and is detected by a particular sensor, the infor-mation is processed (using an ambient light reading taken from a sensor facing up-ward) and an electric signal is sent to that solenoid valve causing it to open and spray to flow through the nozzle. The sensors respond to all green tissue, so De-

tectspray has application as a fallow sprayer. Detectspray hardware was mounted on an all-terrain vehicle (ATV) with 6 nozzles spaced 20 inches apart (10 ft effective spray swath). All treatments were applied at 5 gal spray solution per acre at 5 mph with 8001 extended range flat fan nozzles and 28 psi spray pressure. Plots were arranged in a randomized complete block design with four replications.

The experiment was established on a silty clay soil with pH 6.6 and 5.4% organic matter. Small grain stubble had been chisel plowed twice in the fall of 1991, leaving 1176 lb/A of residue and 41% residue cover. Plot size was 20 by 220 feet with 13-ft alleys between plots as a buffer against spray drift. Plots were treated with two adjacent 10-ft-wide passes with the ATV sprayer, either broadcast or using the

General treatment descriptions are given in Table 1. Treatments 4 to 8 involved preemergence triasulfuron or quinclorac at 0.21 and 12 oz ai/A, respectively, plus atrazine at 6 oz ai/A applied May 4. The postemergence herbicides to be used and the rates needed were determined by the investigator for each individual treatment at time of application. Postemergence herbicide rates, dates, and mode of application are given in the tables. All glyphosate applications included nonionic surfactant at 0.5% by vol plus ammonium sulfate at 1.5 lb/A. When dicamba was applied alone, nonionic surfactant was added at 0.5% by vol. The double boom of treatment 4

Table 1. General description of planned treatments for full-season fallow experiments at Fargo.

Treatment^a

1. Postemergence herbicides, broadcast as needed

2. Postemergence herbicides, Detectspray as needed

3. Postemergence herbicides, broadcast once followed by Detectspray as needed Postemergence herbicides, broadcast once followed by double boom as needed
 Preemergence triasulfuron + atrazine, POST herbicides broadcast as needed
 Preemergence triasulfuron + atrazine, POST herbicides Detectspray as needed

- 7. Preemergence quinclorac + atrazine, POST herbicides broadcast as needed
- 8. Preemergence quinclorac + atrazine, POST herbicides Detectspray as needed

^aTriasulfuron = AMBER by Ciba-Geigy, quinclorac = FACET by BASF; preemergence herbicides were applied broadcast May 5.

¹Detectspray is a trademark of Detectspray Limited, 215 Mann St., PO Box 84, Ar-midale NSW 2350, Australia.

involves broadcast application of a low rate of herbicide (usually glyphosate) required to kill smaller, more abundant weeds, together with a Detectspray application of a higher rate of herbicide to kill large weeds. A Detectspray operator would have both booms operating on one sprayer. Experimentally, the double boom application was simulated by two separate applications.

At the time of each Detectspray (selective mode) application, a circular, 15-cm-diam, leg-mounted quadrat was used to take 100 readings from each plot for each of the following parameters: frequency of occurrence of one or more weeds greater than 5 cm in height or width, density of weeds greater than 5 cm, density of weeds less than 5 cm, and percentage ground area occupied by green plant material (percentage cover). These readings sampled the entire length of each 220-ft plot.

Assumptions used in the economic calculations

1992 herbicide prices from Ostlund Chemical in Fargo: Glyphosate costs \$37.37/gal as Roundup RT (3 lb ae/gal) Dicamba costs \$68.83/gal as Banvel (4 lb ai/gal) Triasulfuron costs \$10.27/oz product as Amber (75DF) Atrazine costs \$2.55/1b product as atrazine (90DF) Quinclorac cost is unknown but is estimated at \$25/1b product as Facet (75DF) Nonionic surfactant costs \$17.25/gal as X-77 Ammonium sulfate costs \$.25/1b

Detectspray application done by a custom operator estimated at \$3.23/A. Includes custom broadcast price of \$2.48/A (U. of Minn. costs estimates) plus \$.75/A premium for Detectspray application (figure supplied by Kelly Johnson, Saskatchewan custom applicator, adjusted for U.S.-Canada exchange rate of approximately \$1.00:\$.75).

Standard broadcast application:

- *1. Sprayer owned and operated by the farmer: \$.76/A (this figure used in the
- calculations below unless otherwise stated)
- 2. Sprayer owned by farmer, operated by hired labor: \$1.28/A 3. Custom application: \$2.48/A
- (Estimates supplied by University of Minnesota)

Herbicides were applied in 3-L plastic bottles, one bottle per plot. filling the spray boom with each treatment, a mark was placed on the bottle at inital fluid level, thus enabling a measurement of spray volume required to treat

Summary comments. Cool temperatures throughout the growing season and dry weather during much of July and August slowed weed growth. Thus, only about two postemergence applications were needed on some plots (Table 8). Three Detectspray treatments, however, required four postemergence applications. Two of these four post applications were follow-up treatments to destroy weeds not killed by the August 4 application (Tables 4 and 5). Wind on August 4 was 8 to 10 mph. The treatments were re-applied August 14 (Table 6) when it was apparent that weeds were showing little to no injury from the August 4 application. Wind on August 14 was 5 to 8 mph. On August 27, another re-treatment was required at a lower herbicide rate and many weeds showed only moderate injury. Since spray volume measurements indicate the Detectspray sensors were functioning and spray was being applied, it appears that the wind on August 4 and 14 may have dispersed and displaced the spray, preventing much of it from reaching the target weeds.

Assuming that the farmer applies his own broadcasting treatments, Detectspray treatment results were sometimes more and sometimes less expensive than standard broadcasting. Specifically, in Detectspray treatments receiving the August 4 application that required double re-treatment, costs exceeded those for broadcasting (Table 8). In other Detectspray treatments, however, costs were lower than broad-

casting by \$2 to \$4/A. Applying triasulfuron plus atrazine preemergence followed by full-season broadcasting saved about \$3/A compared to the standard broadcast treatment without preemergence herbicides (Table 8). Applying triasulfuron plus atrazine preemergence has excellent promise as a means of reducing the need for subsequent postemergence treatments in fallow. The dry spring of 1992 probably provided insufficient activation of triasulfuron and atrazine. Normally, this preemergence treatment would be tion of triasulfuron the need for postemergence herbicides even more than was observed expected to reduce the need for postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more than the treatment would be the postemergence herbicides even more the postemergence herbicides even more the postemergence herbicides even more the postemergence herbicides even the treatment would be be the postemergence herbicides even the postemergence herbicides even the t

in this experiment. Assuming that the farmer pays hired labor to operate the sprayer (\$.52/A) or that the farmer has all broadcasting done by a commercial applicator improves the economics of Detectspray relative to broadcasting. However, the costly double renomics of Detectspray relative to broadcasting. However, the standard broadcasting treatment required in Detectspray plots treated August 4 made standard broadcasting

less expensive. Growers considering the use of Detectspray on a particular fallow field will have reason to wonder how much chemical they will save compared to a broadcast application. A measurement of weed growth at the time of spraying could be helpful in making this determination if such a measurement correlated well with spray volume needed to treat the field. Several measures of weed growth correlated with volume reduction, although the highest correlation coefficient was a modest .80 for the percentage of quadrats having greater than 3% cover (Table 9).

Herbicide <u>treatment plan^a PRE POST</u>	<u>Herbic</u> Herbicides	<u>ide treatmer</u> Rate (1b/A)	nt appl Date	ied Mode	Spray vol. red. (%)	Herbi- cide	<u>Cost</u> Appli- <u>cation</u> -(\$/A)	Total
None Brdcst None Select None BC1/Se None BC1/DB Trsu+Atra Brdcst Trsu+Atra Select Quc1+Atra Brdcst Quc1+Atra Select C.V. LSD(0.1) Brdcst = standarc	Glyt+Dica Glyt+Dica Glyt+Dica Glyt+Dica Glyt+Dica Glyt+Dica Glyt+Dica	0.28+0.19 0.28+0.19 0.28+0.19 0.28+0.19 0.28+0.19 0.28+0.19 0.28+0.19 0.28+0.19 0.28+0.19	6/13 6/13 6/13 6/13 6/13 6/13 6/13	Brdcst Select Brdcst Brdcst Select Brdcst Select Select	66.9 	7.53 2.49 7.53 7.53 7.53 1.05 7.53 1.48	.76 3.23 .76 .76 .76 3.23 .76 3.23	8.29 5.72 8.29 8.29 8.29 4.28 8.29 4.28 8.29 4.71

<u>Table 2</u>. Herbicide and application costs during the first postemergence application in the full-season fallow experiment at Fargo. Broadcast application cost assumes the sprayer is farmer owned and operated.

tectspray as needed; BC1/Sel = one broadcast application followed by selective mode" of Deof Detectspray as needed; BC1/DB = one broadcast application followed by selective mode boom as needed; Trsu = triasulfuron; Qucl = quinclorac; Atra = atrazine.

<u>duction</u> for the first application at Fa	percentage weed cover, rgo.	and spray volume re-
--	-----------------------------	----------------------

Herbicide <u>treatment plan</u> PRE POST	Treat- ment applied	Date	Freq. of weeds >5 cm —(%)——	Density of weeds >5 cm (weeds/	Density of weeds <5 cm sq. m)—	% Cover	Freq. of >3% <u>cover</u> —(%)——	Spray vol. red.
None Brdcst None Select None BC1/Se None BC1/DE Trsu+Atra Brdcst Trsu+Atra Select Quc1+Atra Brdcst Quc1+Atra Select C.V. LSD(0.1) Brdcst = standay	Select Brdcst Brdcst Brdcst Select Brdcst Select Select	6/13 6/13 6/13 6/13 6/13 6/13 6/13	3.8 6.5 4.8 6.0 2.8 3.5 5.3 5.3 5.0 67.8 NS	2.3 4.1 2.8 3.7 1.6 2.0 3.7 3.0 74.3 NS	2.7 1.7 2.3 1.3 2.3 2.1 2.7 0.6 110.3 NS	1.3 2.5 0.7 2.3 0.6 0.6 1.3 1.3 58.7 0.9	5.8 9.8 4.8 9.0 3.8 4.8 7.0 5.5 66.5 NS	67 - - 86 - 80 19

Brdcst = standard broadcast application as needed; Select = "selective mode" of Detectspray as needed; BC1/Sel = one broadcast application followed by selective mode of Detectspray as needed; BC1/DB = one broadcast application followed by double boom as needed; Trsu = triasulfuron; Qucl = quinclorac; Atra = atrazine. <u>Table 4</u>. Herbicide and application costs during the second postemergence application in the full-season fallow experiment at Fargo. Broadcast application assumes the sprayer is farmer owned and operated.

Herbicid <u>treatment</u> PRE	le ^a plan POST	Herbicio Herbicides	<u>le treatment</u> Rate (1b/A)	t appl ⁺ Date	ied Mode	Spray vol. <u>red.</u> (%)	Herbi- cide	Cost Appli- cation -(\$/A)-	Total
None None None Trsu+Atra Trsu+Atra Qucl+Atra	Brdcst Select BC1/Sel BC1/DB Brdcst Select Brdcst Select Select	Glyt+Dica Glyt+Dica Glythosate Dicamba Glyt+Dica Glyt+Dica Glyt+Dica Glyt+Dica Glyt+Dica	0.28+0.19 0.28+0.19 0.28+0.19 0.14 0.19 0.28+0.19 0.28+0.19 0.28+0.19 0.28+0.19	8/4 8/4 8/4 8/4 8/4 8/31 8/4 8/31 8/4	Brdcst Select Brdcst Select Brdcst Select Brdcst Select	80.2	1.88 2.36 1.57 2.43 .44 1.88 1.49 1.59 1.84	.19 3.23 3.23 - 3.23 .19 3.23 .19 3.23 ve mode"	2.07** 5.59 4.80 6.10 2.07** 4.72 1.78** 5.07

Brdcst = standard broadcast application as needed; Select = "selective mode" of Dedectspray as needed; BC1/Sel = one broadcast application followed by selective mode of Detectspray as needed; BC1/DB = one broadcast application followed by double boom as needed; Trsu = triasulfuron; Qucl = quinclorac; Atra = atrazine. **Treatments handled as a "spot spray". Only one of the four replicate plots needed treating. This weedy plot was sprayed and the per-acre costs were calculated as one fourth of the costs required to treat all four plots.

<u>Table 5</u>. Weed frequency, weed density, percentage weed cover, and spray volume reduction for the second application at Fargo.

HerbicideTreat-Freq.Densityof weedsof weeds%treatment planamentof weedsof weeds%%PREPOSTappliedDate>10 cm>10 cm<10 cmcom	ver cover red. (%)	
Brdcst 8/4 - - <th -<<="" td=""><td>8 19.8 68.7 1 7.5 79.2 5 7.3 88.1 .6 5.0 - ** .2 15.0 80.2 .1 1.0 - ** .9 14.8 75.6 .3 75.2 30.2 <u>S NS 16.7</u> Gelective mode" of</td></th>	<td>8 19.8 68.7 1 7.5 79.2 5 7.3 88.1 .6 5.0 - ** .2 15.0 80.2 .1 1.0 - ** .9 14.8 75.6 .3 75.2 30.2 <u>S NS 16.7</u> Gelective mode" of</td>	8 19.8 68.7 1 7.5 79.2 5 7.3 88.1 .6 5.0 - ** .2 15.0 80.2 .1 1.0 - ** .9 14.8 75.6 .3 75.2 30.2 <u>S NS 16.7</u> Gelective mode" of

^aBrdcst = standard broadcast apprication as needed, including application followed by selective Detectspray as needed; BC1/Sel = one broadcast application followed by mode of Detectspray as needed; BC1/DB = one broadcast application followed by double boom as needed; Trsu = triasulfuron; Qucl = quinclorac; Atra = atrazine. **Treatments handled as a "spot spray". Only one of the four replicate plots needed treating. This weedy plot was sprayed and the per-acre costs were calculated as one fourth of the costs required to treat all four plots.

Table 6. Herbicide and application costs during the third postemergence application in the full-season fallow experiment at Fargo. Broadcast application assumes the

	<u>plan^a Herb</u> POST Herbicide	<u>icide treatme</u> es Rate (1b/A)	nt app Date	lied Mode	Spray vol. red. (%)	Herbi- cide	<u>Cost</u> Appli- <u>cation</u> -(\$/A)-	Total
None Se None BC None BC Trsu+Atra Bro Trsu+Atra Se Qucl+Atra Bro Qucl+Atra Se C.V. LSD(0.1)	rdcst Glyt+Dica elect Glyt+Dica 1/Sel Glyphosat 1/DB None dcst None lect Glyt+Dica dcst None lect Glyt+Dica	0.28+0.19 0.19 0.28+0.19	8/31 8/14 8/27 	Brdcst Select Select Select Select	65.7 85.8 79.0 75.8 19.8	7.53 2.58 .45 0 1.58 0 1.82	.76 3.23 3.23 0 0 3.23 0 3.23	8.29 5.81 3.68 0 4.81 0 5.05

= standard broadcast application as needed; Select = "selective mode" of Detectspray as needed; BC1/Sel = one broadcast application followed by selective mode of Detectspray as needed; BC1/DB = one broadcast application followed by double boom as needed; Trsu = triasulfuron; Qucl = quinclorac; Atra = atrazine.

Table 7. Herbicide and application costs during the fourth postemergence application in the full-season fallow experiment at Fargo. Broadcast application assumes the

PRE	cide ent plan ^a POST	<u>Herbicid</u> Herbicides	<u>e treatment Rate</u> (1b/A)	<u>appl</u> Date	ied Mode	Spray vol. red. (%)	Herbi- cide	Cost Appli- cation	Total
None None None Trsu+Atra Trsu+Atra Quc1+Atra	Select Brdcst	None Glyphosate None None Glyphosate None	0.19	8/27 - - 8/27	Select Select	73.7	0 .83 0 0 0 .43	-(\$/A) 3.23 0 0 3.23	0 4.06 0 0 3.66
<u>Qucl+Atra</u> Brdcst =	<u>Select</u> standard	<u>Glyphosate</u>	0.19	8/27	Select	- 83.3	0	0	0

Brdcst = standard broadcast application as needed; Select 83.3 .53 3.23 3.76 tectspray as needed; BC1/Sel = one broadcast application followed by selective mode of Detectspray as needed; BC1/DB = one broadcast application followed by double boom as needed; Trsu = triasulfuron; Qucl = quinclorac; Atra = atrazine.

Table 8. Total costs for full-season fallow experiment at Fargo.

1.4.2			No. of Concession, Name of Con				
Herbicide treatment plan	PRE and POST appli-	Broa PRE herbicide	Fu dcasting by POST herbicide	Appli- cation	b Total	Brdcst by hired labor Total	Brdcst by custom ap- <u>plicator</u> Total
PREPOSTNoneBrdcstNoneSelectNoneBC1/SelNoneBC1/DBTrsu+AtraBrdcstTrsu+AtraSelectQucl+AtraBrdcst	2 2.25 5	0 0 0 4.60 4.60 26.42 26.42	16.94 8.26 9.55 10.40 9.41 4.55 9.12 5.67	1.71 12.92 7.22 3.99 1.71 13.68 1.71 13.68	18.65 21.18 16.77 14.39 15.72 22.83 37.25 45.77	19.82 21.18 17.29 14.91 16.89 23.35 38.42 46.29	22.52 21.18 18.49 16.11 19.59 24.55 41.12 47.49

<u>Oucl+Atra Select 5 26.42 5.67 13.08 45.77 40.05 17.05</u> ^aFull season costs were calculated three ways: Broadcasting by farmer assumes the farmer owns his sprayer and operates it (labor is "free"); Broadcast by hired labor assumes the farmer owns his sprayer but pays someone to operate it; Broadcast by custom applicator assumes the farmer hires a commercial applicator to do all broad-

casting. bBrdcst = standard broadcast application as needed; Select = "selective mode" of Detectspray as needed; BC1/Sel = one broadcast application followed by selective mode of Detectspray as needed; BC1/DB = one broadcast application followed by double boom as needed; Trsu = triasulfuron; Qucl = quinclorac; Atra = atrazine.

Table 9. Correlation coefficients for the relationship between spray volume reduction and five weed variables measured at time of Detectspray application at Fargo.

pricación ac range			Minimum	Maximum	Correlation
	Datum points	Mean	value	value	coefficient
<u>Variable^a</u>	(no.)	TTO UT			(r)
Frequency of weeds >10 cm	30	5.8	1	21	85
Density of weeds >10 cm	30	3.4	1	12	85
Density of weeds <10 cm	30	1.2	0	6	04
Average cover	29	3.7	0	18	78
Frequency of <u>>3% cover</u> ^a Frequency of wee stem of a weed of diam quadrat; De by counts insid centage ground of Frequency of >3 ground cover wa	ensity of we e 100 15-cr covered by % cover = D	eeds >10 c n-diam qua green vege umber of (m or <10 cm drats; Avera tation insid quadrats out	= plants/m ⁻ age cover =	as determined estimated per- -diam guadrats;

<u>Effect of travel speed on Detectspray efficacy, Fargo 1992</u>. Detectspray¹ sprayer technology consists of sensors that measure infrared light reflected from green plant canopies and, with associated circuitry and a computer microprocessor, trigger solenoid valves to turn on allowing delivery of spray to nozzles on a spray boom. Each nozzle on the boom is fitted with a sensor mounted several inches ahead and facing downward</u>. Nozzles are turned on and off individually with solenoid valves positioned immediately above each nozzle. When sufficient infrared light is reflected from green plant leaves and is detected be a particular sensor, the information is processed (using an ambient light reading taken from a sensor facing upward) and an electric signal is sent to that solenoid valve causing it to open and spray to flow through the nozzle. The sensors respond to all green tissue, so Detect-spray has application as a fallow sprayer.

Detectspray hardware was mounted on an all-terrain vehicle (ATV) with six nozzles spaced 20 inches apart. Only the center four nozzles were used in this experiment, however. Treatments were applied at 5 gal spray solution per acre at either 6 mph with 8001 flat fan nozzle tips or 12 mph with 8002 tips. Spray pressure was 41 psi. Treatments were applied July 21 when air temperature was 66 F, skies were clear to partly cloudy, and soybeans had 3 to 3.5 trifoliolate leaves. Plot size was 15 by

40 ft; the experiment was a randomized complete block design with four replications. The experiment was established on a silty clay soil with 4% organic matter. Ethalfluralin at 1 lb ai/A plus metribuzin at 0.19 lb ai/A plus imazethapyr at 0.016 lb double-pass incorporated with a field cultivator/harrow by 10 am June 1. The area was soybeans were seeded at 180,000 seeds/A June 2 in rows 5 ft apart. Forty-ft alleys were positioned between replications (tiers) to allow for establishing travel speeds of 6 or 12 mph before entering the plot. These alleys and the entire experimental area was maintained weed free so that Detectspray sensors would be triggered only by soybean foliage.

<u>Treatment</u>	Rate (1b/A)	<u>6 mph, 80</u> Detect- spray	<u>01 tips</u> Broad- cast	<u>12 mph,</u> Detect- spray -(%)	8002 tips Broad- cast
Glyphosate+X77 Glyphosate+X77 Glyphosate+X77 Paraquat+X77	0.28+0.5% 0.1875+0.5% 0.125+0.5% 0.25+0.5%	87 72 62 64	84 73 62 67	87 82 72 71	89 75 78 79
C.V. % LSD 5%				- 8	

<u>Comments</u>. Sensors were positioned about 12 inches in front of nozzle tips. Detectspray recommendations call for sensors to be 2 inches forward of nozzle tips for every mile per hour of travel speed. Thus, sensors were placed properly for 6 mph but should have been 24 inches in front of the nozzles for 12 mph. Nevertheless, control with Detectspray treatment was as good at 12 as at 6 mph. There was no evidence that sensors responded too slowly at 12 mph to effectively treat the soybean

Although the volume of spray required to treat each plot was not measured, it was observed that equal volumes of spray were used for broadcast and Detectspray treatments. Apparently, the 5-ft spacing between soybean rows provided non-green gaps insufficient for Detectspray nozzles to shut off.

¹Detectspray is a trademark of Detectspray Limited, 215 Mann St., PO Box 84, Armidale NSW 2350, Australia. Postharvest treatments with Detectspray, West Fargo 1992. An experiment was established on a clay with pH 8.0 and 4.9% organic matter. Treatments were applied with an ATV-mounted sprayer delivering 5 gal/A with 8001 nozzles at 28 psi and 5 mph. CO, was used as the spray propellant. The 6-nozzle boom (nozzles 20 inches apart) was equipped with Detectspray hardware with sensors positioned 10 inches in front of each nozzle and about 24 inches from the ground surface. When spraying on selective mode, sensors detect green plant foliage and trigger individual nozzles to turn on and off according to the presence or absence of foliage. Maximum sensor sensitivity was achieved by adjusting the master controller slightly above the point where the group of six nozzles began turning on even with the sensors positioned above vegetation-free stubble (sprayed at a monitor setting of 0.88). All selective-mode plots were treated while driving east to minimize effects of shadows from the ATV.

Treatments were applied in 6- to 8-inch standing wheat stubble between 3 and 3:30 pm on September 22 when air temperature was 54 F, wind was 0 to 2 mph, relative humidity was 40%, skies were sunny, and soil was moist. Volunteer wheat was 2 to 5leaf and 4 to 10 inches tall and was by far the most abundant species. Occasional kochia and common ragweed (each 5 to 12 inches tall) also were present. The same herbicide mixture, glyphosate at 0.23 lb ae/A plus dicamba at 0.125 lb ae/A plus ammonium sulfate at 1.5 lb/A plus X-77 surfactant at 0.5% by vol, was applied to all Plot size was 20 by 220 ft, requiring two passes with the 10-ft sprayer. Treatments were mixed in 2800 ml contained in a 3-L bottle, one bottle per plot. plots. After filling the boom with each treatment, the bottle was marked at fluid level before treating the plot. After spraying, the bottles were brought into the labora-tory where initial and final volume were determined. At time of spraying, a 15-cmdiameter leg-mounted quadrat was used to take the following measurements: number of weeds 4 inches or larger, number of weeds less than 4 inches, estimated percentage cover. The quadrat was placed 100 times per plot, sampling the entire 220-ft plot length. Visual estimates of percentage weed control were taken October 2, 10 days after treatment (10 DAT). The experiment was a randomized complete block design with four replications.

						and the second se
Detectspray ^a mode	Spray volume <u>used</u> (ml)	Weed control 10 DAT	Freq. weeds >4 in. %)	Ave. weeds in FOV (no.)	Ave. % <u>cover</u> (Freq. >3% cover %)
Selective	1855	96	77 <u>+</u> 2	30 ± 1	29 <u>+</u> 3	91 <u>+</u> 2
Continuous	1850	97	-	-	-	-
		NIC				

LSD (0.05) NS NS ^aSelective mode allows a particular nozzle to turn on only when its sensor detects green plant foliage; continuous mode is standard broadcast spraying with all nozzles on continuously. <u>Soil-applied grass control in corn. Fargo 1992</u>. An experiment was established on a conventionally prepared silty clay with pH 7.8 and 4.1% organic matter. Preplant incorporated (PPI) treatments were applied May 6 with 82 F air temperature, 40% relative humidity, sunny skies, 0 to 2 mph winds, and a moist soil surface (0.3 inch rain received May 5). Granule (-G) treatments were applied with a Gandy airflow applicator to an 8-ft-wide area down the center of each plot. Sprayed treatments were applied with a bicycle wheel sprayer delivering 17 gal/A with 8002 nozzles and 40 psi to a 6.7-ft-wide area down the center of each plot. All plots were double pass incorporated with a field cultivator/harrow operated 3 inches deep and within 1 hour of EPTC&R25788 application. Interstate 343A was seeded the same day at 22,000 emergence (PRE) treatments were applied May 13 using the airflow applicator or the sprayer described above. Environmental conditions at application on May 13 were as follows: 60 F air temperature, wind 0 to 2 mph, soil dry on surface but moist underneath. Visual estimates of percentage crop injury and weed control were taken June 16. Corn stands were determined June 19 by counting all plants in the two center rows of each plot. The entire experimental area was treated June 29 with clopyralid at 0.09 1b ae/A for Canada thistle control. Plot size was 12.5 by 25 ft and the experiment was a randomized complete block design with four replications.

				Eval	untod	1	10	
		Corn	Corn	Evdi	uated	June	16	
<u>Treatment</u> ^a	Rate	stand	injury	Fxtl ^b	KOCT	D.		
	(1b/A)	(plants/A)	mjury	FXLI	KOCZ		Colq	Wibw
Acetochlor&safener(PRE)	1.2	12,500	0		—(%)			
Acetochlor&safener(PRE)	1.8	14,000	0	57	0	49	22	0
Acetochlor&safener(PRF)	2.2	13,800	0	73	16	66	58	0
Acet&safener+Cyanazine(PRE)	1.8+1.5	13,800	0	82	81	92	87	36
Acet&safener+Cyanazine(PPI)	1.8+1.5		0	87	90	96	89	81
Acet&safener+Cyanazine(PRE)	2.2+1.5	13,800	0	88	95	98	100	83
Alachlor(PRE)		14,100	0	89	92	96	92	88
Alachlor+Cyanazine(PRE)	3.5	12,800	0	62	12	75	69	8
Alachlor+Cyanazine(PPI)	3.5+1.5	13,900	0	79	80	80	97	59
Alachlor-G(PRE)	3.5+1.5	13,300	0	81	96	96	98	88
Alachlon-G+(vapazing (DDC)	3.5	11,700	0	87	96	96	94	57
Alachlor-G+Cyanazine(PRE)	3.5+1.5	13,900	0	84	92	82	98	77
Alachlor-G+Cyanazine(PPI)	3.5+1.5	12,400	0	71	93	97	98	83
Metolachlor(PRE)	3	14,400	0	62	14	32	4	25
Metolachlor+Cyanazine(PRE)	3+1.5	13,500	0	68	65	46	27	18
Metolachlor+Cyanazine(PPI)	3+1.5	14,100	0	90	91	97	99	22
Metolachlor-G(PRE)	3	12,500	0	87	65	81	48	
Metolachlor-G+Cyan(PRE)	3+1.5	13,000	0	66	14	23		18
Metolachlor-G+Cyan(PPI)	3+1.5	13,600	Ő	79	89		41	24
SAN-582(PRE)	1.5	13,200	0	68		78	65	54
SAN-582(PPI)	1.5	13,800	0	83	5	75	47	3
SAN-582+Cyanazine(PRE)	1.5+1.5	12,700	0			100	99	79
SAN-582+Cyanazine(PPI)	1.5+1.5	14,100		84	82	87	90	35
Pendimethalin+Cyan(PRF)	1.5+1.5	14,200	0	75	75	55	63	47
EPTC&R25788(PPI)	4		0	40	97	20	39	33
EPTC&R25788+Cyanazine(PPI)	4+1.5	13,500	0	97	63	94	99	12
EPTC&R25788-G(PPI)	4	13,700	0	96	95	97	100	60
EPTC&R25788-G+Cyanazine(PPI)	•	13,200	0	98	75	93	99	49
Untreated	4+1.5	12,800	0	98	92	99	99	95
C.V. %	0	14,200	0	0	0	0	0	0
LSD 5%		8	0	11	22	19	29	47
		1,400	NS	12	20	20	30	29
Dry flowable formulation of	cyanazine	e was used.						25

Foxtail was a mixture of yellow (75%) and green (25%) foxtail.

Fall-applied trifluralin and ethalfluralin granules in no-till soybeans, Fargo 1992. An experiment was established on a silty clay with pH 7.8, 4.5% organic matter, and standing wheat stubble. Design was a randomized complete block with four replica-tions and plot size of 15 by 30 ft. Tilled plots were designed to simulate condi-tions typical of a standard trifluralin application in conventional till and were rototilled before herbicide application to destroy stubble. Trifluralin and ethalfluralin granules were applied Oct. 23, 1991 with a Gandy air-flow applicator applying a 10-ft-wide area when air temperature was 30 F and skies were partly cloudy. Granules were incorporated the day of application. Conventional till plots were tilled once with a field cultivator operated 2 to 3 inches deep. In no-till plots, granules were left on the surface or were incorporated with a Haybuster undercutter (operated 2 inches deep) or a rotary hoe. Trfluralin and ethalfluralin granules also were applied Nov. 13 with 41 F air temperature, sunny skies, and 4 inches of wet snow. McCall soybeans (Rhizobium inoculated) were seeded 1 inch deep on May 18 at 180,000 seeds/A with a Hiniker no-till planter set on 30-inch rows. Immediately before seeding, tilled plots were worked once with a field cultivator/harrow operated 2 to 3 inches deep. The entire experimental area was treated May 26 with glyphosate at 0.75 lb/A to destroy emerged weeds. Handweeded check plots were main-tained with sethoxydim plus SUN-IT II at 0.2 lb/A + 1.5 pt/A supplemented with handweeding. Visual estimates of foxtail (90% yellow, 10% green foxtail) control were taken June 24 and July 29. Grain was harvested by machine on Oct. 5, and yields are expressed on a 12% moisture basis.

	<u>plication</u> ate Date b/A)	Tillage system	Herbicide incorporation method	Sobe inj.	Foxt <u>cont</u> 6/24 —(%)—		Grain <u>yield</u> (bu/A)
Trifluralin Trifluralin Trifluralin Trifluralin Ethalfluralin Ethalfluralin Ethalfluralin Ethalfluralin Ethalfluralin Handweeded Handweeded	1 Oct. 23 1 Oct. 24 1 Oct. 24 1 Oct. 25 1 Oct. 25	No-till No-till No-till No-till Tilled No-till No-till No-till	Field cultivator None Rotary hoe Undercutter None Field cultivator None Rotary hoe Undercutter None Field cultivator Undercutter	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	86 95 97 91 70 96 98 96 70 73 - - 10 13	86 88 93 83 67 90 90 88 61 59 - - - 10 12	23.1 24.9 23.8 22.8 19.0 24.9 25.5 26.0 24.0 21.2 29.0 26.6 10.6 3.7

Fall-applied trifluralin and ethalfluralin granules in conservation-till soybeans. <u>Carrington 1992</u>. An experiment was established on a Heimdal-Emrick loam with pH 7.8, 3.2% organic matter, and 6 to 8-inch standing wheat stubble. Trifluralin and ethalfluralin granules were applied either Oct. 18 or Nov. 16, 1991 using a Gandy airflow applicator. Trifluralin emulsifiable concentrate was applied either Oct. 18 or Nov. 16 using a bicycle wheel sprayer delivering 8.5 gal/A with 8001 nozzles. For treatments incorporated with a field cultivator, the plots were first rototilled to destroy most surface crop residues before herbicide application. On Oct. 18, air temperature was 37 F with sunny skies and dry soil; on Nov. 16, skies were sunny with 36 F and 0 to 2 inches of snow. Herbicide granules were either left on the surface or were incorporated once on Oct. 18 with a field cultivator operated 3 inches deep, a Haybuster undercutter operated 1.5 to 2 inches deep, a rotary hoe, or the undercutter followed by rotary hoe. Field cultivated plots were worked a second time with a Melroe culti-harrow (2 to 3 inches deep) on May 19, 1992. McCall soybeans were seeded 1.5 to 2 inches deep at 63 lb/A on May 19 using a John Deere MaxEmerge no-till planter with 30-inch row spacing. Glyphosate at 0.75 lb ai/A was applied May 22 to the entire experimental area to control emerged weeds. Soybean plants per m of row was determined June 15. Thifensulfuron + bentazon at 0.0039 + 0.75 lb/A was applied June 19 over the entire experiment for broadleaf weed control. Sethoxydim at 0.25 lb/A was applied to handweeded check plots on June 16. estimates of percentage green foxtail control were taken on June 12 and Aug. 2. Foxtail plants per 0.25 m² (3 subsamples per plot) was determined June 13. Plots were combine-harvested on Oct. 2 and yields adjusted to 12% moisture. Plot size was 15 by 35 ft and the experiment was a randomized complete block with four replications.

-- See previous page for experiment description --

			1.1 1 1 1 1 1 1				
		Herbicide		Foxtai			· ·
	tiona	incorporation	Soybean	contro		Foxtail	Grain
Herbicide applica		method	stand	6/12 8/		density	yield
Chemical Rate D	<u>late</u>	IIIC CITOG	(plt/m)	(%)		(plt/m ²)	(bu/A)
(1b/A)			VI 7 7				
	+ 10	Field cultivator	32	89	90	50	18.0
11 11 444 4		Field cultivator	31	83	78	97	17.8
			31	25	1	354	9.5
		None	27	68	11	175	12.6
11 11 100 -		None	24	84	48	90	15.0
1111 700	ov. 16	None	28	79	39	108	14.1
	ct. 18	None	28	81	55	114	15.0
1111 100	ct. 18	Rotary hoe	28	87	60	48	17.2
Trif-10G 1.5 00	ct. 18	Rotary hoe	26	91	79	41	19.0
Trif-10G 1 00	ct. 18	Undercutter	30	95	91	9	17.5
	ct. 18	Undercutter		93	80	43	17.3
Trif-10G 1 00	ct. 18	Undercut/Rotary hoe			92	10	17.3
Trif-10G 1.5 00	ct. 18	Undercut/Rotary hoe	30	94	94	15	17.9
	ct. 18	Field cultivator	33	93	79	66	17.0
	ct. 18	Field cultivator	35	85		382	9.1
	ov. 16	None	31	25	0	150	12.8
	ov. 16	None	26	73	16	73	15.6
	lov. 16	None	31	85	60		14.3
	ct. 18	None	28	79	31	103	14.5
	ct. 18	Rotary hoe	28	85	50	81	
)ct. 18	Rotary hoe	31	87	75	46	17.2
)ct. 18	Undercutter	30	91	81	39	18.8
)ct. 18	Undercutter	25	95	90	7	20.2
Lonia zoa)ct. 18	Undercut/Rotary ho	e 29	95	92	6	19.3
Lona rea)ct. 18	Undercut/Rotary ho	e 29	97	95	4	18.2
Lonia zea	-	Field cultivator	29	0	0	738	6.6
Union ourona		Undercutter	33	0	0	471	9.7
		Field cultivator	33	100	100	0	18.4
Handweeded 0		Undercutter	30	100	100	0	22.2
Handweeded 0	-	Under Cutter					
			11	6	24	114	14
C.V. %			5	7	21	110	3.1
LSD 5%	100	ranules; Trif-4EC =	Troflan	4E emul	sifi	able con	centrate
^a Trif-G = Trefla	in IUG gr	ranules; intract =	Sonalar	3E emu	lsif	iable con	centrate

Etha-10G = Sonalan 10G granules; Etha-3EC = Sonalan 3E emulsifiable concentra

Fall-applied trifluralin and ethalfluralin granules in conservation-till soybeans, Minot 1992. An experiment was established on a Max-Williams loam with pH 5.6, 3.2% organic matter (0 to 2 inches), and 12-inch standing wheat stubble. Trifluralin and ethalfluralin granules were applied Oct. 16 to 18, or Nov. 15 to 16, 1991 using a Gandy airflow applicator. Trifluralin and ethalfluralin emulsifiable concentrates were applied either Oct. 16 or Nov. 15 using a bicycle wheel sprayer delivering 8.5 gal/A with 8001 nozzles. For herbicide treatments incorporated with a field cultivator, the plots were first worked with a roto-tiller to destroy most surface crop residues before herbicide application. On Oct. 16, air temperature was 61 F with sunny skies and dry soil; on Oct. 17, skies were sunny with 33 F and dry soil; on Nov. 15, skies were sunny with 34 F and 4 to 5 inches of snow; on Nov. 16, skies were sunny with 27 F and 4 to 5 inches of snow. Herbicide granules were either left on the surface or incorporated once Oct. 16 to 18 with a field cultivator operated 3 inches deep, a Haybuster undercutter operated 1.5 to 2 inches deep, a rotary hoe, or the undercutter followed by rotary hoe. Field cultivated plots were worked a second time with a field cultivator (2 to 3 inches deep) immediately before planting on May 21, 1992. McCall soybeans were seeded 1.5 to 2 inches deep at 62 lb/A on May 21 using a John Deere single-disc no-till drill with a 15-inch row spacing. Glyphosate + 2,4-D (0.38 + 0.25 lb ai/A) was applied May 10 to control emerged weeds over the entire experimental area. Soybean plants per m of row was determined June 10. Bentazon and acifluorfen at 0.88 and 0.13 lb/A was applied June 25 over the entire experiment for broadleaf weed control. Sethoxydim at 0.25 lb/A was applied to handweeded check plots on June 10 and July 6. Visual estimates of percentage green foxtail control were taken June 12 and Aug. 24. Foxtail plants per 0.25 m (3 subsamples per plot) was determined June 13. Plots were combine-harvested Oct. 7 and yields adjusted to 12% moisture. Plot size was 15 by 35 ft and the experiment was a randomized complete block with four replications.

-- See previous page for experiment description --

HerbicideFoxtail control standFoxtail control standFoxtail Grain control standFoxtail Grain GrainHerbicidestandG/12 $8/24$ densityyield densityChemical (1b/A)Rate (1b/A)Date (plt/m)G/12 $8/24$ densityyield densityTrif-1061Oct. 18Field cultivator1864591572.4Trif-4EC1Nov. 15None1277581951.9Trif-1061Nov. 16None1285733112.5Trif-1061Oct. 18Rotary hoe138573534.2Trif-1061Oct. 18Rotary hoe138779644.2Trif-1061Oct. 18Undercutter159694156.8Trif-1061Oct. 18Undercut/Rotary hoe149492273.9Trif-1061Oct. 18Field cultivator168282844.5Trif-1061Oct. 18Field cultivator168282584.2Trif-1061Oct. 18Field cultivator168282584.2Trif-1061Oct. 18Field cultivator168282584.2Trif-1061Oct. 18Field cultivator1682<	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		llaubicido		Foxtail		0	
Herbicide applicationstand 6/12 8/24 density yieldChemical Rate Date methodstand 6/12 8/24 density yield(lb/A)(plt/m)(plt/m)(bu/A)(lb/A)(plt/m)(plt/m)(bu/A)(lb/A)(lb/A)(plt/m)(bu/A)(lb/A)(lb/A)(lb/A)(lb/A)(lb/A)Trif-10G 1Oct. 18Field cultivator168175812Trif-10G 1Oct. 18None12775812Trif-10G 1Oct. 18Rotary hoe1193944Trif-10G 1Oct. 18Rotary hoe1397644.2Trif-10G 1Oct. 18Nodecut/Rotary hoe16797814319Trif-10G 1Oct. 18Rotary hoe149973.9Trif-10G 1Oct. 18Field cultivator <th colspa<="" td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td></td><td>Herbicide</td><td>Sovhean</td><td>control</td><td></td><td></td></th>	<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td></td> <td>Herbicide</td> <td>Sovhean</td> <td>control</td> <td></td> <td></td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Herbicide	Sovhean	control		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Herbicide application"	incorporation	ctand	6/12 8/24	density		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chemical Rate Date	method			(plt/m ²)	(bu/A)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(prc/m)	(/0)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			10	01 7/	126	1.9	
Init-100 1 Oct. 16 Field cultivator 18 64 59 15 18 Trif-4EC 1 Nov. 15 None 14 8 0 888 1.8 Trif-4EC 1 Nov. 16 None 12 77 58 195 1.9 Trif-10G 1.5 Nov. 16 None 12 85 73 131 2.5 Trif-10G 1 Oct. 18 Rotary hoe 13 85 73 55 4.2 Trif-10G 1.5 Oct. 18 Rotary hoe 13 87 79 64 4.2 Trif-10G 1.5 Oct. 18 Undercutter 15 96 94 15 6.8 Trif-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 94 92 27 3.9 Trif-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 94 92 27 3.9 Trif-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 94 92 27 3.9 <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>- 10 100 1 Oct 18</td><td>Field cultivator</td><td></td><td></td><td></td><td></td></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 10 100 1 Oct 18	Field cultivator					
Importance 14 8 0 0.00 1.9 Trif-4CC 1 Nov. 15 None 12 77 58 195 1.9 Trif-10G 1.5 Nov. 16 None 12 85 73 131 2.5 Trif-10G 1 Oct. 18 None 12 85 73 131 2.5 Trif-10G 1 Oct. 18 Rotary hoe 13 85 73 53 4.2 Trif-10G 1.5 Oct. 18 Rotary hoe 13 87 79 64 4.2 Trif-10G 1.5 Oct. 18 Undercutter 15 96 94 15 6.8 Trif-10G 1.5 Oct. 18 Undercut/Rotary hoe 16 79 78 114 3.1 Trif-10G 1.5 Oct. 18 Field cultivator 16 82 82 58 4.5 Etha-10G 1 Oct. 18 Field cultivator 16 69 51 184 1.6 Etha-3EC 1 Nov. 16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Field cultivator		•••			
Importance 12 77 36 155 155 Trif-10G 1.5 Nov. 16 None 10 84 69 163 2.6 Trif-10G 1.5 Nov. 16 None 12 85 73 131 2.5 Trif-10G 1.5 Oct. 18 Rotary hoe 13 85 73 55 4.2 Trif-10G 1.5 Oct. 18 Rotary hoe 11 93 91 12 3.4 Trif-10G 1.5 Oct. 18 Undercutter 15 96 94 15 6.8 Trif-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 94 92 27 3.9 Trif-10G 1.5 Oct. 18 Field cultivator 16 82 82 58 4.5 Etha-10G 1 Oct. 18 Field cultivator 16 69 51 184 1.6 Etha-10G 1 Nov. 15 None 12 13 0 835 1.1 Etha-10G 1.5 Nov. 16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			14	•			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			12				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1111-104 -		10	84 6			
Trif-10G1Oct.18None138573554.2Trif-10G1Oct.18Rotary hoe119391123.4Trif-10G1.5Oct.18Undercutter138779644.2Trif-10G1Oct.18Undercutter138779644.2Trif-10G1.5Oct.18Undercutter159694156.8Trif-10G1.5Oct.18Undercut/Rotary hoe149492273.9Trif-10G1.5Oct.18Undercut/Rotary hoe149492273.9Trif-10G1.5Oct.18Field cultivator168282584.5Etha-10G1Oct.18Field cultivator1669511841.6Etha-3EC1Nov.15None1174611791.9Etha-10G1Nov.16None139183513.6Etha-10G1Oct.18Rotary hoe139388266.3Etha-10G1Oct.18Rotary hoe139388266.3Etha-10G1Oct.18Rotary hoe13969686.0Etha-10G1Oct.18Undercutter1396968 <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>111-100 1.0</td><td></td><td></td><td>85 7</td><td></td><td></td></td<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111-100 1.0			85 7			
Trif-10G10ct. 18Rotary hoe119391123.4Trif-10G1.50ct. 18Undercutter138779644.2Trif-10G1.50ct. 18Undercutter159694156.8Trif-10G1.50ct. 18Undercut/Rotary hoe1679781143.1Trif-10G1.50ct. 18Undercut/Rotary hoe1679781143.1Trif-10G1.50ct. 18Undercut/Rotary hoe149492273.9Trif-10G10ct. 18Field cultivator1669511841.6Etha-3EC10ct. 18Field cultivator1669511841.6Etha-3EC1Nov. 15None1387751142.8Etha-10G10ct. 18None139183513.6Etha-10G10ct. 18Rotary hoe139388266.3Etha-10G10ct. 18Rotary hoe139388266.3Etha-10G10ct. 18Rotary hoe139289403.3Etha-10G10ct. 18Undercutter13969686.0Etha-10G10ct. 18Undercut/Rotary hoe149796106.3Etha-10G10ct. 18Undercut/Rotary hoe	Trif-10G1Oct.18Rotary hoe119391123.4Trif-10G1.5Oct.18Rotary hoe138779644.2Trif-10G1Oct.18Undercutter159694156.8Trif-10G1.5Oct.18Undercut/Rotary hoe1679781143.1Trif-10G1.5Oct.18Undercut/Rotary hoe1679781143.1Trif-10G1.5Oct.18Undercut/Rotary hoe168282584.5Etha-10G1.Oct.18Field cultivator168282584.5Etha-3EC1Oct.18Field cultivator1669511841.6Etha-3EC1Nov.15None1174611791.9Etha-10G1Nov.16None139183513.6Etha-10G1Oct.18None139388266.3Etha-10G1Oct.18Rotary hoe149695125.0Etha-10G1Oct.18Rotary hoe14969686.0Etha-10G1Oct.18Undercutter13969686.0Etha-10G1Oct.18Undercutter1396968	Trif-10G 1 Oct. 18				3 55		
Trif-10G1.5Oct. 18Rotary hoe11115050644.2Trif-10G1Oct. 18Undercutter159694156.8Trif-10G1.5Oct. 18Undercutter1596949492273.9Trif-10G1.5Oct. 18Undercut/Rotary hoe149492273.9Trif-10G1.5Oct. 18Undercut/Rotary hoe149492273.9Trif-10G1Oct. 18Field cultivator168282584.5Etha-10G1Oct. 18Field cultivator1669511841.6Etha-3EC1Nov. 15None121308351.1Etha-10G1Nov. 16None1387751142.8Etha-10G1Oct. 18None139183513.6Etha-10G1Oct. 18Rotary hoe149695125.0Etha-10G1Oct. 18Rotary hoe149695125.0Etha-10G1Oct. 18Undercutter139289403.3Etha-10G1Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Und	Trif-10G 1.5 Oct. 18 Rotary hoe 11 3 87 79 64 4.2 Trif-10G 1 Oct. 18 Undercutter 13 87 79 64 4.2 Trif-10G 1.5 Oct. 18 Undercut/Rotary hoe 16 79 78 114 3.1 Trif-10G 1 Oct. 18 Undercut/Rotary hoe 14 94 92 27 3.9 Trif-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 94 92 27 3.9 Trif-10G 1 Oct. 18 Field cultivator 16 82 82 58 4.5 Etha-10G 1 Oct. 18 Field cultivator 16 69 51 184 1.6 Etha-3EC 1 Oct. 18 Field cultivator 16 69 51 184 1.6 Etha-3EC 1 Nov. 15 None 11 74 61 179 1.9 Etha-10G 1 Nov. 16 None 13 87 75 114 2.8 Etha-10G 1 Oct. 18 Rotary hoe 13 93 88 26 6.3 Etha-10G 1 Oct. 18 Rotary hoe 14 96 95 12 5.0 Etha-10G 1 Oct. 18 Rotary hoe 14 96 95 12 5.0 Etha-10G 1 Oct. 18 Undercutter 13 92 89 40 3.3 Etha-10G 1 Oct. 18 Undercutter 13 96 96 8 6.0 Etha-10G 1 Oct. 18 Undercutter 13 96 96 8 6.0 Etha-10G 1 Oct. 18 Undercutter 13 96 96 8 6.0 Etha-10G 1 Oct. 18 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1 Oct. 18 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 19 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 19 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 19 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 19 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 19 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 19 Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G 1.5 Oct. 19 Etha-10G 0 0 1346 1.2 Undercutter 11 100 100 0 5.6 Handweeded 0 - Undercutter 10 00 0 5.6 Handweeded 0 - Etha-10G 97 14 272 2.4 Etha-		Rotary hoe				3.4	
Trif-10G 1 Oct. 18 Undercutter 13 57 94 15 6.8 Trif-10G 1.5 Oct. 18 Undercutter 15 96 94 15 6.8 Trif-10G 1 Oct. 18 Undercut/Rotary hoe 14 94 92 27 3.9 Trif-10G 1.5 Oct. 18 Field cultivator 16 82 82 58 4.5 Etha-10G 1 Oct. 18 Field cultivator 16 69 51 184 1.6 Etha-3EC 1 Nov. 15 None 12 13 0 835 1.1 Etha-3EC 1 Nov. 16 None 13 91 83 51 3.6 Etha-10G 1 Oct. 18 None 13 93 88 26 6.3 Etha-10G 1 Oct. 18 Notary hoe 14 96 95 12 5.0 Etha-10G 1 Oct. 18	Trif-10G1Oct. 18Undercutter139694156.8Trif-10G1.5Oct. 18Undercutter159694943.1Trif-10G1Oct. 18Undercut/Rotary hoe149492273.9Trif-10G1.5Oct. 18Undercut/Rotary hoe149492273.9Trif-10G1.5Oct. 18Field cultivator168282584.5Etha-10G1Oct. 18Field cultivator1669511841.6Etha-3EC1Nov. 15None121308351.1Etha-10G1Nov. 16None139183513.6Etha-10G1Oct. 18None139388266.3Etha-10G1Oct. 18Rotary hoe139388266.3Etha-10G1Oct. 18Rotary hoe139289403.3Etha-10G1Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1Oct. 18Undercut/Rotary hoe	1111 100 - 10	Rotary hoe		••		4.2	
Trif-10G1.50ct.18Undercut/Rotary hoe1679781143.1Trif-10G10ct.18Undercut/Rotary hoe169492273.9Trif-10G1.50ct.18Undercut/Rotary hoe149492273.9Trif-10G1.50ct.18Field cultivator168282584.5Etha-10G10ct.18Field cultivator1669511841.6Etha-3EC1Nov.15None121308351.1Etha-3EC1Nov.16None1387751142.8Etha-10G1Nov.16None139183513.6Etha-10G1Oct.18Rotary hoe139388266.3Etha-10G1Oct.18Rotary hoe139393244.9Etha-10G1.5Oct.18Undercutter13969686.0Etha-10G1.5Oct.18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct.18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct.18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct.18Undercut/Rotary hoe </td <td>Trif-10G1.50ct.18Undercutter1593741143.1Trif-10G10ct.18Undercut/Rotary hoe1679781143.1Trif-10G1.50ct.18Undercut/Rotary hoe149492273.9Trif-10G1.50ct.18Field cultivator168282584.5Etha-10G10ct.18Field cultivator1669511841.6Etha-3EC10ct.18Field cultivator1669511841.6Etha-3EC1Nov.15None121308351.1Etha-10G1.5Nov.16None1387751142.8Etha-10G10ct.18None139388266.3Etha-10G10ct.18Rotary hoe139388266.3Etha-10G10ct.18Undercutter139289403.3Etha-10G10ct.18Undercut/Rotary hoe179393244.9Etha-10G10ct.18Undercut/Rotary hoe179393244.9Etha-10G10ct.18Undercut/Rotary hoe179393244.9Etha-10G10ct.18Undercut/Rotary hoe</td> <td>1111 100</td> <td>Undercutter</td> <td></td> <td>•••</td> <td></td> <td>6.8</td>	Trif-10G1.50ct.18Undercutter1593741143.1Trif-10G10ct.18Undercut/Rotary hoe1679781143.1Trif-10G1.50ct.18Undercut/Rotary hoe149492273.9Trif-10G1.50ct.18Field cultivator168282584.5Etha-10G10ct.18Field cultivator1669511841.6Etha-3EC10ct.18Field cultivator1669511841.6Etha-3EC1Nov.15None121308351.1Etha-10G1.5Nov.16None1387751142.8Etha-10G10ct.18None139388266.3Etha-10G10ct.18Rotary hoe139388266.3Etha-10G10ct.18Undercutter139289403.3Etha-10G10ct.18Undercut/Rotary hoe179393244.9Etha-10G10ct.18Undercut/Rotary hoe179393244.9Etha-10G10ct.18Undercut/Rotary hoe179393244.9Etha-10G10ct.18Undercut/Rotary hoe	1111 100	Undercutter		•••		6.8	
Trif-10G 1 0 oct. 18 Undercut/Rotary hoe 16 /9 92 27 3.9 Trif-10G 1.5 0 ct. 18 Undercut/Rotary hoe 14 94 92 27 3.9 Trif-10G 1.5 0 ct. 18 Field cultivator 16 82 82 58 4.5 Etha-10G 1 0 ct. 18 Field cultivator 16 69 51 184 1.6 Etha-3EC 1 Nov. 15 None 12 13 0 835 1.1 Etha-3EC 1 Nov. 16 None 11 74 61 179 1.9 Etha-10G 1.5 Nov. 16 None 13 91 83 51 3.6 Etha-10G 1.5 Oct. 18 None 13 93 88 26 6.3 Etha-10G 1.5 Oct. 18 Rotary hoe 14 96 95 12 5.0 Etha-10G 1.5 Oct.	Trif-10G1.00Oct. 18Undercut/Rotary hoe16797617Trif-10G1.50Oct. 18Undercut/Rotary hoe149492273.9Trif-10G1.50Oct. 18Field cultivator168282584.5Etha-10G1Oct. 18Field cultivator1669511841.6Etha-3EC1Not. 15None121308351.1Etha-3EC1Nov. 16None1387751142.8Etha-10G1Oct. 18None139388266.3Etha-10G1Oct. 18Rotary hoe149695125.0Etha-10G1Oct. 18Rotary hoe149695125.0Etha-10G1.50Oct. 18Undercutter139388266.3Etha-10G1.50Oct. 18Undercutrer13969686.0Etha-10G1.50Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.50Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.50Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.50Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.50Oct. 18Undercut/Rot	1111-100 1 10	Undercutter				3.1	
Trif-10G 1.5 Oct. 18 Undercut/Rotary hoe 14 94 92 58 4.5 Etha-10G 1 Oct. 18 Field cultivator 16 82 82 58 4.5 Etha-10G 1 Oct. 18 Field cultivator 16 69 51 184 1.6 Etha-3EC 1 Oct. 18 Field cultivator 16 69 51 184 1.6 Etha-3EC 1 Nov. 15 None 12 13 0 835 1.1 Etha-10G 1.5 Nov. 16 None 13 87 75 114 2.8 Etha-10G 1.5 Nov. 16 None 13 91 83 51 3.6 Etha-10G 1.5 Not. 18 Rotary hoe 13 93 88 26 6.3 Etha-10G 1.5 Oct. 18 Rotary hoe 13 92 89 40 3.3 Etha-10G 1.5 Oct. 18 Undercutter 13 96 6 8 6.0	Trif-10G1.5Oct. 18Undercut/Rotary hoe14949492584.5Etha-10G1Oct. 18Field cultivator168282584.5Etha-3EC1Oct. 18Field cultivator1669511841.6Etha-3EC1Nov. 15None121308351.1Etha-3EC1Nov. 16None1174611791.9Etha-10G1.5Nov. 16None1387751142.8Etha-10G1Oct. 18None139183513.6Etha-10G1Oct. 18Rotary hoe149695125.0Etha-10G1.5Oct. 18Undercutter139289403.3Etha-10G1.5Oct. 18Undercutter13969686.0Etha-10G1.5Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0-Field cultivator	ITTI-100 1.0 000 10	Undercut/Rotary hoe			-		
Triff-1001.0Oct. 18Field cultivator1662525254Etha-1001Oct. 18Field cultivator1669511841.6Etha-3EC1Nov. 15None121308351.1Etha-3EC1Nov. 15None121308351.1Etha-3EC1Nov. 16None1387751142.8Etha-1011.5Nov. 16None139183513.6Etha-1021Oct. 18None139388266.3Etha-1031Oct. 18Rotary hoe149695125.0Etha-1041Oct. 18Undercutter139289403.3Etha-1051Oct. 18Undercutter13969686.0Etha-1061Oct. 18Undercut/Rotary hoe179393244.9Etha-1061Oct. 18Undercut/Rotary hoe149796106.3Etha-1061.5Oct. 18Undercut/Rotary hoe149796106.3Etha-1061.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator16017630.6Untreated0Field cultivator14100100	H11-1001.0Oct. 18Field cultivator1662020203Etha-1001Oct. 18Field cultivator1669511841.6Etha-3EC1Nov. 15None121308351.1Etha-3EC1Nov. 16None1174611791.9Etha-1001Nov. 16None1387751142.8Etha-1001Oct. 18None139183513.6Etha-1011Oct. 18Rotary hoe139388266.3Etha-1021Oct. 18Rotary hoe149695125.0Etha-1031.5Oct. 18Undercutter13969686.0Etha-1041.5Oct. 18Undercut/Rotary hoe179393244.9Etha-1051.5Oct. 18Undercut/Rotary hoe149796106.3Etha-1061.5Oct. 18Undercut/Rotary hoe149796106.3Etha-1061.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator16017630.6Untreated0-Undercutter1110010004.3Handweeded0-Undercutter141001000 <td>Init-100 1 001 10</td> <td>Undercut/Rotary hoe</td> <td>9 14</td> <td>• •</td> <td>-</td> <td></td>	Init-100 1 001 10	Undercut/Rotary hoe	9 14	• •	-		
Etha-10G1Oct. 18Field cultivator166951107107Etha-3EC1Nov. 15None121308351.1Etha-3EC1Nov. 16None1174611791.9Etha-10G1Nov. 16None1387751142.8Etha-10G1Oct. 18None139183513.6Etha-10G1Oct. 18None139388266.3Etha-10G1Oct. 18Rotary hoe149695125.0Etha-10G1Oct. 18Undercutter139289403.3Etha-10G1Oct. 18Undercutter13969686.0Etha-10G1Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0Field cultivator1410010004.3Handweeded0Field cultivator1410010005.6Handweeded0S7142	Etha-10G1Oct. 18Field cultivator166951104Etha-3EC1Oct. 18None121308351.1Etha-3EC1Nov. 15None1174611791.9Etha-10G1Nov. 16None1387751142.8Etha-10G1Oct. 18None139183513.6Etha-10G1Oct. 18Rotary hoe139388266.3Etha-10G1Oct. 18Rotary hoe149695125.0Etha-10G1Oct. 18Undercutter139289403.3Etha-10G1Oct. 18Undercutter13969686.0Etha-10G1.5Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0-Field cultivator1410010004.3Handweeded0-Undercutter1110010005.6Handweeded0-Undercutter1110010005.6 <td>1111-100 110 0 1 10</td> <td>Field cultivator</td> <td>16</td> <td>~-</td> <td>-</td> <td></td>	1111-100 110 0 1 10	Field cultivator	16	~-	-		
Etha-3EC1Nov. 15None12130037Etha-3EC1Nov. 16None1174611791.9Etha-10G1.5Nov. 16None1387751142.8Etha-10G1Oct. 18None139183513.6Etha-10G1Oct. 18Rotary hoe139388266.3Etha-10G1.5Oct. 18Rotary hoe149695125.0Etha-10G1.5Oct. 18Undercutter139289403.3Etha-10G1Oct. 18Undercutter13969686.0Etha-10G1.5Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0Field cultivator160017630.6Untreated0Field cultivator1410010004.3Handweeded0Field cultivator1410010005.6Undercutter111001000142722.4LSD5%<	Etha-3EC1Nov. 15None12130JopEtha-3EC1Nov. 16None1174611791.9Etha-10G1Nov. 16None1387751142.8Etha-10G1Oct. 18None139183513.6Etha-10G1Oct. 18Rotary hoe139388266.3Etha-10G1Oct. 18Rotary hoe149695125.0Etha-10G1Oct. 18Undercutter139289403.3Etha-10G1Oct. 18Undercutter13969686.0Etha-10G1.5Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160013461.2Untreated0-Field cultivator1410010004.3Handweeded0-Undercutter1110010005.6C.V. %266147149NS7142722		Field cultivator	16		-		
Etha-3EC1Nov. 15None117461 $1/9$ 1.9Etha-10G1Nov. 16None1387751142.8Etha-10G1Oct. 18None139183513.6Etha-10G1Oct. 18Rotary hoe139388266.3Etha-10G1.5Oct. 18Rotary hoe149695125.0Etha-10G1.5Oct. 18Undercutter139289403.3Etha-10G1.5Oct. 18Undercutter13969686.0Etha-10G1.5Oct. 18Undercutrer13969686.0Etha-10G1.5Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160013461.2Untreated0Undercutter1110010004.3Handweeded0S7142722.4LSD 5%NS7142722.414	Etha-3EC1Nov. 15None117461 $1/9$ 1.9Etha-10G1Nov. 16None1387751142.8Etha-10G1Oct. 18None139183513.6Etha-10G1Oct. 18Rotary hoe139388266.3Etha-10G1Oct. 18Rotary hoe149695125.0Etha-10G1Oct. 18Undercutter139289403.3Etha-10G1Oct. 18Undercutter13969686.0Etha-10G1.5Oct. 18Undercutter1393244.9Etha-10G1.5Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0Undercutter1110010004.3Handweeded0Field cultivator1410010005.6C.V. %266147149NS7142722.4LSD 5%Sonalan10Ggranules;Eth			12	13			
Etha-10G1Nov.16None1387751142.8Etha-10G1.5Nov.16None139183513.6Etha-10G1Oct.18None139388266.3Etha-10G1Oct.18Rotary hoe149695125.0Etha-10G1.5Oct.18Rotary hoe139289403.3Etha-10G1Oct.18Undercutter13969686.0Etha-10G1.5Oct.18Undercutter13969686.0Etha-10G1.5Oct.18Undercut/Rotary hoe179393244.9Etha-10G1Oct.18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct.18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160013461.2Undercutter160013461.21.21.410010004.3Handweeded0-Field cultivator1410010005.61.47149K.N.266147149NS7142722.41.4K.N.7142722.4NS <td< td=""><td>Etha-10G1Nov. 16None1387751142.8Etha-10G1.5Nov. 16None139183513.6Etha-10G1Oct. 18Rotary hoe139388266.3Etha-10G1.5Oct. 18Rotary hoe149695125.0Etha-10G1.5Oct. 18Undercutter139289403.3Etha-10G1Oct. 18Undercutter13969686.0Etha-10G1.5Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0Undercutter1110010004.3Handweeded0Field cultivator1410010005.6C.V. %266147149NS7142722.4⁴Trif-G=Treflan10Ggranules;Trif-4ECTreflan3Eemulsifiable concentrate;Etha-10G=</td></td<> <td>FLNA-SEC I NOT</td> <td></td> <td></td> <td>74 6</td> <td></td> <td></td>	Etha-10G1Nov. 16None1387751142.8Etha-10G1.5Nov. 16None139183513.6Etha-10G1Oct. 18Rotary hoe139388266.3Etha-10G1.5Oct. 18Rotary hoe149695125.0Etha-10G1.5Oct. 18Undercutter139289403.3Etha-10G1Oct. 18Undercutter13969686.0Etha-10G1.5Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0Undercutter1110010004.3Handweeded0Field cultivator1410010005.6C.V. %266147149NS7142722.4 ⁴ Trif-G=Treflan10Ggranules;Trif-4ECTreflan3Eemulsifiable concentrate;Etha-10G=	FLNA-SEC I NOT			74 6			
Etha-10G1.5Nov.16None139183513.6Etha-10G1Oct.18None139388266.3Etha-10G1Oct.18Rotary hoe149695125.0Etha-10G1.5Oct.18Rotary hoe139289403.3Etha-10G1Oct.18Undercutter13969686.0Etha-10G1.5Oct.18Undercutter13969686.0Etha-10G1.5Oct.18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct.18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct.18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct.18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0-Undercutter160013461.2Untreated0-Field cultivator1410010005.6Handweeded0-Undercutter1110010005.6Undercutter1410010005.6147149LSD5% <td>Etha-10G1.5Nov.16None139183513.6Etha-10G1Oct.18None139388266.3Etha-10G1Oct.18Rotary hoe149695125.0Etha-10G1.5Oct.18Rotary hoe139393244.9Etha-10G1.5Oct.18Undercutter13969686.0Etha-10G1.5Oct.18Undercut/Rotary hoe179393244.9Etha-10G1Oct.18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct.18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct.18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator16017630.6Untreated0-Undercutter1110010004.3Handweeded0-Undercutter1110010005.6C.V. %266147149NS7142722.4LSD5%-1110010005.6147149Trif-G=Tref1an10Ggranules;Trif-4EC=Tref1an3Eemulsifiable<td< td=""><td>Etha-10G 1 Nov. 10</td><td></td><td></td><td>87</td><td>5 114</td><td></td></td<></td>	Etha-10G1.5Nov.16None139183513.6Etha-10G1Oct.18None139388266.3Etha-10G1Oct.18Rotary hoe149695125.0Etha-10G1.5Oct.18Rotary hoe139393244.9Etha-10G1.5Oct.18Undercutter13969686.0Etha-10G1.5Oct.18Undercut/Rotary hoe179393244.9Etha-10G1Oct.18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct.18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct.18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator16017630.6Untreated0-Undercutter1110010004.3Handweeded0-Undercutter1110010005.6C.V. %266147149NS7142722.4LSD5%-1110010005.6147149Trif-G=Tref1an10Ggranules;Trif-4EC=Tref1an3Eemulsifiable <td< td=""><td>Etha-10G 1 Nov. 10</td><td></td><td></td><td>87</td><td>5 114</td><td></td></td<>	Etha-10G 1 Nov. 10			87	5 114		
Etha-10G1Oct. 18None139388266.3Etha-10G1Oct. 18Rotary hoe149695125.0Etha-10G1.5Oct. 18Rotary hoe149695125.0Etha-10G1Oct. 18Undercutter139289403.3Etha-10G1.5Oct. 18Undercutter13969686.0Etha-10G1.5Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0-Undercutter160013461.2Undercutter1110010004.3Handweeded0-Undercutter1110010005.6C.V. %266147149NS7142722.4LSD 5%	Etha-10G1Oct. 18None139388266.3Etha-10G1Oct. 18Rotary hoe149695125.0Etha-10G1.5Oct. 18Rotary hoe139289403.3Etha-10G1Oct. 18Undercutter13969686.0Etha-10G1.5Oct. 18Undercutter139393244.9Etha-10G1.5Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0-Undercutter160013461.2Untreated0-Field cultivator1410010004.3Handweeded0-Undercutter1110010005.6C.V. %266147149Madweeded0-Undercutter1110010005.6C.V. %26614714949142722.4C.V. %26614714949142722.4C.V. %25% <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Etha-10G1Oct. 18Rotary hoe139395125.0Etha-10G1.5Oct. 18Rotary hoe149695125.0Etha-10G1Oct. 18Undercutter139289403.3Etha-10G1.5Oct. 18Undercutter13969686.0Etha-10G1.5Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0Undercutter160013461.2Untreated0Field cultivator1410010004.3Handweeded0Undercutter1110010005.6C.V. %266147149NS7142722.4LSD 5%Sign 45oppulsifiableconcentrate;	Etha-10G1Oct. 18Rotary hoe139395125.0Etha-10G1.5Oct. 18Rotary hoe149695125.0Etha-10G1Oct. 18Undercutter139289403.3Etha-10G1.5Oct. 18Undercutter13969686.0Etha-10G1Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0-Undercutter160013461.2Untreated0-Field cultivator1410010004.3Handweeded0-Undercutter1110010005.6C.V. %266147149NS7142722.4Andweeded0-Undercutter1110010005.6C.V. %26614714949142722.4Andweeded0-Undercutter1110010005.6Etha-10G=Sonalan10Ggranules;Trif-4ECTre	Lonia Lonia 10					6.3	
Etha-10G1.5Oct. 18Rotary hoe14 50 50 40 3.3 Etha-10G1Oct. 18Undercutter13 92 89 40 3.3 Etha-10G1Oct. 18Undercutter13 96 96 8 6.0 Etha-10G1.5Oct. 18Undercut/Rotary hoe 17 93 93 24 4.9 Etha-10G1Oct. 18Undercut/Rotary hoe 14 97 96 10 6.3 Etha-10G1.5Oct. 18Undercut/Rotary hoe 14 97 96 10 6.3 Untreated0-Field cultivator 16 00 1763 0.6 Untreated0-Undercutter 16 00 1346 1.2 Untreated0Field cultivator 14 100 100 0 4.3 Handweeded0Undercutter 11 100 100 0 5.6 Undercutter11 100 100 0 5.6 8 7 14 272 2.4 LSD5% 8 - 8 8 4 49	Etha-10G1.5Oct. 18Rotary hoe143030Etha-10G1Oct. 18Undercutter139289403.3Etha-10G1Oct. 18Undercutter13969686.0Etha-10G1Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0-Undercutter1410010004.3Handweeded0-Field cultivator1410010004.3Handweeded0-Undercutter1110010005.6C.V. %266147149LSD 5%-NS7142722.4Trif-G=Treflan 10G granules;Trif-4EC=Treflan 4E emulsifiable concentrate;Etha-10G=Sonalan 10G granules;Etha-3EC=Sonalan 3E emulsifiable concentrate;						5.0	
Etha-10G1.0Oct. 18Undercutter139203186.0Etha-10G1.5Oct. 18Undercutter13969686.0Etha-10G1.5Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0-Undercutter160013461.2Untreated0Field cultivator1410010004.3Handweeded0Undercutter1110010005.6C.V. %266147149NS7142722.4LSD 5%	Etha-10G1.0Oct. 18Undercutter139203186.0Etha-10G1.5Oct. 18Undercutter13969686.0Etha-10G1.5Oct. 18Undercut/Rotary hoe179393244.9Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0-Undercutter160013461.2Untreated0-Field cultivator1410010004.3Handweeded0-Undercutter1110010005.6C.V. %266147149LSD 5%-NS7142722.4"Trif-G=Treflan10Ggranules;Trif-4ECTreflan 4Eemulsifiableconcentrate;Etha-10G=Sonalan10Ggranules;Etha-3EC=Sonalan3Eemulsifiableconcentrate;		Rotary hoe				3.3	
Etha-10G1Oct. 18Undercutter139690244.9Etha-10G10ct. 18Undercut/Rotary hoe179393244.9Etha-10G10ct. 18Undercut/Rotary hoe149796106.3Etha-10G1.50ct. 18Undercut/Rotary hoe149796106.3Untreated0Field cultivator160017630.6Untreated0Undercutter160013461.2Untreated0Field cultivator1410010004.3Handweeded0Indercutter1110010005.6C.V. %266147149NS7142722.4LSD 5%	Etha-10G1000000000000000000000000000000000	Etha-Iou I.o ol 10	Undercutter					
Etha-10G1.3Oct. 18Undercut/Rotary hoe17 93 93 11 Etha-10G1Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0Undercutter160013461.2Untreated0Field cultivator1410010004.3Handweeded0Field cultivator1110010005.6Handweeded0266147149C.V. %NS7142722.4LSD 5%S-S-	Etha-10G1.5Oct. 18Undercut/Rotary hoe17939321Etha-10G1Oct. 18Undercut/Rotary hoe149796106.3Etha-10G1.5Oct. 18Undercut/Rotary hoe149796106.3Untreated0-Field cultivator160017630.6Untreated0-Undercutter160013461.2Untreated0-Field cultivator1410010004.3Handweeded0-Undercutter1110010005.6Handweeded0-Undercutter1110010005.6C.V. %266147149LSD5%-NS7142722.4dTrif-G=Treflan10Ggranules;Trif-4EC=Treflan 4Eemulsifiableconcentrate;Thia-10G=Sonalan10Ggranules;Etha-3EC=Sonalan3Eemulsifiableconcentrate;		Undercutter			50		
Etha-10G1000018Undercut/Rotary hoe14979016Etha-10G1.50ct. 18Undercut/Rotary hoe14979017630.6Untreated0-Field cultivator160013461.2Untreated0-Undercutter160013461.2Untreated0Undercutter1410010004.3Handweeded0Field cultivator1410010005.6Handweeded0Undercutter1110010005.6C.V. %266147149142722.4LSD 5%	Etha-10G1.5Oct. 18Undercut/Rotary hoe1497901010Etha-10G1.5Oct. 18Undercut/Rotary hoe160017630.6Untreated0-Field cultivator160013461.2Untreated0-Undercutter160013461.2Untreated0-Undercutter1410010004.3Handweeded0-Undercutter1110010005.6Handweeded0-Undercutter1110010005.6C.V. %266147149LSD5%-NS7142722.4dTrif-G=Treflan10Ggranules;Trif-4EC=Treflan4Eemulsifiableconcentrate;Etha-10G=Sonalan10Ggranules;Etha-3EC=Sonalan3Eemulsifiableconcen-		Undercut/Rotary ho					
Etha-10d1.3SourceField cultivator16001700Untreated0-Field cultivator160013461.2Untreated0-Undercutter160013461.2Handweeded0-Field cultivator1410010004.3Handweeded0-Undercutter1110010005.6Handweeded0-Undercutter266147149C.V. %266147149LSD 5%	Etha-10d1.0OctoberField cultivator16001700Untreated0-Undercutter160013461.2Untreated0-Undercutter1410010004.3Handweeded0-Undercutter1110010005.6Handweeded0-Undercutter1110010005.6C.V. %266147149LSD5%-NS7142722.4Trif-G=Treflan10Ggranules;Trif-4EC=Treflan 4Eemulsifiableconcentrate;Trif-G=Sonalan10Ggranules;Etha-3EC=Sonalan3Eemulsifiableconcentrate;		Undercut/Rotary ho	e 14				
Untreated0-Undercutter16001340Untreated0-Field cultivator1410010004.3Handweeded0-Field cultivator1110010005.6Handweeded0-Undercutter1110010005.6C.V. % 26 6147149LSD 5%NS7142722.4	Untreated0-Undercutter160013404.3Handweeded0-Field cultivator1410010004.3Handweeded0-Undercutter1110010005.6C.V. % 26 6147149LSD 5% 7 142722.4dTrif-G = Treflan10G granules; Trif-4EC = Treflan4E emulsifiable concentrate;Etha-10G = Sonalan10G granules; Etha-3EC = Sonalan3E emulsifiable concentrate		Field cultivator	16	0			
Untreated 0 - Ondercutter 14 100 100 0 4.3 Handweeded 0 - Field cultivator 14 100 100 0 5.6 Handweeded 0 - Undercutter 11 100 100 0 5.6 C.V. % 26 6 14 71 49 LSD 5% NS 7 14 272 2.4	Untreated0-Ondercutter1410010004.3Handweeded0-Field cultivator1410010005.6Handweeded0-Undercutter1110010005.6C.V. %266147149LSD 5%NS7142722.4Trif-G = Treflan10G granules;Trif-4EC = Treflan4E emulsifiable concentrate;Trif-G = Sonalan10G granules;Etha-3EC = Sonalan3E emulsifiable concentrate;	Uncrease	Field cuttinges	16				
Handweeded0-FieldCultivator1110010005.6Handweeded0-Undercutter1110010005.6266147149C.V. %NS7142722.4LSD 5%The Clark AF comulsifiable concentrate;	Handweeded0-Field cultivator1110010005.6Handweeded0-Undercutter1110010005.6C.V. %266147149LSD 5%NS7142722.4Trif-G = Treflan10G granules; Trif-4EC = Treflan4E emulsifiable concentrate;Trif-G = Sonalan10G granules; Etha-3EC = Sonalan3E emulsifiable concentrate;	Untreated 0 -	Undercutter		100 1	~~		
Handweeded 0 - Undercutter 26 6 14 71 49 C.V. % NS 7 14 272 2.4 LSD 5% The first second se	Handweeded 0 - Undercutter C.V. % <u>LSD 5%</u> ^a Trif-G = Treflan 10G granules; Trif-4EC = Treflan 4E emulsifiable concentrate; Etha-10G = Sonalan 10G granules; Etha-3EC = Sonalan 3E emulsifiable concen-	Handweeded 0 -	Field cultivator			00 0	5.6	
C.V. % NS 7 14 272 2.4 NS 5% T = Sher 45 cmulsifiable concentrate;	C.V. % <u>LSD 5%</u> ^d Trif-G = Treflan 10G granules; Trif-4EC = Treflan 4E emulsifiable concentrate; Etha-10G = Sonalan 10G granules; Etha-3EC = Sonalan 3E emulsifiable concen-	Handweeded 0 -	Undercutter	11	100			
C.V. % NS 7 14 272 2.4 SD 5% T Clar 45 cmulsifiable concentrate;	C.V. % <u>NS</u> 7 14 272 2.4 <u>NS</u> 7 14 272 2.4 <u>A</u> Trif-G = Treflan 10G granules; Trif-4EC = Treflan 4E emulsifiable concentrate; <u>A</u> Trif-G = Sonalan 10G granules; Etha-3EC = Sonalan 3E emulsifiable concen-	Indiancease		96	6	14 71	49	
USD 5% NS / 14 E/E	LSD 5% Trif-G = Treflan 10G granules; Trif-4EC = Treflan 4E emulsifiable concentrate; Etha-10G = Sonalan 10G granules; Etha-3EC = Sonalan 3E emulsifiable concen-	C V %		NC	7	14 272		
ISU 3/0 Tric AFC - Trotlan 4F emulsiliable concentration	Etha-10G = Sonalan 10G granules, Long var			NS	45 amula:	fishle co		
Truit C - Troflan 10G granules; Irit-4EC = Irerian it are analogifiable concen-	Etha-10G = Sonalan 10G granules, Long var	$\frac{150.56}{4T_{\rm ref}}$ = Troflan 106 (granules; Trif-4EC =	Ireflan	4E emuis	mulcifiah	e concen-	
The loc - Sonalan 10G granules; Etha-3EC = Sonalan 3E emuistrable concern		$ \Gamma - 0 = \Gamma - \Gamma - 100$	G granules; Etha-3E	C = Son	alan se e		o concen	
	trate.		a granar i					
trate		trate.						

Spring-applied trifluralin and ethalfluralin granules in no-till soybeans, Fargo An experiment was established on a silty clay with pH 7.8, 4.5% organic matter, and standing wheat stubble. Design was a randomized complete block with four replications and a split plot arrangement of treatments. Main plots were tillage treatment (tilled and no-till). Tilled plots were chisel plowed in October of 1991 and worked once with a field cultivator/harrow in late April 1992. Trifluralin and ethalfluralin granules were applied April 16 in no-till plots with a Gandy air-flow applicator when air temperature was 57 F, skies were sunny, and wind was 5 to 7 mph. Plots receiving granules (including the handweeded check) were undercut once within 3 hours of application with a Haybuster undercutter operated 2 inches deep and leaving most stubble standing. Early preplant (EPP) imazethapyr was applied April 29 with an ATV mounted sprayer delivering 10 gal/A with 8002 tips and 28 psi (no weeds yet emerged). Preplant incorporated (PPI) treatments in tilled plots were applied May 15 with the ATV sprayer when air temperature was 60 F, skies were sunny, wind was calm, and soil was moist. PPI treatments were double-pass incorporated within 4 hours of application using a field cultivator/harrow operated 2 to 3 inches deep. No-till treatments receiving a second undercutter pass were undercut 2 inches deep, as was the weedy check. The entire experiment was then seeded to 'McCall' soybeans May 15 at 180,000 seeds/A and 1 inch deep with a Hiniker no-till planter set on 30-inch rows. No-till plots were treated May 20 with glyphosate at 0.375 lb/A (preemergence) to destroy emerged weeds. The entire experiment was sprayed June 2 with bentazon at 1 lb/A plus Sun-ItII adjuvant at 1 quart/A for control of wild mustard and patches of Canada thistle. Subsequent Canada thistle growth was controlled by Handweeded checks were treated July 7 with sethoxydim at 0.14 lb/A plus thifensulfuron at 0.044 oz ai/A plus petroleum oil adjuvant at 1.5 pint/A and otherwise maintained weed free with hand weeding. Plot size was 20 by 60 ft (13.3ft-wide treated area) for tilled plots and 15 by 60 ft (10-ft-wide treated area) for no-till. Grain was harvested by machine Oct. 5 and yields were expressed on a 12% moisture basis. Foxtail was a mixed population (75% yellow and 25% green foxtail).

									-		
			pli-	No. of			Weed	contr	01		
Thostment			tion	under-	Fox	tail		imu		rpw	Consta
Treatment	Rate	da	ate	cuttings	6/24	7/29	6/24	7/20	6/24	7/29	Grain
NO THE	(1b/A)			(no.)		1/20	0/27	(%)	0/24	1/29	<u>yield</u>
NO-TILL Twiffle				. ,				(10)			(bu/A)
Trifluralin-G	1	4-	-16	1	84	74	0		7.4		
Ethalfluralin-G	1		16	ī	73	66	0	4	74	75	19.0
Trifluralin-G	1		16	2	82			/	92	65	20.0
Ethalfluralin-G	1		16	2	84	75	0	0	98	67	18.7
Trif-G/Imep(EPP)	1/0.047		/4-29	1		75	0	26	97	58	-21.7
Etha-G/Imep(EPP)	1/0.047	4-16	/4-29	1	100	98	0	100	100	100	20.2
Weedy check	0	T 10	7-23	1	99	99	20	99	100	100	24.5
Weed-free check	v		-	1	-	-	-	-	-	-	10.4
Trif-G/Imep(EPP)	0 75/0 021	A 10	14 00								
TILLED	0.75/0.051	4-10	/4-29	1	-	-	-	-	-	_	23.8
Trifluralin-EC(PPI	1 1	F	1.5								
Ethalfluralin-EC(F	1		15	-	91	85	0	21	99	74	15.5
Trif-EC+Imep(PPI)		5-		-	96	87	0	36	95	69	19.5
Etha-EC+Imep(PPI)	1+0.047	5-		-	99	98	3	100	100	100	22.2
Weedy check	1+0.047	5-		-	98	96	55	100	100	99	
Wood freek	0	5-	15	-	-	_	-	100	100	33	21.3
Weed-free check									-	-	7.5
Trif-EC+Imep(PPI)	0.75/0.031	5-	15	-	_	_	_				
C M C								-	-	-	24.1
C.V., %					11	8	249	26	11	1.4	1.2
LSD (0.05) treatme	nts within a	a til	llage		15	10		26	11	14	15.7
Tillage effect					NS	*	NS	20	NS	16	4.6
					NS	~	NS	*	NS	*	NS

PPI treatments for drybeans, Carrington 1992. An experiment was established on a conventionally-tilled loam with pH 6.6 and 3.8% organic matter. rated (PPI) treatments were applied May 26 with a bicycle wheel sprayer delivering 17 gal/A with 8002 nozzles and 40 psi. Wind speed at application was 0 to 3 mph, skies were partly cloudy, air temperature was 72 F, relative humidity was 65%, and the soil was dry on the surface but moist in the top 3 inches. The entire experi-mental area was double pass incorporated with a field cultivator/harrow (about 3 inch depth of tillage) within 1 hour of the EPTC treatments. Nodak pintos were seeded May 27 at 70,000 seeds/A and 1 to 1.25 inch deep with a John Deere MaxEmerge planter set on 30-inch rows. Visual estimates of percentage crop injury and weed control were June 24. Postemergence (PO) treatments were applied June 26 with bi-cycle wheel sprayer delivering 8.5 gal/A with 8001 nozzles and 40 psi. Conditions at application were as follows: drybeans were 1 to 2 trifoliolate, common lambsquarters and redroot pigweed were 2 to 4 inches tall, Russian thistle was 2 to 5 inches tall, wind was 0 to 4 mph, skies were sunny, relative humidity was 40%, air temperature was 75 F, and growing conditions were somewhat dry. Crop injury and weed con-trol were again evaluated July 21. Plot size was 10 by 25 ft and the experiment was a randomized complete block design with four replications.

		F	aluat	ed Ju	ine 24	-	E	valua	ated J	<u>uly 2</u>	1
		Dry- bean				Rrpw	Dry- bean inj	Fxtl	Colq	Ruth	Rrpw
Treatment ^a	Rate	inj	Fxt1	LOIY	NULII	<u></u>	(%)				
EPTC(PPI) Pendimethalin(PPI) Trifluralin(PPI) EPTC+Trifluralin(PPI)	(1b/A) 4 1.25 1 2.2+0.5	0 0 0 0	95 96 98 93	92 89 92 96	4 43 31 12	84 89 97 89	0 0 0 0	91 96 97 94	82 81 88 88	5 9 35 19	72 87 92 96
EPTC+Trif(PPI)/ Bent+Acif(PO) Ethalfluralin(PPI) EPTC+Etha(PPI) EPTC+Etha(PPI)	2.2+0.5/ 0.75+0.13 1 2.2+0.75 2.2+1	0 0 0 0	93 96 97 98	95 95 99 98	41 62 66 65	97 99 96 98	7 0 0 0	95 93 99 99	100 96 98 95	100 53 60 46	100 99 99 99
EPTC+Etha(PPI)/ Bent+Acif(PO) Trif+Clomazone(PPI)	2.2+0.75/ 0.75+0.13 0.5+0.5	3 0 1	96 96	96 70	61 38	99 88	10 0	97 94	99 65	100 11	100 98
Trif+Clom(PPI)/ Bent+Acif(PO) Etha+Clomazone(PPI)	0.5+0.5/ 0.75+0.13 0.75+0.5	3 1 1	93 98	87 96	15 73	86	11 0	95 99	98 90	99 57	100 99
Etha+Clom(PPI)/ Bent+Acif(PO) Untreated	0.75+0.5/ 0.75+0.1 0	3 2 0	93 0	91 0	48 0		10 0	96 0	100 0	100 0	100 0
C.V. %		270	4 5		70 40			4		42 30	7 9
LSD 5%	weatmonts WA	NS re mi		ith]	40	int/A	of a		nylate	d see	ed oil

^aAll postemergence treatments were mixed with 1.5 adjuvant containing emulsifier (Scoil).

Bentazon injury and drybean growth stage, Fargo 1992. An experiment was established on a silty clay with pH 7.8 and 4.5% organic matter. Ethalfluralin granules at 1 lb porated the same day for control of foxtail and certain broadleaf weeds. "Volunteer sunflower" and wild mustard seed was spread over the area before incorporation. 30-inch rows. Unifoliolate (Uni) treatments were applied June 9 when drybeans were inches tall, volunteer sunflowers were cotyledon to 4 leaf and 0.5 to 2.5 cotyledon to 1 inch tall, air temperature was 73 F, relative humidity was 45%, wind (1Tri) treatments were 2 to 8 leaf and 2 to 8 inches tall, wild mustard was 2 to 10 perature was 70 F, relative humidity was 40%, wind was 5 mph, skies were 2 to 12 inches tall, wild mustard and 2 to 8 inches tall, wild mustard was 2 to 10 perature was 70 F, relative humidity was 40%, wind was 5 mph, skies were partly er delivering 8.5 gal/A with 8001 nozzles and 40 psi. Visual estimates of percentage crop injury and weed control were taken June 22 for unifoliolate treatments (13 DAT) DAT) and July 6 for all treatments. Plot size was 10 by 25 ft and the experiment was a randomized complete block with four replications.

		Ev Dry-	aluate	ed June	22	Ev	aluate	ed Jul	<u>v 6</u>
<u>Treatment</u> ^a				bean		Dry-			<u> </u>
<u>Heatment</u>	Rate	inf	Vosu	KOCZ	Wimu	ini			bean
	(1b/A)			MOOL		<u>inj</u> %)——	Vosu	KOCZ	Wimu
Untreated	0				ſ	/0]			
Bentazon+POC(Uni)	0 0.5+10	0	0	0	0	0	0	0	•
Bentazon+POC(Uni)	0.75+10	6	93	95	100	2	90	91	0 100
Bentazon+POC(Uni)	1+1Q	11	93	96	100	2	82	93	94
Bentazon+28%UAN(Uni)	0.5+20	13	92	96	100	2	85	93	94 97
Bentazon+28%UAN(IIni)	0.75+20	1 1	82 87	83	100	1	66	73	98
Bentazon+28%UAN(Uni)	1+20	0	90	82	100	1	74	69	98
Bentazon+POC+28%UAN(Uni)	0.5 + 10 + 20	4	83	83 97	100	1	82	58	99
Bentazon+POC+28%UAN(Uni)	0.75 + 10 + 20	5	86	97 97	100	2	71	96	99
Bentazon+POC+28%UAN(Uni) Ben+OC(Uni) (Ben+OC(Uni)	1+10+20	7	90	100	100 100	1	68	95	99
Ben+OC(Uni)/Ben+OC(1Tri) Ben+28(Uni)/Ben+28(1Tri)	0.5+10/0.5+10	-	-	-	100	1	73	98	98
Bentazon+POC(1Tri)	0.5+20/0.5+20	-	-	_	-	2	96	97	100
Bentazon+28%UAN(1Tri)	0.75+10	-	-	_		. 1	97	92	100
Bentazon+Scoil(1Tri)	0.75+20	-	-		_	2	97	74	99
Bentazon+POC(1Tri)	0.75+0.75Q	-	-	-	_	1	89 90	41	98
Bentazon+28%UAN(1Tri)	1+10	-	-	-	-	2	95	68	99
ACITIUORTEn+POC(ITri)	1+20 0.188+10	-	-	-	-	2	93	72 32	100
ACITIUORTEn+POC(ITri)	0.25+10	-	-	-	-	17	72	55	99 98
ACITIUORTEn+Scoil(ITri)	0.188+0.750	-	-	-	-	22	76	58	98 98
ACITIUORten+Scoil(ITri)	0.25+0.750	-	-	-	-	32	87	80	99
	.75+0.19+0.750	-	-	-	-	33	83	79	99
C.V. %			-	-	-	33	90		100
<u>LSD 5%</u>		35	10	5	•				
app(or of ant 1			11	5	0	34	15	14	1
urea ammonium nituat	adjuvant conta	inina	17% 6	mulsif	NS I	4	17	15	2
^a POC or OC = petroleum oil urea ammonium nitrate fe containing emulsifier.	rtilizer soluti	on;	Scoil	= met	hvlata	d coo	or 28	% or	28 =
					ing race	u see	d oil	adju	vant
Q = quarts per acre (i.e.	0.50 = 0.5 quar	rts pe	er acr	e).					

Herbicides and cultivation for drybeans, Carrington 1992. The experiment was established May 26 on a conventionally tilled silt loam with pH 6.6 and 3.8% organic mat-ter. Preplant incorporated (PPI) herbicides were applied into somewhat moist soil with a bicycle wheel sprayer delivering 17 gal/A with 8002 nozzles and 40 psi. Air temperature was 70 F. The entire experimental area was double pass incorporated with a field cultivator/harrow operated 3 inches deep and within 1 hour of EPTC treatments. Nodak pintos were seeded 1.5 inches deep at 70,000 seeds per acre in 30-inch rows on May 27. High cultivation plots were rotary hoed June 4 when drybeans were in the cracking to crook stage and again on June 12 when in the unifoliolate stage. Visual estimates of percentage weed control and crop injury were taken June 24. All plots were cultivated June 24 and high cultivation plots were culti-vated again July 29. Postemergence (PO) treatments were applied June 26 with the sprayer used above but with 8.5 gal/A and 8001 nozzles. Conditions during spraying sprayer used above but with 0.5 gal/A and 0001 n022les. Conditions during spraying were: 76 F air temp, sunny skies, 40% relative humidity, foxtail (50% yellow and 50% green foxtail) was 3- to 5-leaf, 2 to 5 inches tall, redroot pigweed was 2- to 4-leaf and 2 to 4 inches tall, wild buckwheat was 2- to 5-leaf and 1.5 to 4 inches tall, and drybeans were 1- to 2-trifoliolate and 4 to 5 inches tall. Visual estimates of weed control and crop injury were taken July 14 and again on September 11 immediately before harvest. Seed yield was taken September 11 from the center two rows of each plot by hand pulling plants and passing through a plot combine. The experiment was a split plot with four replications; main plots were cultivation level (high and low). Plot size was 10 by 27 ft and treatments (herbicides, rotary hoeing, and cultivation) were applied to the center 7 ft leaving untreated areas along the plot edges used for weed control evaluation.

laverage						W	eed co	ontrol				
Culti- vation level	Stand	<u>Inju</u> 6/24	<u>~y</u> 7/14	<u>Eval</u> Fxtl		June		Evalu		UMIT	Rrpw	Seed <u>yield</u> (kg/ha)
High	45,600	0	2	98 90	97 75	99 86	98 90	97 95	96 91	96 92	97 95	1025 988
Low F-test P value	48,300 ** .009_	NS . 089	NS .388	**	* :040	** .005	** .005	NS .145	* .041	* .026	* .025	NS .512

<u>Table 1</u>. Effect of level of cultivation on drybean injury and weed control (averaged across all treatments).

<u>Herbicide^a</u>		Cultiv tior		In	jury		
nerbicide	Rate ^a	level		6/2	4 7/14	Seed	blaiv
	(1b/A)			-(%)—		(kg/ha)	(1b/A
Untreated	0	الم م	11			(),	(10)7
	· ·	High Low		0	0	652	581
Etha+Imep(PPI)	0.5+0.031	High	40,000 47,400	0	0	336	299
		Low	52,400	0	0	1317	1174
Clom+Etha(PPI)	0.5+0.75	High		4	0	1047 1051	934
Clom+Etha(PPI)/		Low	47,300	1	0 0	1051	938
Bent&Acif+X77(PO)	0.5+0.75/				· ·	1030	936
	0.57&0.13+0.25			2	2	1000	891
EPTC+Etha(PPI)	2.2+0.75	Low	49,900	2	1	981	875
(/	2.270.75	High	46,800	0	4	830	740
EPTC+Etha(PPI)/	2.2+0.75/	Low	46,000	0	0	983	876
Bent&Acif+X77(PO)	0.57&0.13+0.25	% High	10 100	•			
		Low	48,100 48,200	0	0	1180	1052
PTC+Trifluralin(PPI)	2.2+.75	High	42,500	0 0	0 1	1329	1185
PTC+Twif(DDT) /		Low	48,800	Ő	0	1108	988
PTC+Trif(PPI)/ Bent&Acif+X77(PO)	2.2+0.75/		,	· ·	U	1129	1006
Derreader 11+X/7 (PU)	0.57&0.13+0.25	% High	44,700	0	2	1217	1085
lachlor+Etha(PPI)	2+0.75	Low	47,900	0	1	1011	901
	2+0.75	High	45,800	0	1	1134	1011
lac+Etha(PPI)/	2+0.75/	Low	46,600	0	1	985	879
Bent&Acif+X77(PO)	0.57&0.13+0.25%	6 High	44 500	•			
		Low	44,500 49,500	0	0	1135	1012
<pre>mazethapyr+Etha(PPI)</pre>	0.031+0.75	High	44,500	1 0	3	1155	1030
non (Ethe (DDT) (Low	47,200	0	4	975	870
<pre>mep+Etha(PPI)/ Bent&Acif+X77(PO)</pre>	0.031+0.75/		,200	v	1	983	876
Deritare 11+X/7 (PU)	0.57&0.13+0.25%	High	44,200	0	2	920	821
tha(PPI)/	0.75/	Low	50,000	0	Ō	1314	1172
Bent&Acif+X77(PO)	0.57&0.13+0.25%	11:	45 344				/-
	0.0740.13+0.25%		45,700	0	2	885	790
PTC(PPI)/	3/	Low	51,100	0	3	1001	892
Bent&Acif+X77(PO)	0.57&0.13+0.25%	High	49,800	0	•		
		Low	51,200	0	0	1159	1033
<pre>nt&Acif+Seth+Sun(PO)</pre>	0.57&0.13+0.2+10	High	44,600	0	1	944	842
ant Sath (Surth (Da)		Low	49,100	_	3 2	791 784	705
ep+Seth+Sunit(PO)	0.031+0.2+1Q		47,100	-	3	1042	699
			48,400	-	2	780	929 695
V. %						,00	090
D 5%				40]	50	18	18
ent&Acif = Galaxy he luorfen; Sun or Sunit			4,300	1	3	261	222

sifier; 1Q = 1 quart per acre.

weeks after planting	•	0.1	14.4.4.0			Wee	ed cor	ntrol			
			tiva tion	Eval	uated	1	24	Eval	uated	July	14
a	Rate ^a		evel	Fxt1	Wibw	Prpw	Rrpw	Fxtl	Wibw	Prpw F	<u>T'pw</u>
<u>Herbicide^a</u>	(1b/A)						(%)			
Untreated	0		High Low	82 0	68 0	85 0	80 0	79 69 100	79 68 100	76 67 100	75 69 100
Etha+Imep(PPI)	0.5+0.031		High Low	99 98	100 87	98	100 99 100	100 100 100	100 100 100	100	100 100
Clom+Etha(PPI)	0.5+0.75		High Low	100 100	99 96	100 94	97	99	97	94	96
Clom+Etha(PPI)/ Bent&Acif+X77(PO)	0.5+0.75/ 0.57&0.13+0	.25%	High Low	99 96	97 80 99	100 93 100	99 96 100	99 96 100	96 97 99	99 96 100	98 97 100
EPTC+Etha(PPI)	2.2+0.75		High Low	100 97	87	99	100	98	93	100	98
EPTC+Etha(PPI)/ Bent&Acif+X77(PO)	2.2+0.75/ 0.57&0.13+0	.25%	High Low	100 98 100	100 87 100	100 98 100	100 100 100	100 100 100	99 98 98	100 97 100	99 100 100
EPTC+Trif(PPI)	2.2+0.75		High Low	99	89	99	100	100	98	97	100
EPTC+Trif(PPI)/ Bent&Acif+X77(PO)	2.2+0.75/ 0.57&0.13+0).25%	High Low	100 96	95 81	100 92 100	99 97 100	99 97 99	99 96 100	100 95 100	99 98 99
Alachlor+Etha(PPI)	2+0.75		High Low	100 97	100 94	98	99	99	98	98	97
Alac+Etha(PPI)/ Bent&Acif+X77(PO)	2+0.75/ 0.57&0.13+	0.25%	High Low	100	77	100 98 100	100 99 100	98 99 100	95 97 98	100 97 99	100 100 99
Imep+Etha(PPI)	0.031+0.75		High Low	100 96			99	97	88	98	99
Imep+Etha(PPI)/ Bent&Acif+X77(PO)	0.031+0.75/ 0.57&0.13+	-0.25%	High Low	99 99				98 99			99 99
Etha(PPI)/ Bent&Acif+X77(PO)	0.75/ 0.57&0.13-	+0.25%	High Low	100 97							99 99
EPTC(PPI)/ Bent&Acif+X77(PO)			LOW	10					2 84	88	92
Be&Ac+Seth+Sun(PO)) 0.57&0.13+	0.2+10	} High Low		-			- 9	4 74	4 71	81
Imep+Seth+Sunit(P	0) 0.031+0.2+	1Q	High Low		-	-	-	- 9 - 9	-	-	
C.V. %						4 1 7 1	٨	0	6	6 9 8 12	2 (
LSD 5%	hambicida	conto	ining 3	$\frac{1}{h/c}$	al be	ntazo	n plu	s 0.6	7 1b/	gal a	:1-

Table 3. Effect of herbicides and level of cultivation on weed control 4 and 8 weeks after planting.

LSD 5% ^aBent&Acif = Galaxy herbicide containing 3 lb/gal bentazon plus 0.67 lb/gal acifluorfen; Sun or Sunit = Sun-it II methylated seed oil adjuvant containing emulsifier; 1Q = 1 quart per acre.

		Cultiva				
<u>Herbicide^a</u>	Rate ^a	tion level	<u> </u>	luated	at ha	rvest
	(1b/A)	16461	FXU	Wibw	Prpw (%)—	Rrpw
Ilationatical					(/0)	
Untreated	0	High	62	59	60	67
Etha+Imep(PPI)	0.5.0.001	Low	49	45	44	54
cond+imep(rri)	0.5+0.031	High	100	100	100	100
Clom+Etha(PPI)	0.5+0.75	Low	100	100	100	100
	0.570.75	High	100	100	100	100
Clom+Etha(PPI)/	0.5+0.75/	Low	99	100	97	99
Bent&Acif+X77(PO)	0.57&0.13+0.25%	High	98	96	100	100
		Low	90	90 95	100 91	100
EPTC+Etha(PPI)	2.2+0.75	High	100	100	98	93 99
EDTC (Etha (DDT) (Low	95	87	99	96
EPTC+Etha(PPI)/ Bent&Acif+X77(PO)	2.2+0.75/				33	50
DentaAcTI+X//(PU)	0.57&0.13+0.25%	J	100	99	100	100
EPTC+Trif(PPI)	2.2+0.75	Low	97	95	100	100
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.270.75	High	100	100	100	100
EPTC+Trif(PPI)/	2.2+0.75/	Low	98	98	97	100
Bent&Acif+X77(PO)	0.57&0.13+0.25%	High	99	99	100	1
A7. 17		Low	89	99 97	100 92	100
Alachlor+Etha(PPI)	2+0.75	High	100	100	99	93 99
Alacy Etha (DDT) (0 0	Low	95	90	97	99
Alac+Etha(PPI)/ Bent&Acif+X77(PO)	2+0.75/					55
	0.57&0.13+0.25%	High	99	100	100	100
<pre>Imep+Etha(PPI)</pre>	0.031+0.75	Low	97	91	99	100
· · · · · · · · · · · · · · · · · · ·	0.031+0.75	High	100	99	100	100
Imep+Etha(PPI)/	0.031+0.75/	Low	95	83	95	97
Bent&Acif+X77(PO)	0.57&0.13+0.25%	High	98	98	100	100
		Low	99	96	100 100	100 100
Etha(PPI)/	0.75/			50	100	100
Bent&Acif+X77(PO)	0.57&0.13+0.25%		100	98	100	100
EPTC(PPI)/	3/	Low	92	90	99	100
Bent&Acif+X77(PO)	0.57&0.13+0.25%					
	0.3700.13+0.25%	High	98	96	99	99
Be&Ac+Seth+Sun(PO)	0.57&0.13+0.2+10	Low High	88	86	73	93
		Low	90 57	84	91	82
<pre>Imep+Seth+Sunit(PO)</pre>	0.031+0.2+10	High	98	45 96	40 95	67
		Low	81	71	82	94 90
C.V. %					02	30
LSD 5%			9	11	10	7
Bent&Acif = Galaxy	herbicido contain	0.11	12	14	13	9
0.67 lb/gal acifluo oil adjuvant contai	rfen: Sun on Sunta	ng 3 lb/	gal be	entazo	n plus	
oil adjuvant contai	ning emulcifiers 1	= sun-i	τ II n	nethy]	ated s	eed

<u>Table 4</u>. Effect of herbicides and level of cultivation on weed control at harvest.

0.67 Ib/gal acifluorfen; Sun or Sunit = Sun-it II methylated seed oil adjuvant containing emulsifier; 1Q = 1 quart per acre. Bentazon-insecticide interactions in drybeans, Fargo 1992. An experiment was established on a conventionally tilled silty clay with pH 7.8 and 4% organic matter. Othello pintos were seeded May 19 at 70,000 seeds/A and 1 to 1.25 inch deep with a Hiniker no-till planter set on 30-inch rows. The entire experimental area was treated June 12 with sethoxydim at 0.2 lb/A plus Scoil at 1 quart/A for foxtail control. Treatments were applied July 6 with a bicycle wheel sprayer delivering 8.5 gal/A with 8001 nozzles and 40 psi. At application, drybeans were 3rd trifoliolate and 6 inches tall, volunteer sunflower was 6 to 10 inches tall, common lambsquarters was 2 to 4 inches tall, air temperature was 68 F, relative humidity was 70%, skies were partly cloudy, wind was 5 mph, and soil was wet (fourth rep too wet to spray). Visual estimates of percentage crop injury and weed control were taken July 17. Visual estimates 10 by 25 ft and the experiment was randomized complete block design it for the second s

with	four	repl	icat	ions.
------	------	------	------	-------

		Drybean	Volunteer	Common					
a	Rate	injury	sunflower	<u>lambsquarters</u>					
<u>Treatment^a</u>	(1b/A)		(%)-						
				2					
Bentazon	1	3	7	3 0					
Bentazon+SEVIN-XLR	1+1	0	11	0					
Bentazon+CYGON-4E	1+0.5	4	20	. 0					
Bentazon+ORTHENE-75WP	1+0.5	0	47	0					
Bentazon+GUTHION-2E	1+0.5	0	22	0					
Bentazon+ASANA	1+0.03	0	21	0					
Bentazon+AMBUSH	1+0.1	0	31	Ő					
Bentazon+LANNATE-L	1+0.75	0	54 21	Ő					
Bentazon+PENNCAP-M	1+0.5	0	13	Ō					
Bentazon+KELTHANE-4E	1+0.5	0	4	Ō					
Bentazon+COMITE	1+1.64	23 7	2	7					
Bentazon+Malathion	1+1	2	23	8					
Bentazon+Mefluidide	1+0.25	Ő	47	0 1					
Bentazon+PB	1+0.5 1+0.5	0	22						
Bentazon+MGK-264	1+0.5	ŏ	0	0					
Untreated	U								
		110	97	415					
C.V. %		4	NS	NS					
LSD 5%	annlied	with 1	quart/A pet	roleum oil					
LSD 5% All treatments were applied with 1 quart/A petroleum oil adjuvant (containing 17% emulsifier); PB = piperonyl butox-									
ide and MGK-264 is a	n analogi	le of PB.							
1de and Muk-204 13 a	ii unuroge								

<u>Comments</u>. Extremely heavy rains between late May and early July and cool temperature throughout the season made crop growth, timely treatment application, and evaluation difficult. During treatment and evaluation, the crop was under substantial stress due to low temperature and soil waterlogging. Evaluation was complicated by foliar chlorosis and necrosis due apparently to these environmental stresses. No stand losses occurred with any of the treatments.

Postemergence herbicide treatments for crambe, Minot 1992. tablished on a conventionally-tilled Williams loam. Belenzian crambe was seeded 1 inch deep at 20 lb/A on May 14. Herbicides were applied June 25 with a bicycle wheel sprayer delivering 8.5 gal/A with 8001 nozzles and 35 psi. Conditions at time of spraying were: crambe 7 to 8-leaf and just before bolting, 65 F, 70% relative humidity, wind 5 to 10 mph (sprayer shielded), sunny, fair to good growing condi-tions. Plot size was 10 by 30 ft with herbicides applied in the center 6.7- by 30-ft area, leaving untreated check strips on the plot borders. The entire experi-mental area was treated in the fall of 1991 with trifluralin at 0.5 lb/A for foxtail control. Broadleaf weeds were controlled by hand-pulling and the entire site was maintained weed-free. Plant height and visual estimates of percentage injury (stunting and biomass reduction) were taken 11 and 22 days after treatment. Grain yields were machine harvested Sept. 1. The experimental design was a randomized

<u>Treatment</u> ^a	Det b	Eval.	July 6	Eval. J	uly 17	Consta	
	Rateb	Injury	Height	Injury	Height	Grain	Test
	(1b/A)	(%)	(in)	(%)	(in)	<u>yield</u>	weight
DPX-A8771+X77	0.0150			(,,,)	(11)	(1b/A)	(1b/bu)
DPX-A8771+X77	0.0156+0.25%	0	28	0	40		
Picloram	0.03125+0.25%	0	33	0	48	1930	27.5
Picloram	0.0156		31	0	50	1850	27.7
	0.03125	3	28	1	48	1910	24.6
Clopyralid	0.25	3	28	10	45	1460	23.1
Clopyralid	0.5	2 3 3 3		1	48	1660	24.4
Dicamba	0.0625	36	30	_2	48	1680	24.0
Dicamba	0.125		20	76	31	0	64.0
Quinclorac+Scoil	0.25+0.750	44	17	89	31	õ	
Quinclorac+Scoil	0.5+0.750	2 3	32	9	45	1400	23.7
Bentazon+POC+28%UAN	0.5+10+40		28	9	44	1450	
Bromoxynil		36	23	16	41	1060	23.7
Imazamethabenz+X77	0.25	20	24	11	43		27.5
Imazamethabenz+X77	0.25+0.25%	44	15	95	15	1430	26.9
Difenzoquat	0.5+0.25%	51	14	95	14	0	-
Difenzoquat	0.62	3	29	5		0	-
Propanil-DF+X77	1	5	29	5	46	1580	27.6
Propanil-DF+X77	1+0.5%	11	25	6 3	46	1670	27.3
Sothowydin, Doo	1.5+0.5%	23	26		46	1530	26.9
Sethoxydim+POC	0.2+10	0	32	14	43	1300	26.5
Handweeded check	0	0	35	0	49	1560	27.7
C M of		•	33	0	50	1480	26.9
C.V. %		32	0				
$\frac{1}{4}$ SD 5% $\frac{1}{4}$ X77 = surfactant by		7	9	11	6	18	3.5
-X77 = surfactant by	Valent Comp . C	/	3	3	4	310	1.0

factant by Valent Corp.; Scoil = methylated seed oil adjuvant containing emulsifier; POC = petroleum oil adjuvant containing 17% emulsifier; 28%UAN = 28% urea ammonium nitrate fertilizer solution; propanil-DF = dry flowable formulation bof propanil.

Q = quart per acre (e.g. 0.75Q = 0.75 quart per acre).

Summary. Dicamba and imazamethabenz drastically injured crambe, producing no harvestable grain. Essentially all herbicides reduced crambe height 11 days after treatment, but by 22 days after application, height reductions were no longer evident with sethoxydim, DPX-A8771, clopyralid, and the lower rate of picloram. Benta-zon injured crambe about 35 and 15% at the early and late evaluations, respectively, and reduced grain yield. Similarly, propanil at 1.5 lb/A (1.5 times the labeled rate for wheat) injured crambe 23 and 14% (early and late) and reduced yield. Other treatments caused low levels of observable injury and did not reduce grain yield.

Postemergence herbicide treatments for crambe, Prosper 1992. The experiment was established on a silt loam with pH 7.4 and 3.2% organic matter. Meyer crambe was seeded 1 inch deep at 20 lb/A on May 5. Herbicides were applied 7:30 to 9 pm June 8 with a bicycle wheel sprayer delivering 8.5 gal/A with 8001 nozzles and 40 psi. Conditions at time of spraying were: crambe 3 to 5.5 inches tall and 4 to 4.5-leaf, 75 F, 32% relative humidity, wind 0 to 2 mph, sunny, good growing conditions. Plot size was 10 by 27 ft with herbicides applied in the center 6.7- by 27-ft area, leaving untreated check strips on the plot borders. The entire experimental area was treated June 15 with sethoxydim plus SUN-IT II adjuvant at 0.16 lb/A plus 1.5 Broadleaf weeds were controlled by hand-pulling and the entire site was maintained weed-free. Visual estimates of percentage injury (injury symptoms only; stunting was ignored) and crop stunting were taken June 22. estimates of percentage stand reduction and injury were taken July 17. Grain yields were machine harvested on Aug. 13, 20, and 31, and on Sept. 14. The experimental design was a randomized complete block with four replications.

design was a randomize				E lustod	July 17		
		Eval. J	une 22	LIGING	Stunt-		
		LIGI	Stunt-	Stand		Grain y	ield
	h	Tatum	ing	reduction	ing	(hatha)	(1b/A)
Tanta	Rateb	Injury		%)		(kg/ha)	
<u>Treatment</u> ^a	(1b/A)						
				0	0	1900	1700
	0.0156+0.25%	0	0	0	Ō	2260	2010
Ethametsulfuron+X77	0.0150+0.25%		0	0		2210	1970
Ethametsulfuron+X77	0.03125+0.25%	6	0	0	0		1890
	0.0156	10	5	0	1	2120	1770
Picloram	0.03125	12		0	0	1980	
Picloram	0.25	5	0	Ő	0	1940	1730
Clopyralid	0.5	4	0		34	1620	1450
Clopyralid	0.0625	28	47	0	66	1020	910
Dicamba		35	55	4		1810	1610
Dicamba	0.125	12	11	0	5		1320
Quinclorac+Scoil	0.25+0.750		10	0	9	1480	1510
Quinciorac+Scoil	0.5+0.750	12		0	0	1690	
Quinclorac+Scoil		15	28	Õ	0	1680	1500
Bentazon+POC+28%UAN	0.25	11	24		41	2150	1910
Dromovvnil	0.25+0.25%	8	38	0	70	1980	1770
ImazamethabenZ+A//	0.25+0.25%	12	46	0		2130	
Imazamethabenz+X77	0.5+0.25%	4	6	0	4	2200	
Difenzoquat	0.62		12	0	5		
Difenzoquat	1	4	13	0	0	2120	
Difenzoquat	1+0.5%	7		0	0	2020	
Propanil-DF+X77	1.5+0.5%	10	18	ŏ	0	2210	1970
Pronanil-Ut+X//	0.2+10	0	0		Ő	2230) 1990
Sethoxydim+PUC		0	0	0	57	14	
Handweeded check	0	37	36	894			
C.V. %			8	NS	9	300	
		5		wlated seed	oil ad	juvant co	Unitatititi

X77 = surfactant by Valent Corp.; Scoil = methylated seed oil emulsifier; POC = petroleum oil adjuvant containing 17% emulsifier; 28%UAN = 28% urea ammonium nitrate fertilizer solution; propanil-DF = dry flowable formulation ${}^{b}Q$ = quart per acre (e.g. 0.75Q = 0.75 quart per acre).

Summary. The only treatments that reduced crambe yield were dicamba, quinclorac, bentazon, and bromoxynil. Treatments causing little to no injury were ethametsulf-Injury by quinclorac was expressed as smaller Chlorosis/necrosis was caused by bentazon, uron, clopyralid, and sethoxydim. bromoxynil, difenzoquat, and propanil. Injury from imazamethabenz was expressed as chlorosis of the younger leaves. result in growing point death.

<u>PPI herbicide treatments for crambe, Prosper 1992</u>. The experiment was established on a silt loam with pH 7.4 and 3.2% organic matter. Herbicides were applied May 5 onto dry soil with a bicycle wheel sprayer delivering 17 gal/A with 8002 nozzles and 40 psi. Plot size was 10 by 27 ft with herbicides applied in the center 6.7- by 27ft area, leaving untreated check strips on the plot borders. Immediately after application, all plots were double-pass incorporated with a field cultivator/harrow set to cut 2.5 to 3 inches deep. Meyer crambe was then seeded (May 5) 1 inch deep at 20 lb/A. The entire experimental area was treated June 15 with sethoxydim plus SUN-IT II adjuvant at 0.16 lb/A plus 1.5 pt/A for foxtail control. Broadleaf weeds were controlled by hand-pulling and the entire site was maintained weed-free. Visual estimates of percentage injury (stunting and injury symptoms only; stand row were counted, 2 random 1-m samples per plot. Visual estimates of percentage injury (injury symptoms only), stand reduction, and stunting were taken June 22 and July 17. Grain yields were machine harvested on Aug. 13, 20, and 31. The experimental design was a randomized complete block with four replications.

		5/21	5/29		6/22			7/17			
		In-	Stand	In-	Std	Stunt-					
Treatment	Rate	jury	count					Std	Stunt-		
	(1b/A)	(%)		jury	red	ing	jury.	red	ing	Seed	bleiv
	(15/11)	(10)	No./m			(%)			(kg/ha)	
Alachlor	2									(19/114)	(1b/A)
Alachlor	2	0	40.0	0	0	0	0	0	0	1070	
	3	1	35.3	0	1	0	ŏ		0	1970	1750
Metolachlor	2	0	40.4	0	1	0		0	0	2150	1920
Metolachlor	3	0	36.6	Ő	Ō		0	0	0	1740	1550
Propachlor	4	Ō	38.9	Ő	•	0	0	0	0	1640	1460
SAN-582H	1.25	1	43.5		0	0	0	0	0	2210	1970
SAN-582H	2	2		0	1	1	0	0	0	1740	1550
Trifluralin	_		34.4	0	5	2	0	0	0	1880	
Trifluralin	0.75	0	43.9	0	0	0	0	0	õ		1680
	1.25	0	44.6	0	0	0	õ	Ő		1950	1740
Ethalfluralin	0.75	0	41.0	0	0	0	.0		0	2020	1800
Pendimethalin	1.5	0	37.9	0	11			0	0	1910	1700
Pendimethalin	2.25	1	34.0	Ő		0	0	0	0	1660	1480
EPTC	3	Ō	39.1		16	3	0	0	0	1530	1360
Triallate	1	0		0	3	1	0	0	0	2360	2110
Linuron	1 25		41.5	0	0	0	0	0	0	1750	
Clomazone	1.25	0	42.6	0	1	0	0	0	Ő		1560
	0.5	73	29.8	4	66	13	Õ	14		2100	1870
Quinclorac	0.5	0	43.9	0	1	0			0	1780	1590
Imazethapyr	0.0469	2	39.6	5	63		0	0	1	1310	1170
Handweed check	0	ō	45.4	0		29	0	22	0	1750	1560
LSD(0.05)		3	7.6		0	0	0	0	0	1400	1250
			1.0	0.3	6	4	NS	7	0.5	500	450

<u>Summary</u>. The chloroacetamide herbicides alachlor, metolachlor, and SAN-582H at the higher rates slightly reduced crambe stands measured May 29, but these reductions were scarcely detectable by visual estimate later in the season and yields were not affected. These higher rates were above labeled rates for this soil type. These results indicate, however, that stand reductions are a potential concern with chloroacetamide herbicides in crambe. Pendimethalin apparently reduced stands slightly while the other dinitroaniline herbicides, trifluralin and ethalfluralin, did not. Pendimethalin stand reductions were evident in mid June but were not visually detectable by mid July. Clomazone dramatically reduced stands and caused considerable injury (foliar bleaching) although yields apparently were not reduced. Imazethapyr also greatly reduced stands with effects most evident in mid June.

Leafy spurge control with quinclorac applied with various adjuvants. Lym, Rodney G. Quinclorac is an auxin-type herbicide with moderate soil residual. Previous greenhouse research at North Dakota State University has shown that quinclorac will injure leafy spurge and may be more effective when applied with a seed-oil adjuvant rather than alone. The purpose of this research was to evaluate quinclorac applied alone and in combination with picloram or various spray adjuvants as an annual retreatment.

The experiment was established near West Fargo on September 14, 1990, when leafy spurge was in the fall regrowth stage, 20 to 30 inches tall with 2 to 3 inch new fall growth. Herbicides were applied using a tractor-mounted sprayer delivering 8.5 gpa at 35 psi. The plots were 10 by 30 ft in a randomized complete block design with four replications. Evaluations were based on a visual estimate of percent stand reduction as compared to the control. Previous research has shown quinclorac provided the best leafy spurge control when fall-applied.

Treatment ^a	Rate	Ev June 91	aluation da June 92	
	— 1b/A —		% control	Sept 92
Quinclorac + BAS-090 Quinclorac + Scoil Quinclorac	l + l qt l + l qt	90 · 74	93 95	77 77
Quinclorac Quinclorac + picloram Quinclorac + picloram + BAS-090	1 + 0.5	49 85	82 97	53 84
Picloram + 2,4-D Picloram + 2,4-D + Scoil) 1 + 0.5 + 1 qt 0.5 + 1 0.5 + 1 + 1 qt	91 81 43	99 92	87 70
Picloram + 2,4-D + BAS-090 Picloram + Scoil Picloram	0.5 + 1 + 1 qt 0.5 + 1 qt	57 71	69 83 82	46 52 50
LSD (0.05)	0.5	60	84	62
		28	14	22

^aTreatments applied annually for 2 yr.

Quinclorac provided approximately 20% better leafy spurge control in June 1992 following a second application compared to June 1991 regardless of adjuvant (Table). Quinclorac at 1 lb/A plus BAS-090 provided better leafy spurge control than quinclorac applied alone or with the methulated-seed-oil adjuvant Scoil 9 months after treatment but control was similar following the second treatment. Control with quinclorac plus BAS-090 or Scoil was similar to picloram plus 2,4-D at 0.5 plus 1 lb/A, the most commonly used fall-applied treatment. Quinclorac applied with picloram or picloram plus BAS-090 provided similar control to picloram plus 2,4-D and quinclorac plus BAS-090 or Scoil. Scoil applied with picloram did not improve leafy spurge control compared to picloram alone and reduced control when applied with picloram plus 2,4-D.

Quinclorac plus BAS-090 or Scoil fall-applied provided good leafy spurge control and may be an alternative to picloram plus 2,4-D. There was no grass injury with any treatment. (Published with approval of the Agric. Exp. Stn., North Dakota State Univ., Fargo 58105). Leafy spurge control with imazethapyr, imazaquin, quinclorac, and nicosulfuron. Lym, Rodney G., and Calvin G. Messersmith. Previous research at North Dakota State University has shown that nicosulfuron at 1 to 2 oz/A, imazethapyr and imazaquin at 2 to 4 oz/A, and quinclorac at 16 to 24 oz/A provide good leafy spurge control when fall-applied. Also, control has occasionally been increased when these herbicides have been applied with an adjuvant. The purpose of this research was to evaluate imazethapyr, imazaquin, quinclorac, and nicosulfuron with several spray adjuvants fall-applied for leafy spurge control.

The experiment was established at Hunter and Chaffee, ND on September 2 and 6, 1991, respectively. Leafy spurge at Hunter was 16 to 20 inches tall with 4- to 6-inch sparse fall regrowth, red leaves and moisture stressed, while at Chaffee it was 28 to 36 inches tall, with lush, dense fall regrowth with green leaves and adequate soil moisture. The soil at Hunter was sandy with pH 7.4 and 2.3% organic matter and at Chaffee was a sandy loam with pH 7.8 and 6.7% organic matter. Herbicides were applied using a tractor-mounted sprayer delivering 8.5 gpa at 35 psi. Plots were 10 by 30 ft, and each treatment was replicated four times in a randomized complete block design. A follow-up treatment of picloram plus 2,4-D at 8 + 16 oz/A was spring-applied on June 22, 1992 to the rear onethird of all plots. Visual evaluations were based on percent stand reduction as compared to the control.

Quinclorac tended to provide the best leafy spurge control at both locations and averaged 97 and 69% control 9 and 12 months after treatment (MAT), respectively, regardless of adjuvant (Table). Control at Chaffee was higher than at Hunter with imazethapyr, imazaquin, and nicosulfuron and averaged 27 and 92, 61 and 93, 42 and 74%, respectively, 9 MAT averaged over rate and adjuvant. The quinclorac treatments and imazaquin plus Scoil (a methulated-seed oil adjuvant) were the only treatments to provide similar control at Chaffee and Hunter.

Nicosulfuron provided an average of 58 and 22% control 9 and 12 MAT, respectively, and control was similar regardless of application rate or adjuvant (Table). Imazaquin and imazethapyr tended to provide better leafy spurge control when applied with Scoil than X-77 surfactant, especially at Hunter. However, control with quinclorac was similar at both locations when applied with BAS-090 or Scoil regardless of herbicide rates.

Retreatment with picloram plus 2,4-D provided 90% control 2 MAT, averaged over both locations, and was similar regardless of the original treatment. In summary, quinclorac and imazethapyr show the most promise for consistent leafy spurge control of the herbicides evaluated. Control was similar to picloram plus 2,4-D at 8 + 16 oz/A, the standard fall-applied treatment. Nicosulfuron may be useful for leafy spurge control in cropland, but previous research has shown this herbicide injures grass and would not be acceptable for pasture and rangeland use. (Published with approval of the Agric. Exp. Stn., North Dakota State Univ., Fargo 58105).

			Hunte	r		Chaffe			Mean		
		May		gust	May		qust	May		uqust	
Ireatment		Con-		Retreat	Con-		Retreat			Retreat-	
reachiert	Rate	trol	trol	ment	trol	trol	menta	trol	trol	menta	
	oz/A					- %					
Imazethapyr + X-77	2 + 0.5%	5									
Imazethapyr + X-77	4 + 0.5%	36	0	98	76	8	86	41	4	92	
Imazethapyr + Scoil	2 + 1 qt		6	99	85	14	71	61	10	85	
Imazethapyr + Scoil		20	1	97	90	29	82	55	15	89	
Imazaquin + X-77		47	9	93	88	43	86	68	26	89	
Imazaquin + X-77	2 + 0.5%	34	3	94	85	10	90	60	6	92	
Imazaquin + Scoil	4 + 0.5%	38	6	92	98	36	91	69	21	91	
	2 + 1 qt	84	8	83	92	38	95	88	23	89	
Imazaquin + Scoil	4 + 1 qt	87	13	89	96	49	82	92	31	85	
Quinclorac + BAS-090	16 + 1 qt	91	38	97	100	82	97	95	60	97	
Quinclorac + BAS-090	24 + 1 qt	95	65	99	100	93	98	97	79	99	
Quinclorac + Scoil	16 + 1 qt	93	44	99	99	72	97	96	79 58		
Quinclorac + Scoil	24 + 1 qt	97	67	99	100	94	96	98		98	
Nicosulfuron + X-77	1 + 0.5%	34	5	98	72	28	83		80	98	
Nicosulfuron + X-77	2 + 0.5%	27	26	98	75	15	81	53	17	91	
Nicosulfuron + Scoil	1 + 1 qt	60	14	85	80	30		51	20	89	
Nicosulfuron + Scoil	2 + 1 qt	46	42	87	70		86	70	22	86	
Picloram + 2,4-D	8 + 16	88	70	97		12	74	58	27	81	
		00	/0	57	82	36	87	85	53	92	
LSD (0.05)		23	25	NS	14	22	17	14	34	NS	

Table. Leafy spurge control with various herbicides applied September 1991 alone and then retreated with picloram plus 2,4-D in June 1992 (Lym and Messersmith).

^aPicloram plus 2,4-D at 8 + 16 oz/A applied to the rear one-third of each plot on June 22, 1992.

Leafy spurge control with sulfometuron and/or picloram plus 2,4-D in a 3 yr rotation. Lym, Rodney G., and Calvin G. Messersmith. Previous research at North Dakota State University has shown that sulfometuron applied with picloram or 2,4-D provides good leafy spurge control especially when fall applied. However, sulfometuron can cause severe grass injury when fall applied. Picloram plus 2,4-D at 0.25 plus 1 lb/A will provide approximately 90% leafy spurge control when applied annually for 3 to 5 yr. The purpose of this research was to evaluate leafy spurge control and grass injury with sulfometuron plus picloram or 2,4-D applied annually for 3 yr or rotated with picloram plus 2,4-D as spring- or fall-applied treatments in pastures.

The experiment was established at three locations, Chaffee and Valley City in eastern and Dickinson in western North Dakota. The soil at Dickinson was a loamy fine sand with pH 6.5 and 6% organic matter, at Valley City a loam with pH 7.1 and 9.2% organic matter, and at Chaffee a sandy loam with pH 7.4 and 6.7% organic matter. Treatments were spring-applied the first week of June and fall-applied the first or second week of September in 1988. Retreatments were applied at a similar time in 1989 and 1990. Leafy spurge received the same treatments in 1990 as in 1988 to complete the 3 yr treatment Herbicides were applied using a tractor-mounted sprayer delivering 8.5 gpa at 35 psi. Plots were 9 by 30 ft at Chaffee and Dickinson and 10 by program. 30 ft at Valley City. Each treatment was replicated four times in a randomized complete block design at all sites. Evaluations taken visually were based on percent stand reduction as compared to the control. The initial grass stand at Dickinson was too sparse to allow reliable evaluation of grass injury, so the experiment was abandoned following the June 1990 evaluation.

Leafy spurge control, averaged across all spring-applied treatments increased from 18 to 49 to 78% 12, 24, and 36 months after the first treatment (MAT), respectively (Table). Sulfometuron spring-applied with picloram or 2,4-D annually for 3 yr provided an average of 79% leafy spurge control which was similar to picloram plus 2,4-D at 80%. However, grass injury from sulfometuron spring-applied for 3 yr averaged 34%. There was no advantage to applying sulfometuron following picloram plus 2,4-D or vice versa.

Leafy spurge control with sulfometuron plus picloram at 1.25 plus 4 oz/A fall applied for 3 consecutive yr averaged 96%, but grass injury averaged 94% (Table). Sulfometuron plus 2,4-D at 1.25 plus 16 oz/A averaged 62% leafy spurge control and 95% grass injury following three consecutive fall-applied treatments. Picloram plus 2,4-D fall-applied for 3 consecutive yr averaged only 27% leafy spurge control, but control increased to 34 and 44% when sulfometuron plus 2,4-D or sulfometuron plus picloram, respectively, were applied the second yr rather than picloram plus 2,4-D. However, grass injury also increased to an average of 30%.

Sulfometuronm plus picloram at 1.25 plus 4 oz/A fall-applied provided the best long-term control and averaged 77% 48 MAT compared to 11% for the standard treatment of picloram plus 2,4-D at 4 plus 16 oz/A, but grass injury was still 65% (Table). In general, leafy spurge control with sulfometuron plus 2,4-D or picloram was similar to picloram plus 2,4-D when applied in the spring but the sulfometuron combinations were best when fall-applied. However, grass injury was severe when sulfometuron was fall-applied. (Published with approval of the Agric. Exp. Stn., North Dakota State Univ., Fargo 58105).

1099 and 1000						Mean ^a			
<u>1988 and 1990</u> Date applied			12 MAT	24	MAT		MAT	40	MAT
and treatment Rate	1989	Con	Grass	Con-	Grass	Con-	Grass	Con-	MAT Grass
- oz/A -	Treatment Rate		l inj.	trol	inj.	trol	inj.	trol	
Spring	- oz/A	-				· % ——			inj.
	ume+picl 1.25+								
			12	37	23	79	41	37	4
Commercial da la commerci			11	46	10	86	24	50	13
			16	28	14	78	26	50	14
D1 3 5 5 5			9	57	7	79	11	53	1
01.1.0.1.0		10	0	56	2	80	1	56	0
Di-1.0 4 D	ume+pic1 1.25+ ume+2,4-D 1.25+		0	67	55	71	2	49	0
	unc. 2, 4 0 1.23+	16 11	0	49	21	76	8	54	0
LSD (0.05)		NO							
Fall		NS	7	12	16	11	19	.18	18
Sume+picl 1.25+4 Su	ume+pic1 1.25+4	46	70						
	ic1+2,4-D 4+16	- 40 52	70	80	86	96	94	77	65
Cumero de De de de la compañía de la	ime+2,4-D 1.25+1		76	42	56	89	61	58	16
	c1+2,4-D 4+16	25	80	49	89	62	95	32	33
	c1+2,4-D 4+16	10	89	10	51	35	70	14	57
	me+pic] 1.25+4		3	7	3	27	0	11	0
	me+2,4-D 1.25+1	•	0	62	48	44	26	21	13
		° 2	0	38	64	34	33	19	23
LSD (0.05)		12	7	10					
a		12	7	16	19	20	18	20	51

<u>Table</u>. Leafy spurge control and grass injury from sulfometuron, picloram, and 2,4-D in pastures applied in various combinations spring or fall for 3 consecutive yr. (Lym and Messersmith).

^aMean 12, 24, 36, or 48 months after the first treatment averaged over 3 locations.

<u>Comparison of 2,4-D formulations with picloram or glyphosate spring- or</u> <u>fall-applied for leafy spurge control</u>. Lym, Rodney G., and Calvin G. Messersmith. Picloram plus 2,4-D is the most cost-effective treatment for leafy spurge control. Previous research at North Dakota State University has shown that leafy spurge control is increased 15 to 25% when 2,4-D at 1 lb/A is applied with picloram at 0.5 lb/A or less. Control has been similar differences between treatments may not be revealed when treatments are applied only once. Recently, several powder formulations of 2,4-D have been formulated to decrease the cost of container shipment and disposal. The purpose of these experiments was to evaluate various 2,4-D formulations plus glyphosate, metsulfuron, or picloram applied annually for leafy spurge

The first experiment was established on June 7, 1990 near Valley City. Herbicides were applied using a tractor-mounted sprayer delivering 8.5 gpa at 35 psi. Retreatments were applied in 1991. All plots were 10 by 30 ft in a randomized complete block design with four replicates. Evaluations were based on visible percent stand reduction as compared to the control.

Leafy spurge control was similar with picloram plus 2,4-D regardless of 2,4-D formulation (Table 1). Control was generally lower 15 MAFT (months after the first treatment) than 3 MAFT. Above average precipitation was received during the second year (1991) and leafy spurge regrowth was vigorous. Picloram at 0.25 lb/A provided better leafy spurge control than either 2,4-D formulation alone even when 2,4-D was applied at 4 lb/A.

<u>Treatment</u>	<u>Rate</u> — 1b/A -	Months af 3	ter fin 12 % cont	15	atment 24
2,4-D mixed amine ^a 2,4-D mixed amine ^a 2,4-D mixed amine ^a 2,4-D alkanolamine 2,4-D mixed amine ^a + picloram 2,4-D mixed amine ^a + picloram 2,4-D mixed amine ^a + picloram 2,4-D alkanolamine + picloram Picloram Picloram 2,4-D alkanolamine + picloram LSD (0.05)	$1 \\ 2 \\ 4 \\ 4 \\ 2 + 0.25 \\ 2 + 0.25 \\ 2 + 0.5 \\ 2 + 0.5 \\ 0.25 \\ 0.5 \\ 1 \\ 1 + 0.5$	27 33 29 43 59 58 83 78 62 79 96 77 18	0 0 0 18 13 50 47 4 35 89 29 22	0 0 1 4 26 46 54 64 23 60 93 64 25	0 0 8 29 33 79 77 22 65 100 78 22

Table 1. Comparison of 2,4-D amine and mixed amine formulations applied alone and with picloram in June 1990 and 1991 for leafy spurge control (Lym and Messersmith).

^aMixed amine salts of 2,4-D (2:1 v/v dimethylamine:diethanolamine)-HiDep.

The second and third experiments were established September 9, 1991 near Valley City using the same methods previously described. Leafy spurge was in the fall regrowth stage with red stems and leaves.

As in the previous experiment with spring-applied treatments, leafy spurge control was similar with picloram plus 2,4-D regardless of 2,4-D formulation (Table 2). No treatment provided satisfactory control 12 MAT including picloram plus 2,4-D at 0.5 plus 1 lb/A, the standard fall-applied treatment for leafy spurge. Previous research has shown this treatment will provide 90% or better leafy spurge control following 3 to 4 annual retreatments.

Leafy spurge control with glyphosate was similar regardless of 2,4-D formulation (Table 3). Metsulfuron did not control leafy spurge whether applied alone or with 2,4-D regardless of formulation. The commercial formulation of glyphosate plus 2,4-D even when applied at a lower rate tended to provide better control than the tank-mixed treatments.

The fourth experiment was established June 8, 1992 near Valley City when the leafy spurge was in the yellow bract to flowering growth stage with lush growth and 18 to 24 inches tall. The 2,4-D formulations were added to water immediately prior to application and no surfactants were used.

The water soluble powder CL-782 provided only 68% topgrowth control 1 MAT compared to 97% or better for all other 2,4-D formulations including a second dimethylamine powder (Table 4). Control was similar for all 2,4-D treatments 3 MAT, including CL-782 and averaged 20%.

In general, leafy spurge control was similar with all 2,4-D formulations applied alone or in combination with picloram or glyphosate. CL-782 dimethylamine 80% WSP was the only 2,4-D formulation evaluated that provided less control than other 2,4-D formulations and this occurred only 1 MAT. (Published with approval of the Agric. Exp. Stn., North Dakota State University, Fargo 58105).

Treatment	Rate	<u>Cont</u> 9	rol/MAT 12
2,4-D mixed amine ^a 2,4-D mixed amine ^a 2,4-D mixed amine ^a 2,4-D mixed amine ^a + picloram 2,4-D mixed amine ^a + picloram 2,4-D alkanolamine + picloram 2,4-D alkanolamine + picloram 2,4-D alkanolamine + picloram	$ \begin{array}{c} - 1b/A \\ 1 \\ 2 \\ 4 \\ 2 + 0.25 \\ 2 + 0.5 \\ 2 + 0.5 \\ 1 + 0.25 \\ 1 + 0.5 \\ \end{array} $	16 15 20 67 94 97 66 96	% 0 0 0 5 11 9 0 35
		30	6

Table 2. Comparison of 2,4-D mixed amine and alkanolamine applied in September 1991 for leafy spurge control (Lym and Messersmith).

^aMixed amnine salts of 2,4-D (2:1 dimethylamine:diethanolamine)-HiDep.

CAREST CON		Control/MAT
Treatment	<u>Rate</u> — oz/A —	9
2,4-D mixed amine ^a 2,4-D mixed amine ^a Metsulfuron Glyphosate 2,4-D mixed amine ^a + metsulfuron 2,4-D mixed amine ^a + glyphosate 2,4-D mixed amine ^a + glyphosate 3,4-D mixed amin	15.2 30.4 0.25 2 15.2 + 0.25 30.4 + 0.25 15.2 + 2 30.4 + 2 20.8 + 12.2 20.8 + 12.2 0.4 + 0.7	18 5 9 0 0 0 4 0 13 4 32 20
LSD (0.05)	an area and the latter of	

Table 3. 2,4-D mixed amine applied alone and with glyphosate or metsulfuron for leafy spurge control in September 1991 (Lym and Messersmith).

^aMixed amine salts of 2,4-D (2:1 dimethylamine:diethanolamine)-HiDep. ^bCommercial formulation (Landmaster BW).

Table 4.	Comparison of various 2,4-D formulations applied in June 1992 for
14010 1	leafy spurge control (Lym and Messersmith).

Treatment	<u>Rate</u> - 1b/A -	Contro 1	1/MAT 3 % ——
2,4-D dimethylamine (Weedar 64)	2	98	20
2,4-D dimethylamine + diethanolamine (HiDep)	2	98	13
2,4-D butoxyethylester (Weedone LV4)	2	100	18
2,4-D acid + butoxyethylester (Weedone 638)	2	99	18
2,4-D isooctyl(2-ethylhexyl)ester (Esteron 99)	2	99	18
2,4-D triisopropanolamine + diethylamine (Formula 4	2	97	17
2,4-D dimethylamine 80% WSP (CL-782)	40) 2	68	28
2,4-D dimethylamine 85% WSP (Savage)	2	99	26
Picloram	2	99	89
LSD (0.05)	0.5	99	27

<u>Comparison of various picloram formulations applied alone and with</u> <u>adjuvants for leafy spurge control.</u> Lym, Rodney G. Picloram formulated as the potassium (K) salt (Tordon 22K) is the most effective herbicide for leafy spurge control. However, application rates are relatively high because picloram is poorly absorbed by leafy spurge. The purpose of this research was to evaluate various formulations of picloram alone and with additives for improved leafy spurge control compared to the picloram K-salt formulation.

A series of experiments was established in the spring or fall of 1991 at various locations in North Dakota. All treatments were applied with a tractor-mounted sprayer delivering 8.5 gpa at 35 psi either in June or September when the plants were in the true-flower or fall regrowth growth stages, respectively. All experiments were in a randomized complete block design with four replications, and plots were 10 by 30 ft. Treatments were evaluated visually based on percent stand reduction as compared to the

The first experiment evaluated picloram formulated as the K-salt or a water-soluble acid powder (XRM-5255) alone or with 2,4-D spring- or fall-applied (Table 1). Picloram K-salt provided a nearly 2-fold increase in leafy spurge control compared to the acid powder when applied at 0.25 and 0.5 lb/A and an average of 32% increase in control at 1 lb/A averaged over application and evaluation dates. In general, adding 2,4-D to picloram regardless of formulation increased leafy spurge control compared to picloram alone, but the K-salt formulation still provided much better control than the acid powder.

The second experiment evaluated picloram K-salt alone or with various adjuvants or 2,4-D and picloram ester for leafy spurge control. The adjuvants evaluated included the commercial surfactants Scoil (a methylated crop oil), LI-700 (an acidified lecithin), Raider II (pyro-phosphate surfactant blend), and the experimental additive BAS-090. Picloram isooctyl ester was formulated with triclopyr butoxethyl ester (1:2) as the commercial product Access. The experiment was established at Valley City and on the Sheyenne National

Leafy spurge control increased when picloram at 0.25 lb/A was applied with an adjuvant at Valley City but not Sheyenne (Table 2). BAS-090 and Scoil increased or tended to increase control more than the other adjuvants evaluated and was similar to control from picloram plus 2,4-D at 0.25 plus 1 lb/A. No adjuvant increased control when applied with picloram plus 2,4-D compared to the herbicides alone. In general, picloram plus triclopyr ester did not control leafy spurge regardless of application rate. Plant leaves desiccated rapidly when the ester formulation was applied and regrowth began within 30 days of treatment.

A similar experiment was established in September 1991 at Valley City and Hunter, ND except the commercial surfactant Silwett L-77 (an organosilicone) replaced LI-700 and the picloram rate was 0.5 lb/A. No adjuvant increased leafy spurge control compared to picloram or picloram plus 2,4-D applied alone in the fall (Table 3). Picloram plus triclopyr ester did not provide satisfactory leafy spurge control.

The final experiment compared the picloram K-salt, acid powder and ester formulations applied alone or with adjuvants, 2,4-D plus glyphosate, dicamba, and the experimental herbicide V-53482. The experiments were established near

9

Hunter, ND when leafy spurge was in the early flowering and the flower to seed-set growth stages.

As in the first experiment, picloram K-salt provided much better leafy spurge control than the acid powder except when XRM-5255 was applied with 2,4-D LVE (Table 4). Leafy spurge control averaged 98 and 70% control 3 and 12 months after treatment (MAT), respectively, with XRM-5255 plus 2,4-D LVE at 4 + 16 oz/A compared to 92 and 38%, respectively, with picloram K-salt plus 2,4-D LVE. Leafy spurge control with 2,4-D amine was similar to 2,4-D LVE when applied with picloram K-salt but declined 50% or more when applied with XRM-5255.

Dicamba at 32 oz/A provided similar leafy spurge control to picloram at 4 oz/A and control was not improved by adding 2,4-D or Scoil (Table 4). Glyphosate plus 2,4-D provided only 40% leafy spurge control 3 MAT. Neither V-53482 nor picloram plus triclopyr ester provided satisfactory leafy spurge control as the topgrowth was killed quickly but the plant regrew within 30 days.

In summary, picloram K-salt formulation provided much better leafy spurge control than the acid powder formulation whether applied alone or with adjuvants or 2,4-D amine. XRM-5255 applied with 2,4-D LVE provided similar leafy spurge control to the K-salt formulation and should be further evaluated. Leafy spurge control, in general, was not improved when picloram was applied with a spray adjuvant: but when an increase did occur, it was similar to picloram applied with 2,4-D, and the latter is a less costly treatment. Picloram applied as an ester killed the top growth rapidly but the plants regrew within 30 days. (Published with approval of the Agric. Exp. Stn., North Dakota State Univ., Fargo).

Application date and treatment	Rate		Control	
		Aug 91	June 92	Aug 92
June 1991	— 1b/A —		%	
Picloram	0.05			
Picloram	0.25	30	12	e
Picloram	0.5	60	48	6 22
(RM-5255	1	87	79	50
RM-5255	0.25	16	6	4
(RM-5255	0.5	35	8	3
Picloram+2,4-D	0.05.1.4	53	33	11
ricloram+2,4-D	0.25+1	52	24	13
RM-5255+2,4-D	0.5+1	55	36	13
RM-5255+2,4-D	0.25+1	38	16	10
	0.5+1	45	15	15
SD (0.05)				15
		19	25	16
eptember 1991				10
cloram	0.05			
cloram	0.25		21	4
cloram	0.5		76	22
RM-5255	0.25		95	62
RM-5255			13	0
RM-5255	0.5		14	4
cloram+2,4-D	1		78 .	19
cloram+2,4-D	0.25+1		50	19
M-5255+2,4-D	0.5+1		89	40
M-5255+2,4-D	0.25+1		6	40
	0.5+1		49	11
D (0.05)				
	he potassium salt in Tor		27	11

Table 1. Comparison of picloram formulated as the potassium salt^a and the dry acid XRM-5255^b at two application dates near Valley City, ND (Lym).

^bPicloram acid formulated as a water soluble powder. the potassium salt in Tordon 22K.

Table 2. Picloram applied as a potassium salt or isooctyl ester formulation with adjuvants in June 1991 for

		Location and evaluation date					
Treatment	Rate	Valley City		Sheyenne		Mean	
		Aug 91	June 92	Aug 91	June 92	Aug	June
Picloram	— lb/A — 0.25		9	6 control -			
Picloram+Scoil		19	2	68	17	44	9
Picloram+BAS-090	0.25+1 qt 0.25+1 qt	52	25	44	7	48	16
Picloram+LI-700	0.25+0.5%	76	44	57	8	71	26
Picloram+RaiderII	0.25+1 pt	47	23	39	5	43	14
Picloram+2,4-D	0.25+1	30	10	72	12	51	11
Picloram+2,4-D+Scoil	0.25+1	68	35	59	19	63	27
Picloram+2,4-D+BAS-090	+1 qt 0.25+1	55	23	83	6	69	15
Picloram+2,4-D+Raider II	+1 qt 0.25+1	51	34	69	25	60	30
Picloram antes their l	+1 pt	48	14	52			
Picloram ester+triclopyr ester*	0.25+0.5	14	1	52	4	50	9
Picloram ester+triclopyr ester* +2.4-D				52	5	34	3
Picloram ester+triclopyr ester* +Scoil	0.25+0.5+1 0.25+0.5	25	8	53	3	30	5
	+1 qt	40	18	35	3	37	10
LSD (0.05) Picloram isooctyl ester plus trick	opyr butoxyethyl	25 ester (1:2)-Ac	23	31	17	20	14

in a set of incontril ester formulation with adjuvants in	n
Table 3. Picloram applied as a potassium salt or isooctyl ester formulation with adjuvants in	
September 1991 for leafy spurge control (Lym).	

September ree tet te			ocation a					
		and the second division of the second divisio	1992 evaluation date			Mean		
		Valley	City	<u>Hu</u>	nter			
	Rate	May	Aug	May	Aug	May	Aug	
Treatment Picloram Picloram+Scoil Picloram+BAS-090 Picloram+Silwett L-77 Picloram+Raider II Picloram+2,4-D	- Ib/A 0.5 0.5+1 qt 0.5+1 qt 0.5+0.5% 0.5+1 pt 0.5+1	92 96 95 96 98 96 97	11 13 19 18 16 15 32	89 83 88 80 74 966 94	control - 46 36 44 28 15 47 39	90 89 91 88 86 96 95	28 24 31 23 15 31 35	
Picloram+2,4-D+Scoil Picloram+2,4-D+BAS-090 Picloram+2,4-D+Raider II	0.5+1+1 qt 0.5+1+1 qt 0.5+1+1 pt	99 97	34 25	86 88	28 46	93 93-	31 36	
Picloram ester+triclopyr ester*	0.5+1	47	6	8	0	27	3	
Picloram ester+triclopyr ester*+2,4-D	0.5+1+1	36	2	16	3	26	2	
Picloram+triclopyr ester*+ Scoil	0.5+1+1 qt	42	4	3	0	22	2	
I SD (0.05)		24	16	13	22	13	24	

*Picloram isooctyl ester plus triclopyr butoxyethyl ester (1:2)-Access.

		Аррію	ly flower	Hunter, ND (Lym). e and evaluation date Flower to seed-se			
	0	Aug 91	June 92	Aug 91	June 92		
Treatment	Rate	Aug 91	ouno on	- %			
	— oz/A —		0	47	0		
V-53482+Scoil	0.75+1 qt	18	0	38	0		
V-53482+Scoil	1+1 qt	19		15	0		
V-53482+Scoil	1.25+1 qt	11	0				
V-53482+Scoil	1.5+1 qt	34	0	63	26		
Picloram	4	34	10	77	39		
Picloram+Scoil	4+1 qt			84	18		
Picloram+L-77	4+0.5%	46	15		18		
	4	12	10	39	4		
XRM-5255	4+1 qt	22	10	42	9		
XRM-5255 ^b +Scoil	4+0.5%	16	6	30	38		
XRM-5255"+L-77	4+16			92			
Picloram+2,4-D LVE	4+16	55	19	94	38		
Picloram+2,4-D amine	8+16	98	65				
Picloram+2,4-D amine	4+16			98	70		
XRM-5255 + 2,4-D LVE				49	14		
XRM-5255 ^b +2,4-D amine	4+16	51	14				
Dicamba	32	36	23		N. L. H. H. L. KORDA		
Dicamba+2,4-D amine	32+16	16	30				
Dicamba+2,4-Da+Scoil	32+16+1qt	40	28				
Glyphosate+2,4-D*	6.5+11		65				
Glyphosate+2,4-D*+picloram	6.5+11+8	93	16	45	16		
Picloram ester+triclopyr ester	4+8	32	10				
Picloram ester+triclopyr				48	13		
riciolani occi i mino	4+8+16			T			

LSD (0.05)

ester^c+Scoil

ester°+2,4-D amine Picloram ester+triclopyr

*Commerical formulation (Landmaster BW).

^bPicloram acid formulated as a water soluble powder. Picloram isooctyl ester plus triclopyr butoxyethyl ester (1:2)-Access.

4+8+16

4+8+1 qt

31

13

25

30

31

20

Various spray additives applied with picloram and 2,4-D in an annual treatment program for leafy spurge control. Lym, Rodney G., and Frank A. Manthey. Picloram is the most effective herbicide for leafy spurge control and when applied with 2,4-D provides better control than picloram applied alone. Previous research at North Dakota State University has shown that less than 40% of the picloram applied to leafy spurge is absorbed and approximately 5% reaches the roots. The increased control from the addition of 2,4-D is due to decreased picloram metabolism, not increased absorption or translocation. A likely approach for increased picloram efficiency for leafy spurge control is to increase absorption and thereby increase the amount of picloram translocated to The purpose of these experiments was to evaluate various additives applied with picloram and picloram plus 2,4-D for increased leafy spurge control compared to the herbicides applied alone. Many spray additives were screened for potential to increase leafy spurge control with picloram and 2,4-D in greenhouse studies. Compounds with the most potential were evaluated in a series of field trials.

The first experiment evaluated picloram alone or applied with various spray additives as spring or fall applied treatments. The experiment was established on June 7 and September 19, 1990 near Valley City, ND, and June 24 and September 12, 1990 on the Sheyenne National Grasslands. A second experiment evaluated picloram plus 2,4-D applied alone or with various spray additives and was established at the same locations and dates as the picloram experiment. Retreatments were applied on approximately the same dates in 1991 and 1992. The herbicides were applied using a tractor-mounted sprayer delivering 8.5 gpa at 35 psi. The plots were 10 by 30 ft in a randomized complete block design with four replications. Leafy spurge control evaluations were based on a visual estimate of percent stand reduction as compared to the untreated check.

The additives evaluated included the commercial surfactants, X-77, LI-700, Silwett L-77, Triton CS-7, Triton X-100, Triton N-57, and Surftac. Industrial surfactants evaluated were Gafac RA-600 (free acids of a complex organic phosphate ester), Emulphor ON-877 (polyoxyethylated fatty alcohol), Mapeg 400 MO (PEG 400 Monooleate), Pluronic L63 (block copolymers of propylene oxide and ethylene oxide), and Tetronic 1504 (block copolymers of ethylene oxide and propylene oxide).

Leafy spurge control for the June-applied treatments averaged over both locations 24 months after the first treatment (MAFT) increased when picloram at 0.25 lb/A was applied with X-77 + Silwett L-77, Mapeg 400 MO, Gafac RA-600, and Emulphor ON-877 to picloram alone (Table 1). Leafy spurge control with picloram at 0.25 lb/A alone was 27% averaged over both locations compared to 57% when applied with these spray additives. Control for the September-applied treatments was similar regardless whether picloram at 0.5 lb/A was applied alone or with a spray additive.

In the second experiment, no additive increased leafy spurge control when applied with picloram plus 2,4-D in the June applied treatments (Table 2). However, several including Triton CSF, LI-700, and Triton N57 tended to decrease control when applied with picloram plus 2,4-D compared to the herbicides applied alone. As with picloram alone, control for picloram plus 2,4-D applied in September was similar regardless of the additive. In general, leafy spurge control was increased slightly when a spray additive was added to picloram applied in June but not in September. No additive increased control when applied with picloram plus 2,4-D and several decreased control. The additives that did increase short-term control with picloram or picloram plus 2,4-D represent several groups of chemicals. Thus, it is not yet possible to narrow the focus for the "ideal" spray additive with these herbicides for leafy spurge control. (Published with approval of the Agric. Exp. Stn., North Dakota State Univ., Fargo).

there should all the	Second Second	1000+	ion/ev	aluat	ion	date	(MAFT)	b	wit usavi	C
and the second second		Local	lov Ci	ty	1011		yenne		Mea	<u>n</u>
Application time	a	Val	<u>ley Ci</u> 12	24	•	3/9	12	24	12	24
and additive	Ratea	3/9	12	24		- % -				
MILE	- % -					10				
June			-	26		64	11	18	8	27
None		36	5	36		74	26	27	15	43
Pluronic L63	0.5	47	3	60		77	22	32	15	49
Tetronic 1504	0.5	57	7	66			15	27	10	44
Triton X-100	0.5	50	4	61		78		21	13	34
Triton CS-7	0.5	66	9	52		69	16	25	14	33
Curfford	0.5	50	11	41		56	16	25 54	27	55
Surftac 77d	0.25 + 0.2	5 62	10	55		74	44		20	60
$X-77 + L-77^d$	0.5	63	12	68		78	27	51	17	38
Mapeg 400 mo	0.5	56	3	45		80	31	32	14	45
LI-700	0.5	54	6	57		80	21	33		61
X-77	0.5	57	6	65		86	40	58	23	
Gafac RA-600	0.5	60	7	65		78	16	40	12	52
Emulphor ON-877	0.5	00								
		21	NS	14		20	NS	27	NS	27
LSD (0.05)		21								
September		74	9	24		93	45	40	27	32
None		79	12	28		97	45	33	28	30
Pluronic L63	0.5	84	14	32		95	35	37	24	35
Tetronic 1504	0.5		13	42		97	39	42	26	42
Triton X-100	0.5	81		37		97	62	37	36	37
Triton CS-7	0.5	83	10	31		96	26	26	19	
Churchan	0.5	86	12			93	23	33	17	27
$X-77 + L-77^d$	0.25 + 0.	25 83	11	22		90	43	42	26	
Mapeg 400 MO	0.5	83	9	22		-	35	31	21	
LI-700	0.5	83	6	15		97	39	31	26	
X-77	0.5	90	13	21		92		35	31	
Gafac RA-600	0.5	78	5	11		93	58		42	
Emulphor ON-877	0.5	82	21	40		95	63	52	+4	
Elliu Prior Oli-Oli							NIC	NC	NS	S NS
100 (0.05)		9	NS	NS		NS	NS	NS		5 115
LSD (0.05)					100					

Table 1. Evaluation of picloram plus various additives applied in spring or fall for leafy spurge control (Lym and Manthey).

^aPicloram was applied at 0.25 lb/A in June or 0.5 lb/A in September. ^bMonths after first treatment. ^cMean 12 or 24 MAFT for spring or fall applied treatments, respectively. dL-77 was Silwett L-77.

Application ti additive			arrey	LILY	lation da	heyen	ne		Mean
ACCITCITAE	Rate ^a	3/	9 12	24	3/9	12	24	12	<u>24</u>
lune	- % -				%			16	
lone									
luronic L63		47	18	49	84	51	80	35	C A
otnonic 1504	0.5	56	13	70	90	39	73		64
etronic 1504	0.5	36	12	45	88	48	75	26	71
riton X-100	0.5	31	13	46	91	40		30	60
riton CS7	0.5	39	7	51	80		74	29	60
urftac	0.5	38	9	48	87	19	33	13	42
-77 + L-77	0.25 + 0.25	31	9	44	83	31	63	20	56
apeg 400 MO	0.5	38	13	43		46	70	28	57
I - 700	0.5	34	9	42	84	43	72	28	58
-77	0.5	36	8	51	77	24	40	17	41
afac RA-600	0.5	38	3		81	25	51	17	51
riton N57	0.5	35	12	43	85	40	71	22	57
	0.0	22	12	47	79	36	47	24	47
SD (0.05)		NS	NC	1.0					
. ,		113	NS	13	NS	NS	27	NS	25
eptember									
one		70							
uronic L63	0.5	79	10	19	92	20	32	15	26
tronic 1504		91	18	38	94	27	37	22	37
iton X-100	0.5	87	8	31	95	10	20	9	25
iton CS7	0.5	84	13	29	94	3	29	8	29
rftac	0.5	82	11	29	96	23	26	17	27
77 + L-77	0.5	79	3	11	95	46	49	25	
peg 400 MO		85	24	54	96	23	37	23	30
-700		82	15	30	97	26	46	21	45
77		89	18	32	96	27	40		38
fac RA-600		88	12	23	93	25	41	23	36
iton N57		82	6	16	93	13	43	19	32
ILON N5/	0.5	86	13	23	97	21	38	10	29
					57	21	30	17	31
0 (0.05)		NS	NS	NS	NS	NS	NC	110	
					115	N.S	NS	NS	NS
icioram was ap	pplied at 0.25 pectively.	or	0.5 lb	A nlus	24-0 2	+ 1 1	. /		
eptember, resp	ectively.		,	n prus	L, T - D a	U I II	0/A 1n	June a	nd
onths after fi	rst treatment								
an 12 or 24 M	AFT for spring	a or	fall a	annlind	twoatma				
SD = 0.05).	rst treatment AFT for spring	,		Appried	treatme	nts, 1	respect	ively,	

Table 2. Evaluation of picloram plus 2,4-D applied in the spring or fall with various additives for leafy spurge control (Lym and Manthey).

15

Leafy spurge control and forage production with various fall-applied herbicide treatments. Lym, Rodney G., and Calvin G. Messersmith. Previous research at North Dakota State University has shown that glyphosate plus 2,4-D at 0.4 plus 0.6 lb/A applied in September will provide 60 to 70% leafy spurge control the following spring. Grass injury can be 30 to 50%, but grass generally recovers to produce similar forage yield to the weed-free control. Picloram plus 2,4-D at 0.5 plus 1 lb/A will provide 80 to 90% leafy spurge control the following growing season with no grass injury. However, the picloram plus 2,4-D treatment costs approximately \$22/A However, the picloram plus 2,4-D treatment costs approximately \$22/A However, the picloram plus 2,4-D treatment costs approximately \$22/A However, the picloram plus 2,4-D treatment costs approximately \$22/A However, the picloram plus 2,4-D treatment costs approximately \$22/A However, the picloram plus 2,4-D treatment costs approximately \$22/A However, the picloram plus 2,4-D treatment costs approximately \$22/A However, the picloram plus 2,4-D treatment costs approximately \$22/A However, the picloram plus 2,4-D treatment costs approximately \$22/A However, the picloram plus 2,4-D treatment costs approximately \$22/A However, the picloram plus 2,4-D treatment costs approximately \$22/A However, the picloram plus 2,4-D treatment costs approximately \$22/A

The experiment was established at Chaffee and Valley City, on September 19, 1990, when leafy spurge was in the fall regrowth stage. The plants were mowed to a 4 to 6 inch height on October 16 at both locations to facilitate herbage production evaluations the next summer. The herbicides were applied using a tractor-mounted sprayer delivering 8.5 gpa at 35 psi. The plots were 10 by 30 ft and each treatment was replicated four times in a randomized complete block design. The main grasses were several bluegrass spp. and occasional crested wheatgrass and smooth brome at both locations.

Grass stand reduction and leafy spurge control were estimated visually as compared with the untreated control in May each year. Herbage production was determined in July each year by clipping three 0.25-m² quadrats per plot and separating into leafy spurge and forage components. The samples were oven dried at 140 F. The entire plot area was mowed following harvest in 1991. Herbicide retreatments were applied on September 20 or 24, 1991 at Chaffee and Valley City, respectively, to begin the second-year treatment program.

Control varied with glyphosate plus 2,4-D and averaged 3 and 94% at Valley City and Chaffee, respectively (Table 1). Only treatments that included glyphosate in 1990 or 1991 resulted in grass injury. Grass injury from glyphosate plus 2,4-D was very high following two consecutive treatments and averaged 91% over both locations. Picloram at 0.5 lb/A applied alone or with 2,4-D provided the best leafy spurge control and averaged 92% following two annual treatments. Dicamba at 2 lb/A and picloram plus 2,4-D at 0.25 plus 1 lb/A provided an average of 75% control after two consecutive treatments. However, control declined to only an average of 45% when the second year treatment was glyphosate plus 2,4-D.

Herbage production was higher at Chaffee than Valley City the season following the first treatment, probably due in part to much above average precipitation at Chaffee including a 4-inch rainfall in May 1991 (Table 2). Forage production with glyphosate plus 2,4-D applied in 1990 and 1992 averaged 438 lb/A, which is a 64% reduction compared to the control. Herbage production was similar to the control with the picloram, picloram plus 2,4-D, and dicamba treatments. Picloram at 0.5 lb/A applied alone or with 2,4-D reduced leafy spurge production to an average of 698 lb/A over both locations, a 50% reduction compared to the control. Dicamba at 2 lb/A and picloram plus 2,4-D at 0.25 plus 1 lb/A reduced leafy spurge production by approximately 30% compared to the control. Herbage production was higher at Chaffee compared to Valley City again in 1992 (Table 3). Herbage production declined by an average of 53% when picloram, picloram plus 2,4-D or dicamba treatments in 1991 were followed by glyphosate plus 2,4-D in 1992. Only the picloram, picloram plus 2,4-D, or dicamba treatments applied annually provided more herbage production than the control. Leafy spurge yield was similar regardless of treatment when averaged over both locations but was reduced by picloram, picloram plus 2,4-D and dicamba treatments at Valley City.

Table I.	Leafy spurge control	with various fall-applied borbinid	
	and Chaffee, ND (Lym	with various fall-applied herbicide and Messersmith).	treatments at Valley City

<u>1990 and 1992 Tr</u> <u>Herbicide</u>	<u>reatment</u> Rate - lb/A -	<u> 1991 Treatm</u> Herbicide	ent Rate - 1b/A -	Contro Valley City	01 1992(21 Chaffee	Mean	Valley City	chaffee	(9 MAFT) ⁶ Mean
Glyphosate+2,4-D Glyphosate+2,4-D Glyphosate+2,4-D Picloram+2,4-D Picloram Picloram Dicamba Dicamba Picloram+2,4-D Picloram+2,4-D Picloram+2,4-D	0.4+0.6	Glyphosate+2,4-D Picloram+2,4-D Dicamba Glyphosate+2,4-D Picloram+2,4-D Glyphosate+2,4-D Picloram Glyphosate+2,4-D Dicamba Glyphosate+2,4-D Picloram+2,4-D	0.4+0.6 0.5+1 2 0.4+0.6 0.5+1 0.4+0.6 0.5 0.4+0.6 2 0.4+0.6 0.25+1	3 89 55 40 96 16 90 8 68 16 72	94 83 89 85 90 84 90 81 86 77 73	48 86 72 62 93 50 90 44 77 46 73	100 69 66 95 0 95 0 99 6 98 4	82 11 18 84 0 83 0 83 0 86 3	91 40 42 89 0 89 0 91 3 92 3
LSD (0.05) a _{Months} after fir	st +200+			22	12	13	14	10	9

Hollins after first treatment in 1990.

T.1.7 .

<u>Table 2</u>. Forage and leafy spurge production following various fall-applied herbicide treatments (Lym and Messersmith).

					Yield 1991(10 MAFT) ^a						
<u>1990 and 1992 Tre</u> Herbicide	atment Rate	1991 Treatme	nt	Valley	Herbage		and the second s	afy spure	ie		
	- 1b/A -	Herbicide	Rate - 1b/A -	City	Chaffee	Mean 11	<u>City</u>	Chaffee	Mean		
Glyphosate+2,4-D Glyphosate+2,4-D Picloram+2,4-D Picloram+2,4-D Picloram Dicloram Dicamba Dicamba Picloram+2,4-D Picloram+2,4-D Picloram+2,4-D Control	0.4+0.6 0.4+0.6 0.5+1 0.5+1 0.5 2 2 0.25+1 0.25+1	Glyphosate+2,4-D Picloram+2,4-D Dicamba Glyphosate+2,4-D Picloram+2,4-D Glyphosate+2,4-D Picloram Glyphosate+2,4-D Dicamba Glyphosate+2,4-D Picloram+2,4-D	0.4+0.6 0.5+1 2 0.4+0.6 0.5+1 0.4+0.6 0.5 0.4+0.6 2 0.4+0.6 0.25+1	90 25 20 680 1125 665 1175 525 685 720 605 650	895 595 1010 1535 1715 1905 1630 1330 1610 2010 1525 1750	490 310 515 1110 1420 1285 1400 930 1150 1365 1065 1200	1640 1390 1155 910 530 745 720 1205 905 1045 1050 1580	795 1650 520 580 235 955 895 1145 700 725 1000 1190	1220 1520 840 745 385 850 810 1175 800 885 1025 1385		
LSD (0.05) a Months after firs	+ +===+=			550	690	475	650	NS	540		

	Forage and leafy spurge production following various fall-applied herbic	ide treatments for
Table 3.	Forage and leafy spurge production for tortowing	
	2 vr (Lvm and Messersmith).	

L J1 (-J				Yield 1992(22 MAFT) ^d										
	a spalling	in grand brand do			Herbag				Leafy sp	urge				
1990 and 1992 Trea	tment_	1991 Treatment Herbicide	Rate	Valley City	Chaffee		2 yr Total	Valley City b/A	Chaffee	Mean	2 yr Total			
Herbicide Glyphosate+2,4-D Glyphosate+2,4-D Picloram+2,4-D Picloram+2,4-D Picloram Dicamba Dicamba Picloram+2,4-D Picloram+2,4-D Picloram+2,4-D Control LSD (0.05)	Rate - 1b/A - 0.4+0.6 0.4+0.6 0.5+1 0.5+1 0.5 2 2 0.25+1 0.25+1	Glyphosate+2,4-D Picloram+2,4-D Dicamba Glyphosate+2,4-D Picloram+2,4-D Glyphosate+2,4-D Picloram Glyphosate+2,4-D Dicamba Glyphosate+2,4-D Picloram+2,4-D	0.5 0.4+0.6 2	2080 10 1450	740 1540 1800 990 1570 1000 1790 970 1690 870 1410 1510 480	370 1080 1120 540 1710 510 1930 490 1570 460 1290 1180 800	860 1390 1640 1650 3130 1340 3330 1420 2720 1830 2360 2380	1800 490 1120 1660 520 1350 590 1400 760 1620 940 1300 650	270 360 160 250 120 260 280 460 290 360 490 420 NS	1030 430 640 920 320 800 440 930 530 990 720 860 NS	2250 1950 1480 1670 710 1650 2110 1330 1875 1750 2250			

a Months after first treatment.

<u>Evaluation of various grass species to control leafy spurge.</u> Lym, Rodney G., and Dwight Tober. Traditionally, herbicides have been used to control leafy spurge. Control has been relatively successful following a long-term program. However, the high cost of herbicides, potential for groundwater contamination and because of environmentally sensitive areas where herbicides cannot be used, non-chemical methods for control must be established. Recent research at the University of Wyoming has shown that several grass species are competitive with leafy spurge and have reduced the infestation density. The purpose of this research was to evaluate several grass species that may be competitive with leafy spurge in North Dakota.

The experiment was established in a dense stand of leafy spurge (42 stems/ft²) on the NDSU experiment station at Fargo. The soil was a Fargo silty clay (fine, montmorillonitic, frigid, Vertic Haplaquolls; 3.5% organic matter and pH 8.0). Plots were 10 by 45 ft., and treatments were replicated four times in a completely random design. Initial leafy spurge stand counts were recorded on May 23, 1990, immediately before the first herbicide treatment. Glyphosate plus 2,4-D at 0.4 plus 0.6 lb/A were applied to all plots when leafy spurge was in the flowering growth stage and again on July 27, 1990, to regrowth that was reflowering. Glyphosate plus 2,4-D alone was applied in September 1990 and 1991.

The soilbed was prepared for seeding on August 6 and 28, 1990, and the grass was planted on August 29. The experimental site was irrigated with 1 inch of water on September 13 and 25, 1990, and 1.25 inches of rain fell on October 7. Initial grass stand establishment was estimated by counting seedlings in three 20-cm by 1-m quadrats placed over the rows on October 30, 1990.

Leafy spurge and grass species density were recounted in May 1991 and 1992. Bromoxynil plus 2,4-D at 0.25 plus 0.75 lb/A were applied in May 1991 and 1992, to control annual broadleaf weeds. The plots were harvested in mid-July 1991 and 1992 by clipping four 0.25-m² quadrats per plot. Herbage was separated into seeded grass species, weedy grass species, leafy spurge, and forbs; then oven-dried at 140 F. Herbage data are reported on a dry weight basis.

'Arthur' Dahurian wildrye, 'Bozoisky' Russian wildrye, 'Hycrest' crested wheatgrass and 'MDN-1813' intermediate wheatgrass established rapidly despite the dry conditions in Fall 1990 (data not shown). 'Killdeer' sideoats grama was the only species that failed to have at least a 10% stand prior to winter.

'Hycrest' crested wheatgrass had the best stand density counts in May 1991 and reduced the leafy spurge stand equal to the herbicide treatment 1 yr after planting (Table 1). 'Killdeer' sideoats grama failed to establish. All established grass species tended to reduce leafy spurge production compared to the control 1 yr after planting (Table 2). 'MDN-1813' intermediate wheatgrass had the highest grass production at 2290 lb/A. However, 'Rodan' western wheatgrass, 'Arthur' Dahurian wildrye, and 'Bozoisky' Russian wildrye provided the best leafy spurge control when visually evaluated in September 1991, averaging 67% control (Table 1).

All established grass species reduced leafy spurge production compared to the control 2 yr after planting and the reduction was similar to the herbicide treatment with all species except 'Rodan' western wheatgrass and T-17596 mountain rye (Table 2). 'Arthur' Dahurian wildrye, 'Rebound' smooth brome and 'MDN-1813' intermediate wheatgrass produced the most herbage and averaged 2830 1b/A. 'Rebound' smooth brome, 'Bozoisky' Russian wildrye, 'Arthur' Dahurian wildrye, and 'Hycrest' crested wheatgrass increased in production from 1991 to 1992.

All grass species evaluated could be considered to be competitive with leafy spurge except 'Killdeer' sideoats grama. However, based on both herbage yield and leafy spurge reduction 'Rebound' smooth brome, 'Arthur' Dahurian wildrye and 'MDN-1813' intermediate wheatgrass would be the best species to plant into a leafy spurge infestation in a clay soil.

Table 1. Evaluation of various grass s	pecies d	Stand c	ount	ricary openge			
Grass species/*	Le	afy spu	rge	Grass spp. 1991	<u>Cor</u> 1991	1992	reduction ^c
herbicide	1990	1991	1992 10/0.25m		1331	%	_%_
		f	0/0.2511				
	45	55	25	5	55	40	45
'Rebound' smooth brome	45	70	30	15	70	45	25
'Rodan' western wheatgrass	40	60	25	30	60	40	40
'Bozoisky' Russian wildrye	40		30	45	70	45	30
'Arthur' Dahurian wildrye	45	70		35	50	55	15
MDN-1813 intermediate wheatgrass	40	50	35	15	50	55	15
T-17596 mountain rye	40	50	35		45	55	20
'Hycrest' crested wheatgrass	45	45	35	50			0
'Killdeer' sideoats grama	40	70		0	70		95
Glyphosate + 2,4-D	40	45	1	0	45	2	+65
Control	40	100	65	0			+05
LSD (0.05)	NS	24	12	12	24	12	

*2,4-D + bromoxynil at 0.25 + 0.75 lb/A applied to all plots 24 May 91 and 26 May 92.

Three 0.25 m² quadrats counted per plot in May of each year.

Change in leafy spurge stand count from May 1990 until May 1992.

Table 2. Competitive grass species and leafy spurge production at Fargo (Lym and Tober).

						Yiel	d ^b					
	Gra	ass	Leafy spurge		Wee gras		Forbs		Total		Cł	hange ^c Leafy
Grass species/*	1991	1992	1991	1992	1991	1992	1991	1992	1991	1992	Grass	spurge
'Rebound' smooth brome	510	3070	290	45	1185	1Б/А — 45	45	10	2035	3170	602	16
'Rodan' western wheatgrass	945	325	270	140	650	25	120	10	1990	3440	34	52
'Bozoisky' Russian wildrye 'Arthur' Dahurian wildrye	540 1180	1260 [°] 3240	230 220	95 65	930 595	270 35	115 55	5 5	1915 2045	1630 3350	233 274	41 30
MDN-1813 intermediate wheatgrass T-17596 mountain rye	2290 355	2180 250	215 145	40 130	125 1855	5 400	70 85	5 50	2700 1810	2225 830	95 70	19 90
'Hycrest' crested wheatgrass 'Killdeer' sideoats grama ^d Glyphosate + 2,4-D Control	1100 1 0 0	1740 0 0	210 320 505 505	95 10 235	760 1390 1815 795	70 935 625	5 295 65 35	25 155 105	2075 2005 2380 1330	1935 1100 965	158 0 0	45 2 47
LSD (0.05)	770	1415	NS	85	NS	305	NS	105	NS	1420		

²2,4-D + bromoxynil at 0.25 + 0.75 lb/A applied to all plots 24 May 91 and 26 May 92.

^bFour 0.25 quadrats harvested per plot 23-24 July 91 and July 92.

°1992 yield/1991 yield.

"Killdeer' sideoats gramma did not establish and was not harvested in 1992.

<u>Picloram plus 2,4-D applied annually for 10 years to control leafy spurge</u>. Lym, Rodney G., and Calvin G. Messersmith. Picloram is an effective herbicide for leafy spurge control, especially when applied at rates from 1 to 2 lb/A. However, the high cost of picloram at 1 to 2 lb/A makes it uneconomical to treat large acreages in pasture and rangeland weed control programs. Research by North Dakota State University has suggested that picloram at 0.25 to 0.5 lb/A applied annually will give satisfactory leafy spurge control after 3 to 5 yr. The purposes of this experiment were to establish the number of annual applications of picloram needed to provide 90 to 100% control of leafy spurge and to investigate possible synergism between picloram and 2,4-D.

The experiment was established at three locations in North Dakota and began on 25 August 1981 at Dickinson, 1 September 1982 at Sheldon, and on 11 June 1982 at Valley City. Dickinson had a loamy fine sand soil with pH 6.6 and 3.6% organic matter, Sheldon had a fine sandy loam with pH 7.7 and 2.1% organic matter, and Valley City had a loam with pH 6.7 and 9.4% organic matter. Dickinson, located in western North Dakota, generally receives much less precipitation than the other two sites located in eastern North Dakota. treatments were applied annually except 2,4-D alone which was applied A11 biannually (both spring and fall). Picloram and picloram plus 2,4-D were applied in late August 1981 and in June of 1982 through 1986. The Sheldon and Dickinson locations were discontinued following the fall evaluations in 1985 and spring evaluations in 1989, respectively. The Valley City site has received ten picloram and picloram plus 2,4-D treatments and 20 2,4-D treatments prior to the evaluation in June 1992. The plots were 10 by 30 ft and each treatment was replicated four times in a randomized complete block design. Evaluations were a visual estimate of percent stand reduction as

Leafy spurge control averaged 79% across all treatments 48 months after first treatment (MAFT) and declined slightly to 71% following the 1988 drought (60 and 72 months MAFT) before increasing to 87% in 1990 (84 MAFT) (Table). Leafy spurge control 96 MAFT (June 1991) increased by an average of 24, 12, and 9% when 2,4-D at 1 to 2 lb/A was applied with picloram at 0.25, 0.38 or 0.5 lb/A, respectively, as compared to picloram alone. However, by June 1992 only control with picloram at 0.25 lb/A was increased by 2,4-D and averaged 68 and 85%, respectively. In general, the 2,4-D rate did not influence control when applied with picloram. Leafy spurge control averaged 73% with 2,4-D alone following 10 yr of biannual treatments.

Picloram at 0.5 lb/A alone and all picloram at 0.38 or 0.5 lb/A plus 2,4-D treatments provided or nearly provided the target of 90% leafy spurge control following four annual applications (Table). Control did not increase or increased only slightly with subsequent retreatments in these small plot experiments which have a constant pressure for reinfestation from plants in the plot borders. In a field situation the remaining areas of infestation could be treated with high rates of picloram to prevent reinfestation. Probably some type of chemical treatment will need to be continued to maintain control, but (Published with approval of the Agric. Exp. Stn., North Dakota State Univ., Fargo 58105).

<u>Table</u>. Leafy spurge control from ten annual picloram or picloram plus 2,4-D treatments and biannual 2,4-D treatments in North Dakota (Lym and Messersmith).

Herbicide	Rate	<u>1992</u> Valley <u>City</u> June	<u>12</u> ª	<u>10nths</u> 24	afte 36 % con	48	<u>st tre</u> 60	eatmer 72	<u>nt</u> 84	96
Picloram Picloram Picloram 2,4-D bian 2,4-D bian 2,4-D bian Picloram + 2,4-D Picloram + 2,4-D	$ \begin{array}{c} \hline 1b/A \\ 0.25 \\ 0.38 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ 0.25 + 1 \\ 0.25 + 1.5 \\ 0.25 + 2 \\ 0.38 + 1 \\ 0.38 + 1.5 \\ 0.38 + 2 \\ 0.5 + 1 \\ 0.5 + 1.5 \\ 0.5 + 2 \\ \end{array} $	68 91 91 74 66 78 85 82 88 89 92 95 97 98 96	39 65 65 22 19 52 58 57 69 68 68 71 64 76	48 62 71 30 24 30 66 66 62 72 74 59 75 73 75	48 52 81 38 26 26 63 70 66 70 66 70 76 76 84 80 81	58 77 86 50 45 54 85 85 83 90 93 91 94 97 95	49 69 77 39 54 73 77 76 84 84 84 86 87 91	38 67 71 55 49 62 76 62 77 76 79 82 82 88 88	64 96 92 77 62 75 92 88 91 96 88 96 96 99 99	56 72 81 69 57 67 80 73 88 82 83 86 84 95 90
Picloram + 2,4-D	0.5 7 2		18	14	19	14	14	15	19	17
LSD (0.05) Mean of treatment	S	14 86	52	55	63	79	72	70	87	78

^aMean values through 48 and 72 months after first treatment include data from the Sheldon and Dickinson locations which were discontinued after 1985 and 1989, respectively.

Long-term leafy spurge control with herbicides followed by insect biocontrol agents. Lym, Rodney G., and Calvin G. Messersmith. An experiment to evaluate long-term leafy spurge control and forage production was established near Valley City, North Dakota in 1983. Herbicide treatments were applied until 1988 when the forage production part of the experiment was completed. Introduction and establishment of leafy spurge biocontrol agents in North Dakota holds promise for economical management of this weed. However, the effect of long-term herbicide treatment prior to insect introduction on biocontrol agent establishment is not known. Prior herbicide treatment of a leafy spurge infestation may be detrimental to insect establishment due to less dense stands and to the insect life cycle because of chemical residue. Because much of the leafy spurge acreage has been treated with herbicides, it is important to determine if biological control agents will establish and reproduce on previously treated leafy spurge. Thus, herbicide treatments were continued in 1992 on the forage production plots to establish a research area until insects are available to conduct the establishment and life-cycle experiment.

Treatments were selected based on previous research conducted at North Dakota State University and included 2,4-D at 2 lb/A, picloram plus 2,4-D at 0.25 plus 1 lb/A, picloram at 2 lb/A, and dicamba at 8 lb/A, and were applied in August 1983 or June 1984 as fall or spring treatments. The 2,4-D at 2 lb/A and picloram plus 2,4-D treatments were applied annually, while the picloram alone and dicamba treatments were reapplied when leafy spurge control declined to 70% or less. Sulfometuron plus picloram at 0.08 plus 0.5 lb/A were applied in June or August, 1988 to plots that previously were only mowed. No treatments were applied in 1989. When the experiment was reestablished in 1990, the herbicide treatments were the same except the sulfometuron plus picloram treatment was replaced by glyphosate plus 2,4-D at 0.4 plus 0.6 lb/A. Also, the rate for picloram plus 2,4-D fall-applied was increased from 0.25

Herbicides were applied with a tractor-mounted sprayer delivering 8.5 gpa at 35 psi. All plots were 15 by 50 ft in a randomized complete block design with four replications. Evaluations taken visually were based on percent stand reduction as compared to the control.

All treatments were reapplied in 1990, 72 or 84 months after the original spring or fall application, respectively. Control was similar to the 60 month after treatment evaluation even though no retreatments were applied in 1989. All treatments except picloram at 2 lb/A were reapplied in 1991 but only the annual treatments of 2,4-D were reapplied in 1992. Glyphosate plus 2,4-D was not reapplied in the fall of 1992 because grass injury was severe and Canada thistle, absinth wormwood and various annual weeds were present and becoming more dense than in 1991. The experimental site will be maintained until a sufficient number of biocontrol agents are available to continue the experiment. (Published with approval of the Agric. Exp. Stn., North Dakota State

(Lym and Mes	33C1 311 1 011)							Control/MAT ^a						
Original treatment		Retreatment	Data	Year applied	1	12	24	36	48	60	72	84	96	108
date and herbicide	<u>Rate</u> - 1b/A -	date and herbicide	<u>Rate</u> - 1b/A -							% —				
<u>Spring 1984</u> 2,4-D	2	Spring 2,4-D	2	85-88 90	92	0	0	10	16	30	28	4		
Picloram + 2,4-D Picloram Dicamba	0.25+1 2 8	Picloram + 2,4-D Picloram Dicamba	0.25+1 2 ^b 8 ^b	85-88 90 88 90 85-87 90)	24 99 53	31 94 30	59 84 86	58 68 58	60 99 45	60 94 65	43 98 79	62 88 55	
Mowed only		Sulfometuron + picloram Glyphosate + 2,4-D	0.08+0.2	25 88 90-9			0	0	0	0	16	0		5
LSD (0.05)							20	17	15	20	15	14	16	3
<u>Fall 1983</u> 2,4-D	2	<u>Fall</u> 2,4-D Picloram	2	84-88 9	90-92	0	0	0	0	4	4	0	0	0
Picloram + 2,4-D	0.25+1	+ 2,4-D	0.5+1		90-92	2 40	4	8 94	16 99	22 84	15 80	11 70		
Picloram Dicamba	2 8	Picloram Dicamba Sulfometuron	2 ^b 8 ^b	85 90 86 88	90-91		87	58	88	69	91	81	48	3 93
Mowed only		+ picloram Glyphosate			88 90-9	1 0	0	0	0	0	67		0	3 30
LSD (0.05)		+ 2,4-D	0.38	τυ.υζ	50 5	17			s 10) 13	15	. 1	4 1	8 13

Table. Long-term leafy spurge control with herbicides prior to introduction of insect biocontrol agents (1)m and Messersmith).

^aMonths after original treatment. ^bApplied when control declines to less than 70%.

Evaluation of several herbicides for fringed sagebrush control. Lym, Rodney G. Fringed sagebrush (Artemisia frigida) is the most widely distributed and abundant species of the Artemisia genus. It is found from Mexico throughout the West to Alaska in high plains, valleys, mountains, and grasslands. Fringed sagebrush is resistant to drought and overgrazing and increased rapidly in North Dakota mixed- and short-grass rangelands following severe drought conditions in 1988. The purpose of this research was to evaluate imazethapyr, clopyralid and metsulfuron for fringed sagebrush

The experiment was established near Jamestown, ND in grazed pastureland on May 30, 1991. Fringed sagebrush was in the vegetative growth stage and actively growing. Herbicides were applied using a tractor-mounted sprayer delivering 8.5 gpa at 35 psi. The plots were 10 by 35 ft in a randomized complete block design with three replications. Fringed sagebrush control evaluations were based on a visual estimate of percent stand reduction as compared to the untreated check.

Treatment	Rate	Aug 01	Control Main 20	
2,4-D LVE 2,4-D LVE 2,4-D LVE 2,4-D amine 2,4-D mixed amine ^a Imazethapyr + Sun-It II Picloram Picloram + 2,4-D LVE Picloram + 2,4-D LVE Picloram + 2,4-D amine Dicamba + X-77 Dicamba + X-77 Clopyralid + 2,4-D Clopyralid + 2,4-D Metsulfuron + X-77 Metsulfuron + X-77 Metsulfuron + 2,4-D LVE + X-77 LSD (0.05)	$\begin{array}{c} \hline Rate \\ \hline 0z/A \longrightarrow 8 \\ 12 \\ 16 \\ 12 \\ 12 \\ 2 + 1 \ qt \\ 4 \\ 2 + 8 \\ 4 + 8 \\ 4 + 8 \\ 8 + 0.25\% \\ 16 + 0.25\% \\ 1.5 + 8 \\ 3 + 16 \\ 0.10 + 0.25\% \\ 0.30 + 8 + 0.25\% \\ 0.10 + 8 + 0.25\% \end{array}$	Aug 91 56 67 78 41 44 3 28 81 84 58 35 70 83 92 4 17 65 23	May 92 % 33 45 79 37 51 5 33 72 90 60 41 79 77 95 95 9 24 45 34	Aug 92 28 53 93 30 56 3 33 76 94 73 32 47 85 98 3 23 53 45

^aMixed amine salts of 2,4-D (2:1 dimethylamine:diethanolamine)-HiDep.

Imazethapyr and metsulfuron did not control fringed sagebrush (Table). Clopyralid plus 2,4-D provided excellent long-term control especially when applied at 3 + 16 oz/A which averaged 98% control in August 1992. However, 2,4-D LVE at 16 oz/A provided 93% control and would cost only \$3 to \$4/A compared to over \$25/A for clopyralid plus 2,4-D. Fringed sagebrush control was better with 2,4-D LVE and mixed amine formulations than with 2,4-D amine at the same application rate. Picloram plus 2,4-D LVE at 4 + 8 oz/A provided similar control to 2,4-D LVE at 16 oz/A alone but would have to maintain control much longer than 2,4-D LVE alone to be cost-effective. Dicamba provided similar control to 2,4-D amine. (Published with approval of the Agric. Exp. Stn., North Dakota State University, Fargo 58105). <u>Quackgrass control in cropland with various spring-applied herbicides</u>. Maruska, Dean W., Rodney G. Lym, and Calvin G. Messersmith. Many selective and nonselective herbicides are available for quackgrass control in cropland. The objective of this experiment was to evaluate all herbicides registered in North Dakota for postemergence quackgrass control.

The experiment was established at the North Dakota State University experiment station in Fargo using a well established stand of quackgrass. The soil was a Fargo silty clay with 3.5% organic matter and pH 8.0. There were two quackgrass treatment dates, spring or late-spring applied May 15 or June 2, 1992, respectively (Table). Sequential applications for fluazifop-P plus fenoxaprop and clethodim were applied 2 weeks after the initial application fate as the manufacturer suggested. Bromoxynil plus 2,4-D plus X-77 and L-77 surfactant (0.75 lb/A + 0.25 lb/A + 0.25% + 0.25%) were applied May 21, 1992 to reduce broadleaf weed competition.

Herbicide treatments were applied with a tractor-mounted sprayer delivering 17 gpa at 35 psi. Plots were 10 by 30 feet. Treatments were replicated four times in a randomized complete block design. Control was visually evaluated 8 or 6 weeks after treatment (WAT) for the spring- and late- spring-applied treatments, respectively, and were based on percent stand reduction compared to the control. Quackgrass was harvested on July 20 to 23.

The spring-applied treatments consistently provided better quackgrass control than the late-spring-applied treatments (Table). Glyphosate provided the best control, averaging 95%, regardless of application rate, date, or adjuvant. Glyphosate treatments also reduced the quackgrass biomass an average of 98%.

Clethodim provided variable control (Table). Clethodim spring-applied at 3 or 4 oz/A plus ammonium sulfate, an adjuvant, provided 59 and 70% control, respectively. However, control with clethodim averaged only 38% over all other application rates, dates, and adjuvants. Nicosulfuron at 0.4 and 0.5 oz/A spring-applied provided 54 and 65% control, respectively, while the late-spring-applied treatments averaged 47% control. Nicosulfuron provided an average 66% reduction in quackgrass biomass.

Primisulfuron provided control averaging 38% across application dates and reduced the quackgrass biomass by 57% (Table). Control with quizalofop varied as the spring-applied treatment averaged 50% control while the late springapplied treatment averaged 23% control. Fluazifop-P averaged only 16% visible control, but the biomass was reduced by an average of 43%. Fluazifop-P plus fenoxaprop provided an average of 23% control and reduced biomass by 47%. Sethoxydim only provided 26% and 17% visible control for the spring- and latespring-applied treatments, respectively, and an average biomass reduction of 35%.

In summary, glyphosate provided excellent control but cannot always be used because it is nonselective. Nicosulfuron, clethodim, and primisulfuron provided fair to good control and are selective in corn, soybean, and corn, respectively. Quizalofop, fluazifop-P, fluazifop-P plus fenoxaprop, and sethoxydim did not provide satisfactory control. Control with all herbicides was better with the spring than the late-spring application date. (Published with approval of the Agric. Exp. Stn., North Dakota State University, Fargo 58105).

y my una	nesser smitth).			oropiulu
Application det		Evaluat	ion	
Application date	Evaluation			
and treatment ^a	Rate	<u>Control</u>		Biomass
		8/6 WATD	Yield	reduction
<u>Spring (May 15, 1992)</u>	- oz/A -	- % -		
Nicoculfunar 15, 1992)		/0 -	1b/A	- %
Nicosulfuron + Scoil	0.4 + 2%			
Nicoculfuron + Scoil	0 5 . 000	54	270	66
Primisulfuron + Scoil	0.5 + 2%	65	200	
Primisulfuron + Scoil	0.4 + 2%	35	420	75
Fluazifan D. C. Ha	0.6 + 2%			47
Fluazifop-P + Scoil	3 + 1%	37	310	61
Sethoxydim + Scoil	8 + 1%	16	360	55
Quizalofop + Scoil		26	520	34
Fluazifop-P + fenoxaprop +	1 + 1%	50	300	
Scoil° + Tenoxaprop +			300	62
	2 + 0.7 + 1%	0.0		
Glyphosate + X-77	24 + 0.5%	22	470	40
Glyphosate + $X-77$	24 + 0.5%	79	70	91
Glyphosate + X-77 + AMS	36 + 0.5%	96	10	
Glyphosato , y 77 AMS	24 + 0.5% + 1	6 91		99
Glyphosate + $X-77$ + AMS	36 + 0.5% + 1		20	98
Clethodim + Scoil°	3 + 1%		10	99
Clethodim + Scoil°		37	490	38
Clethodim + Scoil + AMS°	4 + 1%	43	190	
Clethodim + Scoil + AMS°	3 + 1% + 16	59		76
Control	4 + 1% + 16		250	68
CONTROL	0	70	190	76
	0	0	790	0
Late Spring (June 2, 1992)				•
Nicosulfuron + Scoil				
Nicosulfuron + Scoil	0.4 + 2%	47	210	
Primioul C	0.5 + 2%		310	60
Primisulfuron + Scoil	0.4 + 2%	47	310	61
Primisulfuron + Scoil	0.4 + 2/0	43	260	68
Fluazifop-P + Scoil	0.6 + 2%	36	380	
Sethoxydim + Scoil	3 + 1%	16	540	51
Quizalofon + S. un	8 + 1%	17		31
Quizalofop + Scoil	1 + 1%		510	35
Fluazifop-P + fenoxaprop +	170	23	430	46
30011	2 . 0 7			
Glyphosate + X-77	2 + 0.7 + 1%	23	360	54
Glyphosate + X-77	24 + 0.5%	96		
Glyphocato + X 77	36 + 0.5%	99	20	98
Glyphosate + X-77 + AMS	24 + 0.5% + 16		5	100
Glyphosate + $X-77$ + AMS		99	5	100
ciethodim + Scoil ^o	36 + 0.5% + 16	99	5	100
Clethodim + Scoil°	3 + 1%	40	370	
Clethodim Social and	4 + 1%	31		54
Clethodim + Scoil + AMS°	3 + 1% + 16		390	51
Clethodim + Scoil + AMS°	4 + 1% + 16	38	330	59
Control		36	270	66
	0		790	0
LSD (0.05)				0
(0.00)		13	100	
^a AMS, diammonium culfat		10	180	
	Constitution of the owner of the			

Table.	Quackgrass control	with various herbicides Messersmith).				
	(Maruska, Lym, and	Messersmith).	in	North	Dakota	cropland

^aAMS, diammonium sulfate. ^bWeeks after treatment, 8 and 6 WAT for spring and late-spring treatments, respectively. Sequential application made 2 WAT as manufacturer suggested.

