Eberlein

1981 NORTH DAKOTA WEED CONTROL RESEARCH

Weed Research Projects, Department of Agronomy NORTH DAKOTA STATE UNIVERSITY Fargo, N. D. 58105

Not for Publication

SUMMARY OF 1981

WEED CONTROL TRIALS

FIELD CROPS

Department of Agronomy North Dakota State University Fargo, North Dakota

> John D: Nalewaja C. G. Messersmith S. D. Miller R. G. Lym Duane R. Berglund

Department of Agronomy - Extension North Dakota State University - University of Minnesota Fargo, North Dakota

Alan G. Dexter

Trials conducted in cooperation with:

Ben Hoag, Minot Experiment Station Neil Riveland, Williston Experiment Station Robert Nowatzki, Langdon Experiment Station John Gardner, Carrington Experiment Station Several Farmers

TABLE OF CONTENTS

White Section: Climatic, edaphic and general information

Climatic data,	Carrington	I
Climatic data,	Casselton	II
Climatic data,	Crookston	III
	Fargo	
Climatic data,	Langdon	V
	Minot	
	Williston	
•	ations	
Herbicides use	d	X-XII

Gold Section: Sugarbeet weed control

Multispecies evaluation of postemergence herbicides, Casselton	1
Multispecies evaluation of preplant incorporated herbicides, Casselton	2
Multispecies evaluation of preemergence herbicides, Casselton	2
Effect of number of cultivations and herbicide treatment on sugarbeet	
yield, Fargo	3-4
Multiple herbicide treatments, Glyndon	
Electrical discharge system and rope wick, Glyndon	
Herbicides on hand weeded sugarbeets, Fargo	
Fall and spring herbicides, Crookston	
Weed beet control, Crookston	
EPTC and cycloate plus insecticides, St. Thomas	
Preplant incorporated herbicides, Galchutt	
Control of wild proso millet and green foxtail with preplant	
incorporated herbicides, Clara City	16
Soil applied herbicides, Thompson	
Soil applied herbicides, St. Thomas	
Spring applied herbicides, Crookston	
Postemergence control of wild proso millet and green foxtail,	87340
Clara City	20
Early postemergence wild oat control, Casselton	
Late postemergence wild oat control, Casselton	
Postemergence herbicides, St. Thomas	
Postemergence herbicides, Thompson	
Postemergence herbicides, Crookston	

Yellow Section: Wild oat control

Postemergence wild oat control in wheat, Fargo	1
Postemergence wild oat control in wheat, Minot	2
Postemergence wild oat control in wheat, Langdon	3
Wild oat control in wheat, Williston 1	ł
Herbex combinations with wild oat herbicides in wheat, Fargo	5
Wild oat herbicide combinations, Fargo	ŝ
Wild oat herbicide combinations, Minot	7
New postemergence herbicides for wild oat control, Fargo	3
Hard red spring wheat response to herbicides, Fargo	9

i

Barley response to herbicides, Fargo 11 Barley response to propanil plus MCPA, Fargo 12 Triallate inpregnated on urea fertiliZer of wild oat control, Fargo .. 14 Wild oat control in wheat with fall applied herbicides, Fargo 15 Triallate and SSH-0860 combinations with other herbicides, Fargo 17 Barban formulation comparison, Fargo 20 Broadleaf herbicide combinations with diclofop, Fargo 22 Broadleaf herbidide combinations with difenzoquat, Fargo 23 Hard red spring wheat response to difenzoquat, Minot 24 Durum wheat response to difenzoquat, Minot 25 SD-45328 for wild oat control in wheat, Minot 27 SD-45328 for wild oat control in wheat, Williston 28 SD-45328 for wild oat control in barley, Fargo 29 SD-45328 formulation comparison, Fargo 30 SD-45328 formulation and additives, Fargo 32 Broadleaf combinations with SD-45328, Minot 34 Barley response to SD-45328, Fargo 35 CGA-82725 in barley, Fargo 36 Wild oat control in flax, Fargo 37 Wild oat control in sunflower, Fargo 38 Wild oat control in corn, Fargo 39 Wild oat control in soybeans, Fargo 40 Wild oat control in drybeans, Fargo 41 PP009 in drybeans, Fargo 42

Green Section: General weed control in crops

Preemergence incorporated herbicides for foxtail control in wheat,

Fargo NW 22	1
Preemergence weed control in wheat, Carrington	2
Preemergence weed control in wheat, Williston	
Postemergence weed control in wheat, Carrington	4
Postemergence weed control in wheat, Langdon	
Postemergence weed control in wheat, Williston	6
Broadleaf weed control in wheat, Fargo NW 22	
Chlorsulfuron plus additives for weed control in wheat, Fargo NW 22	8
Weed control in wheat, Mohall	9
Weed control in wheat, Renville County	10
Propanil plus broadleaf herbicides for weed control in wheat,	
Casselton	12
Postemergence foxtail control in wheat, Fargo NW-22	11
Mood control in UDUL Willister	40

Response of flax varieties to asulam, Fargo 17 Flax variety response to asulam, Langdon 18 Flax response to application of asulam with various volumes, Fargo Flax response to time of application of asulam, Fargo NW 22 20 Weed control in flax, Casselton 21 Weed control in flax, Carrington 22 Weed control in flax, Williston 23 Preplant weed control in sunflower, Casselton 24-25 Postemergence weed control in sunflower, Casselton 27 Weed control in sunflower, Absaraka 28 Weed control in sunflower, Carrington 29 Weed control in sunflower, Langdon 30 Weed control in sunflower, Williston 31 Weed control in corn, Casselton 33 Weed control in corn, Richland County 34 Weed control in irrigated corn, Karlsruhe 35 Weed control in soybean, Fargo NW 22 36 Preemergence weed control in pinto bean, Fargo NW 22 37 Postemergence weed control in pinto bean, Fargo NW 22 38 Weed control in safflower, Williston 39 Safflower response to BAS-9052 and asulam, Williston 40 Safflower response to 2,4-DB and chlorsulfuron, Williston 41 Weed control in lentils, Minot 42 Weed control in lentils, Williston 43 Postgrass and broadleaf herbicide antagonism, Fargo 44-45 Chlorsulfuron soil residual from 1979, Fargo NW 22 46

Pink Section: Perennial weed control

Forage production in pasture and rangeland following two years of	
leaf spurge control	1-2
Long term management of leafy spurge in pasture and rangeland - 1 year	3-5
Roller and wick application of picloram for leaf spurge control	
Leaf spurge control by glyphosate using three application techniques .	11
Picloram formulation and application equipment for leafy spurge	
control	12
Leafy spurge control using the controlled droplet application with	
picloram plus additives	
Leafy spurge control with picloram and glyphosate under trees	
Granular picloram and dicamba for leafy spurge control	
Plant growth regulators and herbicides for leafy spurge control	
Tebuthiuron applied spring and fall for leafy spurge control	21
A pipe wick herbicide applicator for perennial weed control in	
pastures	22-23
Evaluation of various herbicides and application techniques for	
absinth wormwood control	24-26
Absinth wormwood control with picloram plus various additives	27-29
Evaluation of chlorsulfuron and Dowco-290 (M-3972) for Canada thistle	
and kochia control	
Roller and wick application of picloram for Canada thistle control	
HOE-00661 for perennial weed control	32

Blue Section: Evaluation of herbicides in reduced tillage systems

01 - -11 - 1

1.11

Fall applied fallow herbicides, Fargo Fall applied fallow herbicides, Minot Fall applied fallow herbicides, Williston Fall applied herbicides for chemical fallow, Hettinger County Fall applied atrazine and metribuzin for chemical fallow, Hettinger	2 3 4
County Fall applied herbicides for chemical fallow, Golden Valley	6
Fall applied herbicides for chemical fallow, Mohall	7
Fall applied herbicides for chemical fallow, Renville County	a a
Herbicides for weed control in fallow, Devils Lake Spring preemergence fallow herbicides, Fargo	10
Spring preemergence fallow herbicides, Minot	11
Spring preemergence fallow herbicides, Williston	12
Spring preemergence fallow herbicides, Grant County	13
Spring applied fallow herbicides, Hettinger County	14
Spring applied herbicides for chemical fallow, Mohall	15
Postemergence fallow herbicides. Fargo	16
FOSCEMEISENCE LATTOW HEIDTELGED, HILLOU VIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVI	17
Postemergence fallow herbicides, Willistion	18
Cyanazine for chemical fallow, Fargo	19
Cyanazine for chemical fallow, Minot	20
Cyanazine for chemical fallow, Williston	22
PP009 in fallow systems, Fargo Non-selective fallow herbicides, Fargo	23
Non-selective failow herbicides, fargo	24
False chamomile control with non-selective herbicides, Mohall	25
False chamomile control with non-selective herbicides, Renville County	26
Evaluation of postemergence herbicides for false chamomile control,	
Mohall	27
Fall applied herbicides for false chamomile control in wheat, Mohall .	28
False chamomile competition in wheat, Mohall	29
Glyphosate and liquid nitrogen combinations for quackgrass control,	
Devils Lake	30
Wheat on fall applied fallow herbicides, Fargo	31
Wheat on fall applied fallow herbicides, Mohall	32
Wheat on spring preemergence fallow herbicides, Fargo	33
Wheat on spring preemergence fallow herbicides, Minot	25
Wheat on spring preemergence fallow herbicides, Williston	36
Wheat on postemergence fallow herbicides, Minot	37
Wheat on postemergence fallow herbicides, Williston Wheat on spring applied fallow herbicides, Mohall	38
Wheat on cyanazine fallow treatments, Fargo	39
Wheat on cyanazine fallow treatments, Minot	40
Wheat on cyanazine fallow treatments, Williston	41
Conventional verses no-till production of several crops, Fargo	42
Conventional verses no-till wheat, Fargo	42
Fall herbicides for weed control in no-till wheat, Fargo	43
Weed control in no-till wheat, Williston	44
Influence of tillage and herbicides on weeds, Fargo	45
Weed control in no-till sunflower, Minot	46
Weed control in no-till sunflower, Mott	47

iv

CLIMATIC DATA - CARRINGTON

. .

1981

÷.-

н

															ature						
				cipita				Ap	ril		ay		ine		ly		ıg.		pt.	<u>0c</u>	
)ate	April	May	June	July	Aug.	Sept.	Oct.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	M1n.	Max.	Miı
1	1.18		.84			.05	.42	41	30	58	32	64	50	86	54	82	59	61	42	47	37
2			.04		.15			60	30	64	32	60	52	86	59	81	59	70	42	48	34
3				.46	.09			59	32	79	47	70	45	74	56	81	61	79	47	60	35
4							.04	39	26	65	40	75	45	79	56	77	61	63	40	60	45
5			.55		.15			49	23	62	38	74	54	85	60	80	61	70	40	55	44
6						.80		54	34	62	35	75	52	90	65	79	58	84	57	53	36
7						1.45		56	34	65	35	80	53	95	65	78	58	65	51	55	35
8			.03					54	27	64	36	75	55	97	64	82	57	71	51	61	39
9		Т	.01				.04	55	27	56	25	70	50	76	51	75	49	81	53	65	47
10								65	30	46	26	70	50	86	51	74	55	86	55	63	37
11			.01	.15	.02			60	24	57	36	73	49	81	61	81	55	89	55	70	37
12				.15			\mathbf{T}	40	24	61	44	75	48	79	63	88	54	75	54	67	50
13			1.90				.30	63	32	62	39	76	50	85	65	84	61	86	52	62	35
14				1.40				45	21	68	40	73	55	79	58	90	61	76	46	50	30
15			.07	.06		.01		52	21	69	42	61	46	66	59	79	53	61	44	52	30
16			.06		.01			72	39	76	44	61	46	81	60	74	50	60	37	62	31
17							.01	80	39	64	45.	75	49	79	60	76	52	55	35	68	40
18							.05	52	28	79	41	68	48	75	57	79	52	66	35	48	34
19			.05	.09			Т	64	31	70	41	65	46	79	57	82	55	78	45	42	32
20			т	.07				49	20	76	47	66	45	82	60	88	62	70	43	66	36
21			.19	.11		.07	.12	60	20	81	49	72	48	81	58	95	62	67	43	45	25
22	.12		.08	3.23			\mathbf{T}	69	38	82	51	68 -	51	76	58	90	65	68	43	35	23
23		.05		.06		.12	\mathbf{T}	46	26	72	44	70	51	75	59	74	61	71	44	26	19
24		.23	.17			.45	т	56	26	46	41	66	50	82	61	75	61	61	46	32	19
25	.01	.48		.10	.01		.01	71	31	49	41	74	50	74	51	76	62	60	46	34	19
26		.03			.40	.25		71	41	54	45	75	51	66	51	75	55	63	46	36	19
27	.40		.01		.05			72	47	58	51	81	51	72	53	76	55	54	42	67	28
28	.02	.03	.28					52	44	66	51	89	62	74	51	76	52	55	39	42	27
29	.05		.05					61	41	78	52	72	52	72	51	75	50	48	34	64	38
30	. 25					т	.04	55	39	70	41	72	52	80	54	82	53	55	35	62	38
31		.19		.11			.17			66	41			86	63	87	60			49	39

.

CLIMATIC DATA - CASSELTON 1981

														empera							
			Prec	cipita	ation			Ap	ril	M	ay	Jı	ine	Ju	1y	Au	ıg.	Se	pt.	<u> </u>	t.
Date	Apri1	May	June	July	Aug.	Sept.	Oct.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
1			.43			.21		64	33	72	43	73	56	82	63	85	62	71	42		
2					.10			66	38	83	41	58	55	82	65	87	66	69	48		
3			.11		.20			64	35	74	48	77	47	81	62	78	65	79	49		
4								64	22	63	37	75	54	83	56	83	59	66	38		
5			.39		.91			59	35	63	32	77	52	90	60	84	65	72	44		
6					т			63	32	73	38	80	48	93	67	74	58	80	56		
7		Т				.68		60	35	69	41	78	55	94	71	83	59	83	50		
8					.33			60	38	68	26	69	51	80	56	80	58	74	46		
9			.03		т			68	32	58	23	71	49	85	49	74	55	80	52		
10			.06					64	22	63	42	73	45	92	62	81	47	89	51		
11								45	22	67	49	78	49	88	67	88	57	90	54		
12				.35				62	42	80	44	76	49	90	71	88	58	81	49		
13			. 50					52	14	78	46	73	64	86	64	92	65	88	52		
14				1.43				61	23	83	49	65	52	72	63	85	59	78	40		
15			.22			.04		62	40	77	45	70	48	74	62	76	51	63	38		
16								84	49	74	53	78	46	83	63	75	52	61	35		
17				.23				60	26	76	37	71	57	80	62	76	49	60	31		
18								60	30	71	36	68	52	82	57	80	54	66	40		
19								61	20	85	55	59	47	81	67	84	57	79	40		
20				.01				59	35	83	47	72	51	83	62	86	63	73	42		
21						Т		65	44	83	57	67	56	83	58	92	65	73	40		
22		.30	.29	.22	.28			49	40	83	57	71	49	73	58	73	66	71	47		
23		L.90	.29	.25		\mathbf{T}		59	28	63	48	63	55	81	58	77	64	65	51		
24	1.02	.05			1.15	.05		64	34	65	50	75	52	79	58	71	64	58	37		
25				.03		.04		74	34	59	52	77	51	69	49	74	60	68	42		
26	.29		Т			.09		83	52	58	53	80	52	75	51	80	60	69	55		
27		.10	Т			т		56	46	72	59	79	65	72	54	79	54	58	43		
28	.12		.39					64	47	80	59	79	64	74	48	75	49	55	30		
29	.10					т		64	40	69	49	75	52	79	58	78	62	52	38		
30						.02		62	33	63	36	80	57	83	64	83	61	58	42		
31		.40		.37						61	49			91	64	71	55				

×

CLIMATIC DATA - CROOKSTON 1981

.

															ature						
			Pred	ipita	ation				ril		ay		ine		11y		ıg.		pt.	<u> 0c</u>	
Date	Apri1	May	June	July	Aug.	Sept.	Oct.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min
1	.22		.93				.50	47	31	61	32	67	53	81	62	85	57	67	44	51	32
2	0.1	.01	.04					63	37	68	50	59	53	81	64	85	61	76	49	56	34
3				.03	.46			60	31	71	48	77	48	81	60	85	61	76	48	62	46
4			.37				.39	41	28	67	37	76	50	84	52	84	57	68	39	55	42
5			.18		.69		.37	50	22	64	32	74	54	89	61	84	62	76	49	53	42
6					.28	1.81	.05	61	32	66	31	75	53	92	63	76	61	76	64	56	33
7			.04		.12			58	32	67	32	65	58	91	70	83	57	72	51	59	31
8		.10	.01		.11			58	25	65	46	71	52	90	65	83	59	79	47	63	47
9		.01					.12	64	25	54	25	73	47	87	47	77	53	87	57	58	43
10			.01	.19				64	40	57	22	73	47	87	56	81	47	87	52	63	45
11				.94				60	17	65	41	77	53	82	63	89	56	87	56	67	51
12	.02			.05			.90	65	24	67	36	78	46	86	68	89	61	87	51	67	41
13			.65				.05	65	34	71	34	79	61	87	58	92	59	86	51	56	42
14			.14	.72				48	13	74	42	74	61	84	63	85 ·	65	77	42	51	38
15			.08					72	26	77	49	73	49	71	61	81	50	66	45	57	36
16			.03					76	43	74	48	78	45	82	62	73	46	60	36	67	38
17			.03				.21	76	38	73	43	78	55	81	60	78	51	65	34	67	45
18			.01				.01	62	18	74	39	68	46	82	56	82	54	78	41	45	32
19								61	33	78	41	66	43	81	63	82	57	78	43	62	28
20								56	19	81	43	72	47	82	59	84	64	70	43	60	36
21			1.03		.17		.02	53	41	83	54	73	50	79	52	85	43	70	43	36	24
22			.01	.99				47	37	82	63	68	48	75	54	85	62	66	48	30	24
23		1.08	19			1.07		49	34	71	53	69	51	75	54	78	63	62	48	29	18
24		1.01	02	.08	.36		т	60	25	63	55	75	54	75	61	74	65	63	40	35	24
25	.09	.38	.03	т	.02		.02	63	38	59	49	75	52	74	46	76	63	67	49	30	20
26		т				.10		74	37	59	49	79	49	75	49	81	59	63	49	54	22
27	.58	т	.42					73	47	66	53	78	63	75	51	81	54	54	43	54	27
28	.05		.73			т		61	43	73	51	77	64	75	46	78	48	64	28	60	32
29	.11	.04						60	47	72	55	74	58	80	56	78	62	56	40	59	44
30	.19					.62	.09	61	41	67	37	78	51	80	62	85	61	56	42	55	48
31				.72	1.48					68	47			85	62	85	61			59	41

III

CLIMATIC DATA - FARGO 1981

6

															ature						
			Pred	cipita	ation			Ap	ril		ay		ine		11y	Au			pt.	<u> 0c</u>	and the second se
Date	April	May	June	July	Aug.	Sept.	Oct.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min
1	.02		.08		.02		т	52	33	63	51	73	56	82	63	85	62	69	44	49	34
2			.04	.57	Т			66	41	81	51	58	55	82	65	87	66	79	51	58	31
3	т	т		.01	.08		.31	49	35	74	48	77	47	81	62	78	65	66	44	62	46
4			.12				.01	43	26	58	39	74	54	83	56	83	59	70	38	53	45
5					.07		.56	51	18	63	30	77	52	90	60	84	65	79	55	52	45
6			.04		.12	.52		64	34	66	30	80	48	93	67	74	58	82	58	56	34
7			Т		Т			58	30	66	40	78	55	94	71	83	59	73	49	60	33
8		Т		т			.12	58	27	66	41	69	51	80	56	80	58	79	45	64	50
9	т	Т	.10					68	27	49	28	71	49	85	49	74	55	89	56	56	46
10			.03	т				65	31	59	24	73	45	92	62	81	47	89	53	67	42
11						т	.12	45	20	64	43	78	49	88	67	88	57	78	55	69	51
12	.01		Т	.13			.37	69	30	66	44	76	49	90	71	88	58	87	49	56	52
13	.02		.72	.01			т	53	24	71	33	76	64	86	64	92	65	79	48	56	39
14			.10	1.44		.03		51	12	74	43	65	52	72	63	85	59	62	43	52	32
15			.01	.02				71	33	77	45	70	48	74	62	76	51	60	39	60	32
16		.02	.01	\mathbf{T}			.46	77	43	74	49	78	46	83	63	75 ·	52	59	37	68	38
17		т	.10				.19	66	32	68	49	71	57	80	62	76	49	65	33	51	40
18			.01				т	62	23	71	36	58	52	82	57	80	54	78	39	40	29
19	4		.07	.06			т	52	32	76	41	59	47	81	67	84	57	73	41	64	33
20			т	.02	.23	т	т	55	19	81	43	72	51	83	62	86	63	73	43	50	28
21	\mathbf{T}	Т	.34				.16	55	42	84	54	67	56	83	58	92	65	72	42	31	25
22	Т	1.63	.22	.13	Т	\mathbf{T}	.04	45	38	79	59	71	49	73	58	73	66	63	51	29	22
23		.54	.18	.06	.03	.03		53	31	59	53	63	55	81	58	77	64	58	48	30	15
24		1.16	.01	.04	.71	.03	.02	65	23	60	49	75	52	79	58	71	64	68	37	37	26
25	.06	т			.07	т	Т	67	42	55	48	77	51	69	49	74	60	68	53	31	24
26		Т	\mathbf{T}			.03		74	41	58	52	80	52	75	51	80	60	63	52	60	27
27	.31	Т	.04			т		60	47	66	51	79	65	72	54	79	54	55	34	42	29
28	.10	.05	.34			т	т	63	43	71	57	79	64	74	48	75	49	52	30	63	42
29	.08							59	47	69	49	75	52	79	58	78	62	60	38	61	47
30	.01			.71		.47	т	59	37	63	36	80	57	83	64	83	61	51	37	57	43
31		.06		.01	.43					61	49			91	64	71	55			60	35

IV

CLIMATIC DATA - LANGDON 1981

.

•

-

A COLOR DE LOS DE LOS DE

.

															ature	and the second s					
			Pred	cipita	ation				ril		ay		ine		11y		g.		pt.	<u>0c</u>	and the second second second
Date	April	May	June	July	Aug.	Sept.	Oct.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min
1			.42			.07	.59	51	26	58	28	64	50	82	61	79	49	62	37	41	33
2		Т		.20				58	35	74	46	60	52	80	63	81	57	67	41	49	34
3					.38			54	26	72	35	70	45	80	53	81	60	77	41	53	35
4			.42		.03		.18	40	21	62	30	75	45	84	60	76	59	61	36	52	42
5			.15					50	20	58	28	74	54	86	60	84	60	67	44	49	42
6			т		1.25	.22	.04	54	35	63	29	75	52	93	60	73	58	75	54	48	30
7					.03	.39		52	32	65	35	80	53	91	66	74	54	65	47	55	30
8		.36	.03		.01		.01	52	22	62	36	75	55	89	60	82	55	70	43	56	38
9			.25	.07				61	25	46	19	70	50	84	43	73	45	80	49	63	44
10				.20	.02			57	33	53	24	70	50	84	57	73	49	87	53	62	33
11								45	15	64	37	73	49	79	60	80	54	89	48	68	45
12							.44	59	19	65	39	75	48	82	60	89	55	75	48	66	47
13			.68				.33	56	26	69	39	76	50	85	61	79	58	81	46	47	35
14			.01	.19				47	11	72	38	73	55	79	60	91	55	72	39	45	31
15			.14	.10	\mathbf{T}			72	33	67	41	61	46	73	59		47	65	38	48	31
16			.03	.07				80	35	65	34	61	46	76	50		42	58	41	57	33
17			.12	.03			.08	78	36	70	33	75	49	75	54		50	55	31	63	38
18			.02				.03	61	38	75	37	68	48	78	53		50	67	34	46	26
19			Т					60	34	77	40	65	46	83	58		55	83	40	39	31
20				.04			Т	57	26	81	33	66	45	80	56			68	39	59	30
21	т		.20		.11	.07	Т	58	40	84	49	72	48	68	48			69	43	34	20
22	.03		.54				Т	56	33	80	57	68	51	69	52	82	58	61	39	27	16
23		.55	.16		1.23	.03		51	28	74	40	70	51	82	56	72	60	63	44	26	12
24		.51	.21	.04	.16	.04	т	58	27	47	40	66	50	80	56	69	61	65	38	31	12
25	.16	.39			.07		т	66	36	51	42	74	50	68	40	75	61	62	40	31	10
26		.04			.08	.62		76		57	45	75	51	74	44	74	58	63	44	33	13
27	.36		т	.08		.12	1.01	67	43	66	44	81	51	75	42	77	51	51	37	55	24
28	.03						Т	57	39	76	49-	89	62	75	46	76	50	51	30	52	24
29	.03			.01			т	62	42	77	51	72	52	80	54	76	54	41	31	57	37
30	.14			10	139	.02	Т	58	35	65	31	72	52	80	60	80	58	54	35	59	36
31				.10	.10		.13			72	40			78	50	86	58			49	34

 \triangleleft

CLIMATIC DATA - MINOT 1981

															ature						
			Prec	ipita	ition			Ap	ril		ay		ine		1y		ıg.		pt.	<u>0c</u>	
Date	April	May	June	July	Aug.	Sept.	Oct.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
1			. 96			\mathbf{T}	.12	44	21	60	30	77	53	90	62	82	50	57	38	51	39
2			. 47	.16	.28		Т	68	27	67	32	55	47	91	59	87	53	74	43	51	38
3								59	26	80	43	81	45	80	54	85	59	81	39	63	38
4			.03				.08	54	21	69	38	78	46	87	60	87	58	66	40	50	43
5					.16	.01	.01	50	25	65	38	75	53	94	63	88	58	75	48	50	33
6					.18	. 33	т	56	37	65	37	77	52	94	67	80	56	75	55	54	31
7			т		.01	.05		57	29	69	33	81	52	101	70	80	55	74	47	59	32
8		.06		.06	.02			53	23	64	43	7.3	50	101	57	88	55	79	50	66	42
9		Т	.04					56	26	55	21	73	45	77	46	79	48	88	52	68	43
10			.06					62	30	50	25	68	46	91	51	78	55	93	55	65	36
11		.03	.04	. 66			Т	60	27	62	37	72	46	78	52	86	57	95	52	69	38
12	.03			.03			.06	43	28	67	37	74	46	77	62	94	60	84	54	68	49
13			. 30				.16	62	22	61	39	78	54	87	63	87	60	90	47	61	37
14			.31	.16				45	15	70	39	69	50	81	58	95	57	79	45	46	28
15			.01	.04		.18	.03	55	19	72	40	66	48	71	54	-83	53	65	37	49	32
16			.13	.11		т		77	41	72	40	58	47	79	53	72	50	65	30	62	36
17		т					.04	82	35	67	41	77	54	79	53	80	52	64	31	61	40
18			.15					58	30	73	41	62	45	79	55	83	58	71	42	51	34
19			.11	.22	.01			72	23	74	42	67	45	76	53	87	59	87	44	50	38
20			.01					53	22	77	44	64	45	84	55	89	60	77	41	65	32
21			.17	.15		.17		63	25	83	49	75	52	86	53	90	57	67	39	47	21
22			.17	.02	.04	.01	т	68	.36	83	53	72	44	81	55	92	58	72	40	40	20
23		.19	.31	.06	.04			60	23	68	39	73	46	84	60	84	60	71	49	22	7
24		.31	.45	.01	.16		.04	66	28	42	36	75	51	86	59	69	55	72	38	35	7
25	Т	.12		\mathbf{T}			Т	80	45	50	38	73	49	75	48	80	55	68	41	34	9
26		.05		\mathbf{T}	.06	.65		71	41	53	48	77	49	67	45	79	54	61	45	42	15
27	.13	.01	Т			.01		73	47	59	50	85	53	72	50	82	52	53	37	62	23
28	.44	.01						53	44	64	52	89	57	76	48	81	52	57	37	40	23
29	.19	.01	.12					60	40	81	49	72	47	79	48	82	54	56	35	61	27
30	.04	Т		Т		.01	.01	60	38	75	40	75	49	89	61	89	54	50	34	64	32
31		Т			.26					72	48			88	53	94	51			48	33

ΔI

CLIMATIC DATA - WILLISTON 1981

•

•

			- 				0	Temperature													
			Prec	ipita	ation				ril		ay		ine		ly		ıg.		pt.	<u> </u>	
Date	April	May	June	July	Aug.	Sept.	Oct.	Max.	Min.	Max.	Min.	Max.	Min	. Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
1			2.05					69	26	78	35	76	50	92	65	90	55	84	40	61	33
2	т		.56		.13			66	39	78	57	69	46	88	57	84	53	83	55	77	42
3								53	25	66	38	77	46	87	53	85	57	70	35	77	46
4	.07		.40				.10	51	23	65	36	76	55	96	58	86	57	80	40	51	36
5					.37		.03	58	28	70	43	74	51	96	58	86	59	92	56	56	30
6			.04			.04		56	33	70	43	75	50	103	65	83	52	81	53	64	28
7		.07						51	26	68	46	76	55	101	67	89	54	88	47	67	39
8		.10	.01		.12			54	25	55	40	72	54	90	53	88	57	90	52	65	45
9			.18				.10	62	27	55	23	69	45	91	44	80	53	93	57	62	36
10		.08	Т					56	33 .	63	36	71	46	91	57	85	53	92	54	66	38
11	т							55	23	66	31	72	45	88	56	94	57	84	48	73	38
12	.10	.12	т				.44	59	34	64	42	72	49	89	67	94	60	91	53	71	42
13			.66					57	20	66	45	69	49	89	56	95	62	90	49	43	34
14				.22				59	19	70	40	68	42	89	61	94	58	80	53	48	26
15			.05	.09				77	32	71	53	67	45	81	54	85	57	73	41	62	29
16								77	38	68	41	77	45	80	53	84	57	69	36	66	36
17			.55				Т	66	34	69	45	77	52	85	51	85	56	77	38	65	37
18			.08	.23				70	39	73	44	66	41	79	57	93	60	85	42	55	29
19			.06	.04				67	30	78	42	64	49	84	55	94	60	89	45	60	37
20						.11		75	28	86	50	71	46	87	52	89	65	88	53	59	34
21	т		.27		.03			73	44	86	51	72	48	93	59	88	60	74	38	42	21
22	.02	\mathbf{T}		1.03	.15	.12	\mathbf{T}	62	38	86	55	72	47	93	56	86	60	73	44	39	17
23		Т	.63		.03		Т	74	38	62	42	72	53	89	57	82	53	69	47	36	8
24		.12	.26	.18	.02	R. 1	.06	84	42	54	38	72	48	84	55	77	53	72	38	34	26
25						.06	Т	79	47	68	49	76	48	72	53	80	53	68	42	38	13
26			0 -			.05		67	40	66	50	86	54	72	48	83	56	67	40	57	30
27	.14	.03	.05				Т	65	47	65	54	86	63	77	52	82	53	57	32	51	30
28	.20	.02	.12					65	40	80	47	72	54	89	52	87	53	67	36	68	30
29		.07	.02		1.0	.06		65	39	76	47	75	45	89	51	92	55	67	41	66	36
30				.30	.10	.40		66	41	77	50	88	56	94	57	93	63	55	45	57	38
31	•									79	53			88	53	91	46			61	30

VII

Soil Test Results at Various Weed Trial Locations

	Soil	Organic		lb/A				
Location	Texture	Matter	рH	N	Р	K		
Section 22 Fargo	Silty Clay	6.5	7.5	Applied	70 lb/	'AN		
Main Station Fargo	Silty Clay	6.7	7.5	Applied	70 lb/	'AN		
Sugarbeet weed free	Silty Clay	5.8	6.6	256	22	475		
Sugarbeet cultivation	Silty Clay	5.3	7.3	168	24	425		
Casselton, ND	Silty Clay	4.0	7.9	Applied	70 lb/	/A N ¹ /		
St. Thomas, ND	Loam	5.9	7.7	281	23	545		
Clara City, MN	Clay Loam	7.6	7.6	224	53	300		
Absaraka, ND	Loamy Sand	3.7	7.3	No ferti	lizer	applied		
Langdon, ND	Clay Loam	4.6	7.8	Fertiliz	zed by	test		
Minot, ND	Loam	2.7	7.0	Fertiliz	zed by	test		
Williston, ND	Loam	2.3	6.8	Fertili:	zed by	test		
Carrington, ND	Loam	3.6	7.2	Fertiliz	zed by	test		
Glyndon, MN	Silt Loam	3.7	7.8	175	20	270		
Galchutt, ND	Loam	5.0	7.6	204	64	310		
Thompson, ND	Silty Clay Loam	5.8	7.7	246	23	240		

1/ Applied only to the flax, multispecies screening trial, and sugarbeet experimental areas.

KEY TO ABBREVIATIONS AND EVALUATIONS

Crop injury, crop stand and weed control ratings are based on a visual estimate using a scale of 0 to 100 with 0 = no effect and 100 = complete kill. All preplant incorporated or preemergence treatments were applied in 17 gpa of water and all postemergence treatments except barban were applied in 8.5 gpa of water at 35 psi. Barban treatments were applied in 4.7 gpa water at 45 psi.

All treatments were applied with a bicycle wheel-type plot sprayer unless otherwise stated in the table. Preplant incorporation was by field cultivator + harrow or as stated in table and preemergence incorporation was by harrowing twice.

In the sugarbeet experiments, weeds were counted in 40 square feet of the treated four rows and in 20 square feet of each of the two row untreated areas on the sides of the treated area. Sugarbeets were counted in 60 feet of row in the treated area and in 30 feet of row in each of the untreated areas on the sides of the treated area.

aoletenadam raioryanate		
asing expanses	Species	
Abwo = Absinth wormwood	Pest	(Soth) = Perennial sowthistle
Barl = Barley	Powe	= Pondweed
Bdlf = Broadleaf	Prlt	= Prickly lettuce
Bygr = Barnyardgrass	Prpw	= Prostrate pigweed
Cath = Canada thistle	Rrpw	= Redroot pigweed
Cobu = Common cocklebur	Ruth	= Russian thistle
Colq = Common lambsquarter	Soyb	(Sobe) = Soybean
Copu = Common purslane	Sugb	(Sube) = Sugarbeet
Dobr = Downy brome	Sunf	(Sufl) = Sunflower
Fach = False chamomile	Tamu	= Tansy Mustard
Flwe = Flixweed	Таоа	= Tame oat
Fxtl = Foxtail species	Tumu	= Tumble mustard
Grft = Green foxtail	Tymu	= Tame yellow mustard
Grpw (Gfpw) = Greenflower pepperwe	ed VSF	= Volunteer sunflower
Howe = Horseweed	Vwht	= Volunteer wheat
Kocz = Kochia	Wht	= Wheat
Mael = Marshelder	Wibw	= Wild buckwheat
Mats = Marestail	Wimu	= Wild mustard
Mesa = Meadow salsify	Wioa	= Wild oats
Nfcf = Nightflowering catchfly	Yeft	= Yellow foxtail

Methods

PPI = Preplant incorporated
PEI = Preemergence incorporated

PE = Preemergence P, PO, POST = Postemergence

Miscellaneous

DF = Dry flowable F = Fall	TM, LOTM = Emulsifiable linseed oil MOIS = Percent moisture
FL (F) = Flowable	llE, PO = Sun superior spray oil
S = Spring	OC = Petroleum oil concentrate
L = Liquid	Popl = Population
G = Granules	SPK = Spike stage
Inc (I) = Incorporation	SURF, S = Surfactant
%ir = Percent injury rating	TWT = Test weight
<pre>%sr = Percent stand reduction</pre>	WP = Wettable powder
HT = Plant height	WK = Surfactant by DuPont
AM, LOAM = Concrete curing compound	X-77 = Surfactant by Ortho
HERB = Herbimax	Bivt = Bivert

LIST OF HERBICIDES TESTED IN 1981

Common Name or Code Name	Abbreviation ^a	Chemical Name	Trade Name
Acetochlor	Acet, MON 097	2-chloro-N(ethoxymethy1)-6'-ethy1-o-aceto-	
	ton was by find the not	toluidide	None
Acifluorfen	Acif, MC10978	sodium 5-[2-chloro-4-(trifluoromethy1)-	Blazer,
a.c. 50 - 1	and example the state	phenoxy]-2-nitrobenzoate	Tackle
Alachlor	Alac	2-chloro-2',6'-diethyl-N-(methoxymethyl)	
	to test of state	acetanilide	Lasso
Ametryn	Amet	2-(ethylamino)-4-(isopropylamino)-6-	
imeer yn		(methylthio)-s-triazine	Evik
Amitrole	Amit	3-amino-s-triazole+ammonium thiocyanate	
Imit CI OIC		methyl sulfanilycarbamate	Amitrole
Asulam	Asul	methyl sulfanilylcarbamate	Asulox
Atrazine	Atra	2-chloro-4-(ethylamino)-6-(isopropyl-	Dust
ALIAZINE	Mera	amino)-s-triazine	AAtrex
Barban	Barb	4-chloro-2-butynyl-m-chlorocarbanilate	Carbyne
BAS-9052 OH	None	2-(N-ethoxybutyrimidoy1)-5-(2-ethylthio-	ourbyne
BAS-9052 OH	None	propy1)-3-hydroxy-2-cyclohexen-1-one	Poast
Development	Dent	3-isopropy1-1H-2,1,3-benzothiadiazin-(4)	1045.6
Bentazon	Bent		Basagran
D / C	D : C	3H-one 2,2-dioxide	Dasagran
Bifenox	Bife	methy1-5(2,4-dichlorophenoxy)-2-	Modown
	CONTRACTOR AND	nitrobenzoate	
Bromoxynil	Brox	3,5-dibromo-4-hydroxybenzonitrile	Brominal,
			Buctril
Buthidazole	Buth	3-[5(1,1-dimethylethyl)-1,3,4-thiadiazo1-2-	
		y1]-4-hydroxy-1-methy1-2-imidazolidinone	
Butylate	Buty	S-ethyl diisobutylthiocarbamate	Sutan
Chloramben	Clam	3-amino-2,5-dichlorobenzoic acid	Amiben
Chlorflurenol	None	methyl 2-chloro-9-hydroxyfluorene-9-	
		carboxylate	Maintain
Chlorpropham	CIPC	isopropyl m-chlorocarbanilate	Furloe
Chlormequat	CCC	(2-chloroethyl)trimethylammonium	
chloride		chloride	Cyclocel
Chlorsulfuron	Clsu	2-chloro-N[(4-methoxy-6-methy1-1,3,5-	
DPX-4189		triazine-2-y1)aminocarbony1]-benzene	
		sulfonamide	Glean
Cyanazine	Cyan	2-{[4-chloro-6-(ethylamino)-s-triazine-2-	
-)	5	y1]amino}-2-methy1propionitrile	Bladex
CGA-82725	None	Not released	None
Cycloate	Cycl	S-ethyl N-ethylthiocyclohexanecarbamate	Ro-Neet
Dalapon	Dala	2,2-dichloropropionic acid	Dowpon
Desmedipham	Desm	ethyl m-hydroxycarbanilate carbanilate	Betanex
Diallate	Dial	S-(2,3-dichloroally1)diisopropylthio-	
DIALIALE	Diai	carbamate	Avadex
Discula	Dicc	3,6-dichloro-o-anisic acid	Banvel
Dicamba	Dica	2-[4-(2,4-dichlorophenoxy)phenoxy]	Danie
Diclofop	Dicl	propanoic acid	Hoelon
	Dict	N-chloroacety1-N-(2,6-diethylphenyl)-	11001011
Diethatyl	Diet		Antor
D * C	D: 6	glycine ethyl ester	Avenge
Difenzoquat	Dife	1,2-dimethyl-3,5-diphenyl-1H-pyrazolium	wenge .
Dinitramine	Dini	$\underline{N}^4, \underline{N}^4$ -diethyl- α, α, α -trifluror-3,5-dini-	Cabor
		trotoluene-2,4-diamine	Cobex
Difenopenten	KK80	4-[4-[4-(trifluoromethyl)phenoxy]phenoxy]	17
		-2-pentenoic	None

Х

Common Name or Code Name	Abbreviation ^a	Chemical Name	Trade Name
Dinoseb	Dino, DNBP	2- <u>sec</u> -buty1-4,6-dinitrophenol	Dow General, Premerge
Diuron	Diur	3-(3,4-dichloropheny1)-1,1-dimethylurea	Karmex
DPX-5648	None	2-Carbomethoxy-N-[(4,6-dimethylpyrimidin-	iter more
		2-y1)aminocarbony1]benzenesulfonamide	Oust
EL 187, Isouron	None	Not released	Conserve
EL 5219	None	Oryzalin+trifluralin (1:1 mixture)	None
EL 8778	None	Isouron+atrazine (1:1 mixture)	None
Indothall	Endo	7-oxabicyclo [2,2,1] heptane-2,3-	
DEC	distantion in the Constant	dicarboxylic acid	Herbicide 27
EPTC	None	S-ethyl dipropylthiocarbamate	Eptam
Ethalfluralin	Etha	N-ethyl-N-(2-methyl-2-prophenyl)-2,6-	
hozena		dinitro-4-(trifluromethyl) benzenamine	Sonalan
Ethepon	Ethe	2-chloroethylphosphonic acid	Ethere1
Ethofumesate	Etho	2-ethoxy-2,3-dihydro-3,3-dimethy1-5-	
chell god)	S. A Arconst Mordon	benzofuranyl methanesulfonate	Nortron
Flamprop	Flam	<u>N-benzoy1-N-(3-chloro-4-floropheny1)-DL-</u>	
		alanine	Metaven
Glyphosate	Glyp	<u>N-(phosphonomethyl)glycine</u>	Roundup
Hexazinone	Hexa	3-cyclohexy1-6-(dimethylamino)-1-methy1-s-	
		triazine-2,4(1H,3H)-dione	Velpar
HOE 00661	None	Ammonium(3-amino-3carboxypropy1)methy1	
		phosphinate	None
Linuron	Linu	3-(3,4-dichloropheny1)-1-methoxy-1-	
		methylurea	Lorox
4 3785	None	2,4-D+3,6-dichloropicolinic acid	None
4 3972	None	3,6-dichloropicolinic acid	Lontrel
4 4505	None	Picloram	None
4506	None	Picloram	None
BR 18337	None	Not released	None
IBR 22359	None	Not released	None
BR 23709	None	Not released	None
MC 10108	None	methyl 5-[2-chloro-4-(trifluoromethyl)-	0.0000
		phenoxy]-2-nitrobenzoate	None
MCPA	None	[(4-chloro-o-toly1)oxy]acetic acid	Numerous
Mefluidide	Mefl	N-[2,4-dimethy1-S-[[(trifluoromethy1)	Embark,
		sulfonyl]amino]phenyl] acetamide	Vistar
Metham-sodium	Metham	sodium methyldithiocarbamate	Vapam
letolachlor	Meto	2-chloro-N-(2-ethy1-6-methy1pheny1)-N-(2-	Vapam
	eebyd upea	methoxy-1-methylethyl acetamide	Dual
Metribuzin	Metr	4-amino-6-tert-buty1-3-(methylthio)-as-	Sencor,
	entrator	triazine-5(4H)one	Lexone
40 70077	None	Not released	None
MSMA	None	monosodium methanearsonate	Bueno-6
Napropamide	None	2-(α-naphthoxy)-N,N-diethylpropionamide	Devrinol
Naptalam	Napt	N-1-napthylphtalamic acid	Alanap
NC 20484	None	2,3dihydro-3,3dimethyl-5-benzofuranyl-	мтапар
	HOHE CONTRACTOR	ethanesulfonate	None
NC 21349	None	Not released	None
Nitrofluorfen	Nitr	2-chloro-1-(4-nitrophenoxy)-4-	HOHE
urcrorrdorren	MICI		None
Orrefluerfer	Ormaf	(trifluoromethyl) benzene	nome
Oxyfluorfen	Oxyf	2 chloro-1-(3-ethoxy-4-nitrophenoxy)-4-	Cool .
		(tri-fluoromethyl)benzene	Goal
Oryzalin	Oryz	3,5-dinitro-N ⁴ ,N ⁴ -dipropylsulfanilamide	Surflan
Paraquat	Para	1,1'-dimethy1-4,4'-bipyridinium ion	Paraquat

Common Name or Code Name	Abbreviation ^a	Chemical Name	Trade name
demonstration of the second		N-(1-ethylpropyl)-2,6-dinitro-3,4-xylidine	Prowl
Pendimethalin	Pend	N=(1=ethylpiopy1)=2,0 dinicio 3,1 m/1=====	- Weacatu
Phenmedipham	Phen	methyl m-hydroxycarbanilate m-methyl	Betanal
		carbanilate	Tordon
Picloram	Picl	4-amino-3,5,6-trichloropicolinic acid	None
PPG 124	None	p-chlorophenyl N-methylcarbamate	None
PP 009	None	butyl 2-[4-((5-trifluoromethyl-2-pyridyl)	Turdlada
		oxy)phenoxy]propanoate	Fusilade
Pronamid	None	3,5-dichloro (N-1,1-dimethy1-2-propyny1)	m '5219 m
		benzamide	Kerb
Profluralin	Prof	N-(cyclopropylmethyl)-a,a,a-trifluoro-2,6-	I Indutobali -
1101101		dinitro-N-propyl-p-toluidine	Tolban
Prometryn	Prom	2,4-bis(isopropylamino)-6-(methylthio)-s-	
riometryn	1101	triazine	Caparol
Dranachlor	Prc1	2-chloro-N-isopropylacetanilide	Bexton,
Propachlor	IICI		Ramrod
1	Prnl	3,4-dichloropropionalide	Stam, Stampe
Propanil		2-chloro-4,6-bis(isopropylamino)-s-triazine	Milogard
Propazine	Prpz	isopropyl carbanilate	Chem Hoe-13
Propham	Prph	5-amino-4-chloro-2-pheny1-3(2 <u>H</u>)-	
Pyrazon	Pyra		Pyramin
		pyridazinone	None
R-25788	None	N, N-dially1-2, 2-dichloroacetamide	None
R-33865	Ext	Not released	None
R-40244	None	1-(m-trifluoromethylphenyl)-3-chlor-4-	None
		chloromethy1-2-pyrrolidine	None
RH-0265	None	Not released	
RH-043-E	None	Not released	None
RH-9861	None	Not released	None
RO-13-8895	RO-13	acetone-o-[d-2-[p-[(a,a,a-trifluoro-p-toly1)	M 3972
		-oxy]phenoxy]propiony1]oxime	None
SAN 10315	None	Not released	None
SD 45328	None	alanine, N-benzoy1-N-(3-chloro-4-	10201
5D 4JJ20	210110	fluorophenyl-1-ethyl ester	Wildex
SD 49818	None	Not released	None
	None	Not released	None
SD 92818	None .	Not released	None
SD 95481	None	Net malagad	None
SD 96803	None		None
SN 80786		Not released Not released	None
SSH 0860	None	trichloroacetic acid	None
TCA	None	N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-	
Tebuthiuron	None	2-y1]-N,N'-dimethylurea	Graslan
Terbutryn	Terb	2(tert-butylamino)-4-(ethylamino)-6-	Meers buch
TELDUCLYN	1010	(methylthio)-s-triazine	Igran
Twidleto	Tria	S-(2,3,3-trichloroally1)diisopropylthio-	
Triallate	T T T G	carbamate	Far-go
The of filmer of the	Trif	a, a, a-trifluoro-2, 6-dinitro-N-N-dipropyl-	
Trifluralin	1114	p-toluidine	Treflan
0 / 7	Marco	(2,4-dichlorophenoxy)acetic acid	Numerous
2,4-D	None	2-[1-(2,5-dimethylphenyl)ethylsufonyl]	
UBI S-734	None	pyridine N-oxide	None
041625		<u>S</u> -propyl dipropythiocarbamate	Vernam
Vernolate	Vern	P-hrohit athrohicutocarpaware	

^a Abbreviations in the tables may consist of only the first one, two or three listed letter: when space was limited. Abbreviations of numbered compounds varies with available space, but usually was the first letters and numbers. Multispecies evaluation of postemergence herbicides, Casselton, 1981. Era wheat, Park barley, Lyon oats, Bush Monofort sugarbeets, Culbert flax, OG-5201 pinto beans, Evans soybeans, upland navy beans, G-4224 corn, and Interstate 894 sunflowers were seeded May 12. Herbicides were applied June 10 when sugarbeets had 2 to 4 leaves, flax was 1 to 2 inches, corn was 5 to 6 inches, soybeans and edible beans were 2 to 3 inches, wild mustard was 2 inches, green foxtail had 2 to 3 leaves, sunflowers were 5 to 6 inches, and wheat, barley and oats had 2 to 3 leaves. A shower of rain fell 1.5 hours after treatment. Visual evaluations of weed control were taken July 7.

	Rate	Percent Control												
Treatment	(1b/A)	Wht	Bar	Oats	Flax	Sugb	Fxtl	Wimu	Navy	Pinto	Soyb	Sunf	Corn	Colq
R-0265	.125	0	0	3	100	65	7	100	17	17	17	40	12	40
R-0265	.25	3	5	5	100	65	7	100	23	22	17	73	13	40
мо-70077	.625	7	7	7	100	77	57	93	50	52	7	75	33	50
мо-70077	1	7	7	8	100	70	50	97	50	52	20	80	35	35
мо-70077	1.25	7	8	8	93	83	40	92	75	83	15	88.	62	30
MO-70077-0.78E	1	18	18	23	100	98	80	98	55	58	12	90	62	70
CGA-82725+OC	.2+.25G	32	99	100	0	0	100	0	0	0	0	0	100	0
CGA-82725+OC	.4+.25G	47	100	100	0	0	100	0	0	0	0	0	100	0
BAS 9052+OC	.2+.25G	100	100	100	0	0	100	0	0	0	0	0	100	0
BAS 9052+OC	.4+.25G	100	100	100	0	0	100	0	0	0	0	0	100	0
PP-009+OC	.2+.25G	100	100	100	0	0	100	0	0	0	0	0	100	0
PP-009+0C	.4+.25G	100	100	100	0	0	100	0	0	0	0	0	100	0
PP-009+Acif (Tackle) + OC	.2+.4+.25G	100	100	100	100	70	75	100	67	62	27	83	99	50
PP-009+Bent+OC	.2+1+.25G	100	98	100	50	100	57	100	7	0	0	85	100	70
PP-009+MCPA+OC	.2+1+.25G	100	98	99	10	100	60	100	50	40	80	97	66	99
Mefluidide+Surfactant	.12+.5%	97	95	98	53	60	82	55	27	18	22	62	92	0
Mefl+Acif (Blazer) + Surfactant	.12+.37+.5%	69	68	69	100	100	50	100	23	17	23	76	55	65
Mefl+S/Acif (Blazer) 3 day split*	.12+.5%+.25	97	95	97	96	73	60	100	48	45	45	82	73	25
Mefl+S/Acif (Blazer) 3 day split*	.12+.5%+.37	100	98	99	83	75	52	100	63	52	60	83	80	55
Acifluorfen (Blazer)	.37	30	25	43	100	62	22	100	0	0	7	58	13	25
Mefl+Desmedipham+Surfactant	.12+1+.5%	80	73	75	90	18	62	99	40	42	40	73	55	65
Mefl+Surf/Desm 3 day split*	.12+.5%+.25	95	92	92	66	20	67	99	47	47	50	67	85	63
Desmedipham	1	8	9	8	80	3	27	96	17	15	15	27	20	75
Mefl+Bentazon+Surfactant	.12+1+.5%	57	57	57	27	100	58	100	7	5	0	68	27	75
Mefl+Surf/Bentazon 3 day split*	.12+.5%+1	96	94	93	17	100	72	100	30	25	32	85	73	55
Bentazon	1	0	0	3	7	100	0	100	0	0	0	93	3	75
Dinoseb	1.5	5	10	8	37	97	7	100	5	2	3	53	0	95
Napt&NDBP (Dyanap)	3	7	43	42	3	100	7	100	18	15	10	73	15	75
Endothall+Dalapon+Surf	1.5+2+.5%	99	99	75	96	32	99	42	100	100	100	99	98	50
Mean		57	62	62	55	57	58	75	28	26	21	59	61	44
LSD (0.01)		23	31	33	42	47	31	19	39	40	29	34	51	74
LSD (0.05)		17	24	25	31	35	24	15	29	30	22	25	39	55
No. of Reps.		3	3	3	3	3	3	3	3	3	3	3	3	2

* Mefluidide + surfactant followed by acifluorfen 3 days later.

Multispecies evaluation of preplant incorporated herbicides, Casselton, 1981. Herbicides were applied and incorporated twice with a field cultivator plus harrow on May 12. Era wheat, Park barley, Lyon oats, Bush Monofort sugarbeets, Culbert flax, OG-5201 pinto beans, Evans soybeans, Upland navy beans, G-4224 corn, and Interstate 894 sunflowers were seeded May 12. Air temperature was 50°, soil was loose and dry, and wind was from the south at 10-20 mph during herbicide application. Visual evaluations were made on June 24.

	Rate Percent Control												
Treatment	(1b/A) -	Wht	Bar	Oats	Flax	Sugb	Fxtl	Wimu	Navy	Pinto	Soyb	Sunf	Corn
Trifluralin	1	27	0	82	10	95	98	0	0	0	0	0	38
SD-95481	0.5	0	0	25	0	_0	87	15	0	0	10	3	10
SD-95481	1	35	28	85	3	0	92	57	2	0	17	20	75
SD-92818	0.5	3	0	0	0	0	63	0	0	0	0	13	15
SD-92818	1	10	10	28	0	0	84	10	0	0	0	13	77
SD-96803	0.5	0	0	25	0	0	65	2	0	0	0	0	7
SD-96803	1	3	3	75	0	0	90	30	3	3	0	0	42
Napropamide	2	27	5	10	10	0	75	27	0	2	10	15	3
Pronamid	2	27	27	72	88	40	60	58	0	0	0	5	60
S-734-F	1.5	0	0	0	0	0	93	3	0	0	7	77	37
SC-7829	3	15	7	22	0	0	96	33	3	0	0	37	23
50 7025													
Mean		13	7	38	10	12	82	21	1	0	4	16	35
LSD (0.01))	35	18	34	16	29	18	27	6	5	22	28	48
LSD (0.05)		26	13	25	12	21	13	20	3	3	16	20	36
No. of Re		3	3	3	3	3	3	3	3	3	3	3	3

Multispecies evaluation of preemergence herbicides, Casselton, 1981. Era wheat, Park barley, Lyon oats, Bush Monofort sugarbeets, Culbert flax, OG-5201 pinto beans, Evans soybeans, Upland navy beans, G-4224 corn, and Interstate 894 sunflowers were seeded and herbicides were applied May 12. Air temperature was 65°, sky was partly cloudy, soil was loose and dry, and wind was 10-20 mph from the southeast during herbicide application. Visual evaluations were made on June 24.

	Rate		Percent Control											
Treatment	(1b/A)	Wht	Bar	Oats	Flax	Sugb	Fxtl	Colq	Wimu	Navy	Pinto	Soyb	Sunf	Corn
Chloramben	3	10	8	15	. 0	76	60	90	47	0	0	0	0	60
RH-9861	1.5	77	67	.62	73	89	24	0	12	17	10	0	17	15
RH-9861	3	98	95	73	98	93	68	70	27	37	28	35	10	27
SD-95481	0.75	2	0	27	10	10	67	0	0	8	0	0	0	25
SD-95481	1.5	0	3	43	20	43	70	0	0	7	0	0	2	50
SD-93818	0.75	0	7	2	0	0	41	0	0	0	0	10	28	17
SD-93818	1.5	0	0	7	0	0	70	0	0	0	0	0	0	7
SD-96803	0.75	0	0	13	0	0	43	0	0	0	0	0	7	13
SD-96803	1.5	7	7	64	0	0	57	0	0	0	0	0	0	33
MBR-22359	1.5	94	74	88	0	0	67	0	0	0	0	0	42	73
MBR-22359	3	99	95	98	0	5	86	0	20	0	0	10	68	99
MBR-23709	1.5	37	10	30	0	7	55	0	10	0	0	0	25	33
MBR-23709	3	47	33	53	0	13	67	70	28	0	3	10	48	7
										_	2	5	19	35
Mean		36	31	44	15	26	60	18	11	5	3	1000		72
LSD (0.01)	20	29	35	39	37	43	0	20	29	21	27	51	
LSD (0.05)	15	21	26	29	28	32	0	15	21	16	20	38	53
No. of Re	ps.	3	3	3	3	3	3	1	3	3	3	3	3	3.

Effect of number of cultivations and herbicide treatment on sugarbeet yield, Fargo 1981. Preplant incorporated herbicides were applied by operating a rototiller 4 inches deep and Great Western Rl sugarbeets were planted May 14 in a silty clay soil with 5.3% organic matter. Desmedipham was applied June 12 when sugarbeets had 2 to 6 leaves, desmedipham + BAS 9052 was applied June 18 when sugarbeets had 4 to 8 leaves, and desmedipham + ethofumesate was applied June 24 when sugarbeets had 6 to 10 leaves. Weed species present in the plot area were green foxtail, redroot pigweed, purslane, and kochia. Weed populations were variable. Sugarbeets were hand thinned but weeds were not removed in the thinning. Sugarbeets were harvested September 23.

Table 1. Cultivation number and herbicide treatment effect on extractable sucrose/A.

					actable Si		2012
Herbicide ()		Rate	Nu	mber of (Cultivatio	ons	Herb.
ilerbreide (When Applied)	Lb/A	0	1	2	4	Mean
					(lb/A))	
EPTC (PPI) 3, Desmedipham (desmedipham+H		0.75+0.2,	4435 1716 3371 3043 4258	4990 3628 4958 4950 4311	5182 3337 4952 4952 4952	5710 3696 5746 5155 4577	5079 3094 4757 4540 4446
Cultivat	tion Mean	di alci mata	3365	4567	4624	4976	4383
LSD (0.0	D5) Cultivation me Cult x Herb =	an = 359, H 804	lerbició	le mean =	= 402,		

Table 2. Cultivation number and herbicide treatment effect on sugarbeet root yield.

				Su	garbeet Y:	ield	
Herbicide	(When Applied)	Rate					Herb.
	(mich hppired)	lb/A	0	1	2	4	Mean
					(tons/A)		
Hand weeded Cultivation			21.4	21.0	22.0	22.5	21.8
			7.6	15.6	14.5	15.1	13.2
	e+cycloate (PPI) 3	+4	16.0	20.5	21.9	22.4	20.2
Desmedipham	, desmedipham (Jun (June 12) 0.75,	e 12)1	13.8	19.4	20.1	20.9	18.6
desmediphar	n+BAS 9052 (June 1 n+ethofumesate (Ju	8) 0.75+0.2, ne 24)	19.0	17.8	18.9	19.1	18.7
Cultiv	vation Mean		15.6	18.9	19.5	20.0	18.5
LSD (0	0.05) Cultivation Cult x Herb	mean = 1.2 = 2.7	, Herbicio	de mean :	= 1.4,		

				Sucro	ose Conten	it	
		Rate					Herb.
Herbicide	(When Applied)	lb/A	0	· 1 · ·	2	4	Mean
				an anno anno actas anto anno a	(%)		
Hand weeded	l check		13.6	14.5	14.6	15.4	14.5
Cultivation			13.8	14.4	14.3	14.9	14.4
Ethofumesate+cycloate (PPI) 3+4				14.9	14.3	15.4	14.5
EPTC (PPI) 3, desmedipham (June 12) 1			14.0	15.3	15.1	15.0	14.9
Desmediphar desmedipha	n (June 12) 0.75, am+BAS 9052 (June 3 am+ethofumesate (J	18) 0.75+0.2,	14.1	14.8	14.8	14.7	14.6
Cult	ivation Mean		13.8	14.8	14.6	15.1	14.6
LSD	(0.05) Cultivation Cult x Her	n mean = 0.4 , b = NS	Herbici	de mean	= NS,		

Table 3. Cultivation number and herbicide treatment effect on sucrose content.

Increased numbers of cultivations tended to increase extractable sucrose/A and tons/A of sugarbeets. This differed from the results in 1980 when yields tended to be less from plots cultivated 3 or 4 times as compared to plots cultivated two times. The soil in 1980 was a loam with 3.4% organic matter and the soil in 1981 was a silty clay with 5.3%. Perhaps soil type affected the results. Weed populations were greater in 1980 than 1981. Weed control was good to excellent in herbicide treated or hand weeded plots which had been cultivated once or more. Hand weeded plots cultivated four times had more extractable sucrose/A than non-cultivated hand weeded plots. Plots cultivated once or more had a higher sucrose content than non-cultivated plots. cides were applied and Bush Monofort sugarbeets were planted April 16. Cycloate+TCA and EPTC+cycloate were incorporated by cperating the rototiller 4 inches deep while the rototiller was set 2 inches deep for ethofumesate+TCA and diethatyl+TCA. TCA was applied preemergence April 18. A hard rain and hail on May 22 killed many emerged weeds and sugarbeets. Very few weeds were present in the plots until a second flush of weeds germinated after the rain. Desmedipham at 1 lb/A, the first half of split desmedipham at 0.75 lb/A, and lay-by propachlor granules at 6 lb/A were applied June 10 when the sugarbeets had 4 to 8 leaves, redroot pigweed was 1 to 3 inches, common lambsquarters was 2 to 5 inches, and nightflowering catchfly was 2 to 4 inches tall. The second half of split desmedipham at 0.75 lb/A and ethofumesate+desmedipham at 1.5+0.75 lb/A were applied June 17 when sugarbeets had 8 to 10 leaves, redroot pigweed was 2 to 6 inches, common lambsquarters was 4 to 10 inches, and nightflowering catchfly was 4 to 8 inches tall. Sugarbeets were harvested October 15.

		Sugb	Rrpw	Colq	Fxtl	Nfcf
		inj	entl	entl	cntl	cntl
	Rate	ratg	ratg	ratg	ratg	ratg
Treatment	(1b/a)			(%)-		
Ethofumesate+TCA	4+6	0	65	30	69	45
Ethofumesate+TCA/Desmedipham	4+6+1	1	100	100	98	96
Etho+TCA/Desm/Prcl-Granules	4+6+1+6	ò	100	100	97	100
Et+TCA/Desm/Prcl-G/Et+De 4+6-		6	100	100	100	100
Diethatyl+TCA	6+6	2	68	51	83	84
Diethatyl+TCA/Desmedipham	6+6+1	1	78	86	92	84
Diet+TCA/Desm/Propachlor-Gran		Ó	96	89	98	94
	+1+6+1.5+.75	5	100	100	100	95
Cycloate+TCA	3+6	3	46	20	65	31
Cycloate+TCA/Desmedipham	3+6+1	2	93	86	80	79
Cycloate+TCA/Desmedipham/Prc		3	88	96	96	94
	+1+6+1.5+.75	6	100	100	98	98
Hand Weeded Check		0	100	100	100	100
EPTC+Cycloate	1+2.5	1	43	35	68	55
EPTC+Cycloate/Desmedipham	1+2.5+1	1	95	98	96	91
EPTC+Cycl/Desm/Propachlor-G	1+2.5+1+6	3	97	99	99	96
EP+Cycl/De/Pr-G/Et+De 1+2.5	+1+6+1.5+.75	3	100	100	98	100
TCA	6	0	6	3	44	6
TCA/Desmedipham	б+1	0	76	65	44	20
TCA/Desmedipham/Propachlor-G	ran. 6+1+6	1	85	91	76	49
TCA/Desm/Prcl-G/Etho+Desm 6-	+1+6+1.5+.75	2	100	100	100	90
TCA/Desmedipham/Desmedipham		0	95	94	93	39
TCA/Desm/Desm/Propachlor-G	6+.75+.75+6	1	87	83	93	81
Mean		2	83	79	86	75
High mean		6	100	100	100	100
Low mean		0	6	3	44	6
Coeff. of variation		176	19	25	22	21
LSD(1 Percent)		6	29	36	34	30
LSD(7 Percent)		4	22	27	26	23
No. of reps		4	4	4	4	4
not of robo						

Summary

Preplant incorporated ethofumesate+TCA followed by postemergence desmedipham gave nearly complete weed control and little additional benefit was noted from using lay-by propachlor or ethofumesate + desmedipham in addition to desmedipham. However, desmedipham, lay-by propachlor, and ethofumesate + desmedipham all contributed towards increased weed control when used over diethatyl+TCA, cycloate+TCA, EPTC+cycloate, or TCA.

(Experiment continued on next page)

		Peet		Extract	Deat
Rate	Suonosa	Root Yield	Impurity	Extract Sucrose	Beet Popl
Treatment (1b/a)	Sucrose	(ton/a)	Index	(lb/a) #	•
	()	(ton/a)	Tudex		10010
Ethofumesate+TCA	++6 13.1	19.5	1367	4030	63
Ethofumesate+TCA/Desmedipham 4+6		19.7	1343	4431	68
Etho+TCA/Desm/Prcl-Granules 4+6+		19.7	1265	4494	64
Et+TCA/De/Prcl-G/Et+De 4+6+1+6+1.5+		19.3	1406	4034	65
	5+6 13.1	18.9	1435	3888	61
	5+1 13.0	16.1	1398	3285	54
Diet+TCA/Desm/Propachlor-Gran. 6+6+		19.0	1560	4008	53
Diet+TCA/De/Pr-G/Et+De 6+6+1+6+1.5+	.75 13.7	17.4	1442	3759	41
Cycloate+TCA	3+6 13.2	15.2	1499	3053	48
Cycloate+TCA/Desmedipham 3+	5+1 14.3	19.9	1271	4584	61
Cycloate+TCA/Desmedipham/Prcl-G 3+6+	1+6 13.3	19.6	1497	4007	54
Cycl+TCA/De/Pr-G/Et+De 3+6+1+6+1.5+	75 13.1	16.8	1517	3382	45
Hand Weeded Check	13.1	22.0	1389	4569	62
EPTC+Cycloate 1+2	2.5 13.5	16.3	1452	3400	44
EPTC+Cycloate/Desmedipham 1+2.5		20.2	1325	4265	80
EPTC+Cycl/Desm/Propachlor-G 1+2.5+		19.0	1346	3880	64
EP+Cycl/De/Pr-G/Et+De 1+2.5+1+6+1.5+		20.3	1219	4653	60
TCA	6 14.1	15.7	1338	3566	57
	5+1 13.7	12.3	1393	2665	36
	1+6 13.0	16.8	1556	3395	38
TCA/Desm/Prcl-G/Etho+Desm 6+1+6+1.5+		20.9	1428	4490	66
TCA/Desmedipham/Desmedipham 6+.75+		20.9	1455	4463	55
TCA/Desm/Desm/Propachlor-G 6+.75+.7	5+6 13.4	18.6	1595	3780	41
			SIND-SITE AND		
Mean	13.5	18.4	1413	3917	56
High mean	14.3	22.0	1595	4653	80
Low mean	12.9	12.3	1219	2665	36
Coeff. of variation	6.6	16.9	13	19	29
LSD(1 Percent)	1.9	6.8	386	1604	35
LSD(5 Percent)	1.4	5.1	290	1206	26
No. of reps	3.0	3.0	3	3	3

Multiple herbicide treatments, Glyndon 1981. (continued)

Summary

The hail on May 22 caused erratic sugarbeet stands and thereby increased the variability in the yield data. Average sugarbeet populations varied from 36 to 80 plants per 60 feet of row. The hand weeded check had the greatest yield in tons/A and one of the highest levels of extractable sucrose but most of the treatments did not differ significantly from the hand weeded check. Electrical discharge system and rope wick, Glyndon 1981. Bush Monofort sugarbeets were planted and TCA at 6 lb/A was applied over the entire plot area on April 16. A hard rain and hail on May 22 killed many emerged weeds and sugarbeets. Electrical discharge treatments were applied July 1, July 8, July 17, July 27, and August 5. Glyphosate was applied with a 'Lightning Rod' brand rope wick on July 6 and July 21. The rope wick was used in one direction (1X) or in two directions (2X). The electrical discharge system was deliberately set to contact the sugarbeet leaves in hand weeded plots on July 1, July 17, and August 5.

	Si	ze of suga	rbeets and	weeds (inch	es)
Date	Sugb	Rrpw	Colq	Sufl	Nfcf
July 1	12	18-22	24-30	14-18	8-16
July 8	18	18-26	24-36	20-36	14-20
July 17	24	28-30	30-36	30-42	20-24
July 27	26	36-40	36	42	24
Aug. 5	32	36-42	36	36-42	24

Sugarbeets were harvested October 15. The May 22 hail caused erratic sugarbeet stands and variability in the yield data was high because of the poor stands.

	Time of		Root e Yield	Impurity	Extract Sucrose	Popl
Treatment	Application	(%)	(ton/a)	Index	(1b/a)	#/60ft
EDS Time 1 EDS Time 1+2 EDS Time 1+2+3 EDS Time 1+2+3+4 EDS Time 1+2+3+4+ EDS Time 2 EDS Time 3 EDS Time 4 EDS Time 5	5	13.9 13.0 14.1 13.4 13.5 13.5 13.5 13.4 13.7 12.6	12.4 15.4 15.1	1452 1526 1500 1606 1393 1478 1474 1354 1614	2277 2712 2744 3079 3252 3218 2142 2594 1832	42 43 43 43 43 43 28 43 29

(Table continued on next page)

Table . Continued

Time of Treatment Application	Roo Sucrose Yiel (%) (ton/	d Impurity	Extract Sucrose (1b/a)	Popl
Rope Wick 1X Time 2 Rope Wick 2X Time 2 Rope Wick 1X Time 4 Rope Wick 2X Time 4 Rope Wick 1X Time 2+4 Rope Wick 2X Time 2+4 Hand Weeded Check Weedy Check Hand Weeded + EDS on Beets Time 1 Hand Weeded + EDS on Beets Time 3 Hand Weeded + EDS on Beets Time 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1549 1 1741 5 1438 2 1473 3 1610 8 1858 5 1540 .8 1652 .0 1841	1384 1733 745 1616 1473 1972 2963 1884 1977 2780 4105	25 23 19 29 21 31 36 38 18 29 43
Mean High mean Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent) No. of reps	13.1 11. 14.1 18. 11.6 4. 5.8 33. 1.7 8. 1.3 6. 3.0 3.	.8 1858 1 1305 .4 14 .4 478	2324 4105 745 36 1856 1387 3	33 43 18 36 27 20 3

Summary

Sugarbeet plots treated with glyphosate in a rope wick tended to yield the same as or less extractable sucrose/A than the weedy check even though weed control was generally good. Many sugarbeets showed typical glyphosate injury symptoms in the treated plots. Sugarbeet plots treated with the electrical discharge system tended to yield more extractable sucrose/A than the weedy check and several treatments yielded equal to or greater than the hand weeded check. Touching the sugarbeet leaves with the electrical discharge system on July 1 caused a reduction in sugarbeet population. Sugarbeets touched with the electrical discharge system on August 5 yielded over 1100 pounds of extractable sucrose more than the hand weeded check. This difference was not significant but the results suggest more work should be done. Herbicides on hand weeded sugarbeets, Fargo 1981. Great Western R1 sugarbeets were planted May 13 and TCA at 6 lb/A was surface applied to the entire plot area May 14. The surface 2 inches of soil was dry and few sugarbeets germinated until after a 1.6 inch rain on May 22. Postemergence herbicides were applied June 22 when the sugarbeets had 6 to 8 leaves. Plots were hand weeded frequently throughout the growing season. Sugarbeets were harvested September 23.

			Del			
	Rate	0	Root		Extract	Beet
Treatment		Sucrose	Yield	Impurity	Sucrose	Popul
Treatment	<u>(1b/a)</u>	(%)	(ton/a)	Index	(lb/a)	#/40ft
77. 1 1 1						
Untreated Check		13.2	18.0	1576	3676	33
	.25+.25G	12.6	21.3	1724	4001	34
BAS 9052+0C	•5+•25G	12.4	20.1	1797	3629	34
BAS 9052+0C	1+.25G	12.5	18.6	1755	3424	
RO 13-8895+0C	25+.25G	12.5	18.0	1809		31
RO 13-8895+0C	•5+•25G	12.4	18.2		3272	28
RO 13-8895+0C	1+.25G	12.6	18.5	1876	3281	26
PP-009+0C				1841	3329	29
Mefluidide	•5+•25G	12.9	18.5	1711	3562	32
	.25	12.5	18.2	1709	3363	31
		12.6	14.7	1744	2785	20
Acifluorfen (Tackle)		12.4	12.2	1810	2212	21
Acifluorfen (Tackle)		12.7	11.7	1732	2218	15
Acifluorfen (Blazer)	.25	12.3	13.4	1885	2341	25
Acifluorfen (Blazer)	•5	12.2	10.4	1910	1841	15
Acifluorfen (Blazer)	1	12.3	6.8	1836	1199	9
CGA-82725+0C	25+.25G	12.1	19.7	1767	3529	
CGA-82725+0C	.5+.25G	11.9	16.5	1948		33
CGA-82725+0C	1+.25G	12.5	17.9		2793	25
Diclofop	2	12.2		1829	3336	28
Diclofop	4		16.6	1954	2849	24
Desmedipham	4	12.1	16.8	1957	2842	24
Desmedipitam	2	12.3	18.3	1829	3277	30
Mean						
		12.4	16.4	1809	2989	26
High mean		13.2	21.3	1957	4001	34
Low mean		11.9	6.8	1576	1199	9
Coeff. of variation		5.2	21.9	10	26	33
LSD(1 Percent)		1.0	5.4	281	1160	13
LSD(5 Percent)		0.7	4.1	212	877	10
No. of reps		6.0	6.0	6	6	6
				v	0	0

Summary

Acifluorfen reduced sugarbeet populations and yield of extractable sucrose per acre compared to the untreated check.

Fall and Spring Herbicides, Crookston, 1981. Fall herbicides were applied October 22,1980 and spring treatments on May 5, 1981. A rototiller incorporator was operated 4 inches deep for treatments containing EPTC or cycloate and 2 inches deep for others. 'Hilleshog 309' sugarbeets were seeded May 5 and soil moisture was adequate so seeds were placed in moist soil about 1.25 inches deep. Weed control and sugarbeet injury were evaluated June 8 and June 29.

				e 8	J	June 29		
			Sugb	Grft	Grft	Prpw	Sugb	
		Time	inj	entl	cntl	cntl	inj	
	Rate	of	ratg	ratg	ratg		ratg	
Treatment	(lb/a)	application			(%)_			
Treatment EPTC+Diallate 4 Impregnated EPS EPTC 4 Fall Cycloate 6 Fall Impregnated Tr Triallate 2 Fall Diallate 2 Fall Impregnated EPS EPTC 2.5 Sprin Cycloate 4 Spr Impregnated Tr Triallate 2 Spr EPTC+Diallate EPTC 4 Fall + EPTC+Diallate EPTC+DIALBTC+DIALBTC+DIALBTC+DIALBTC+DIALBTC+DIALBTC+DIALBTC+DIALBTC	(1b/a) +1 Fall C 4 Fall L iallate 2 ll C 2.5 Spr g ing iallate 2 ring 2+1 Spring Diethatyl Ethofumesa 4+1 Fall + Die	application Fall ing Spring 4 Spring the 3 Spring TCA 6 Spring ethatyl 4 Spring	3 6 0 3 0 0 10 8 0 10 2 15 22 21 15 16 25 8	91 80 71 99 26 28 51 96 95 99 33 82 69 90 98 100 100 100 100 100	(%) - 84 50 59 94 65 56 65 79 82 94 70 79 85 88 92 97 90 93 98 88 80	63 3 45 40 0 3 15 73 41 71 55 50 0 60 92 98 99 100 75 52	5 0 4 1 0 0 5 9 3 1 8 1 9 10 11 8 13 11 5	
High mean Low mean Coeff. of vari LSD(1 Percent) LSD(5 Percent) No. of reps			25 0 96 15 11 4	100 26 15 22 17 4	98 50 11 17 13 4	100 0 16 23 17 2	13 0 126 12 9 4	
HOT OF LOPP								

Summary

EPTC impregnated on dry urea fertilizer gave control of green foxtail similar to liquid EPTC applied in water. Fall applied EPTC plus diallate gave weed control superior to fall applied EPTC. Diallate and triallate at 2 lb/A spring and fall applied gave from 56 to 79% control of green foxtail on June 29. Diethatyl and ethofumesate spring applied plus fall applied EPTC gave weed control superior to EPTC alone. Sugarbeets recovered from early herbicide injury as sugarbeet injury ratings were lower on June 29 than on June 8. Spring applied herbicides plus fall applied EPTC or EPTC plus diallate gave more sugarbeet injury than EPTC or EPTC plus diallate alone.

Weed beet control, Crookston 1981. Preplant incorporated herbicides were applied and rototiller incorporated by operating the rototiller 4 inches deep on May 5, 1981. The outer two rows of each plot were planted with commercial sugarbeet seed and the center two rows were planted with seed harvested from bolting sugarbeets in 1980. The commercial sugarbeet seed produced essentially zero bolters in 1981 while nearly all uncontrolled plants in the center two rows produced bolters. This suggests that most of the plants in the center two rows were from seed produced by annual bolters or weed beets and not by cold induced bolters. Early postemergence treatments were applied June 16 when the weed beets had 4 to 8 leaves. Late postemergence treatments were applied June 24 when the weed beets had 6 to 10 leaves. Weed beet control was evaluated visually June 29 and July 22. The presence or absence of bolted living plants was noted on July 22.

		June29	Ju	uly 22
		Webt	Webt	
Time		entl	cntl	
of	Rate	ratg	ratg	Bolters
Treatment Application	(lb/a)	(%)-		present
Cyanazine-L PPI	3 3	99	98	yes
Alachlor PPI		72	46	yes
Pendimethalin PPI	1.5	95	100	no
Trifluralin PPI	•5	96	93	yes
Trifluralin PPI	1	97	95	yes
Trifluralin+Chloramben PPI	•75+2	97	95	no
	.75+.25	99	100	no
2,4-D June 16	.25	46	76	yes
2,4-D June 24	.25	46	70	yes
2,4-D June 24	•5	40	76	yes
2,4-D June 16	•5	58	86	yes
MCPA June 16	.25	45	49	yes
MCPA June 16	•5	65	88	yes
MCPA June 24	.5	44	79	yes
MCPA June 24	.25	36	43	yes
Bromoxynil+MCPA June 16	.25+.25	80	55	yes
Bromoxynil+MCPA June 24	.25+.25	83	63	yes
Dicamba+MCPA June 16	.12+.25	48	86	yes
Dicamba+MCPA June 24	.12+.25	41	76	no
	.016+.25	53	70	yes
	.016+.25	44	75	yes
			15	,00

(Table continued on next page)

Table . Continued

		June29	Ju	ly 22
		Webt	Webt	
Time		entl	cntl	
of	Rate	ratg	ratg	Bolters
	(lb/a)	(%)		present
Treatment Application				presente
Bentazon June 16	1.5	99	93	yes
Bentazon June 24	1.5	88	91	no
Chlorsulfuron June 16	.01	98	100	no
Chlorsulfuron June 24	.01	46	100	no
Napt+DNBP (Dyanap) June 16	3+2	63	53	yes
Dinoseb June 16	1.5	45	23	yes
Untreated Check 1		0	0	yes
Untreated Check 2		0	0	yes
Mean		63	72	
High mean		99	100	
Low mean		0	0	
Coeff. of variation		14	14	
LSD(1 Percent)		16	18	
LSD(5 Percent)		12	14	
No. of reps		4	4	

Summary

All preplant incorporated treatments except alachlor gave 93% or greater weed beet control. However, only pendimethalin, trifluralin+chloramben, and trifluralin+metribuzin totally prevented bolting. MCPA at 0.25 lb/A gave poor weed beet control. 2,4-D at 0.25 or 0.5 lb/A and MCPA at 0.5 lb/A gave 70 to 88\% control. Combining MCPA at 0.25 lb/A with bromoxynil or picloram gave only 55 to 75% control and none of these treatments prevented bolting. Dicamba + MCPA and bentazon applied at the 6 to 10 leaf stage prevented bolting. Chlorsulfuron at 0.01 lb/A gave 100\% weed beet control and prevented bolting when applied at both growth stages.

EPTC and cycloate plus insecticides, St. Thomas 1981. Herbicides and herbicides plus insecticides were applied and incorporated by a rototiller set 4 inches deep May 6 and Beta 1443 sugarbeets were planted May 7. Liquid formulations of insecticides and herbicides were tank mixed and applied at 17 gal/A with a compressed air tractor sprayer. Soil temperature was 48 F at 3 inches. About 1 inch of rain fell May 8 and 4.05 inches of rain occurred from May 7 to June 9. Plots were evaluated visually on June 9 and June 25. Sugarbeets were harvested October 5.

	Jun		Evaluat				valuat	ion
	Colq cntl	Rrpw cntl	Grft cntl	Sgbt inj	Colq cntl	Rrpw cntl	Grft cntl	Sgbt
Rate Treatment (1b/a)	ratg	ratg	ratg	ratg	ratg	ratg	ratg	inj ratg
EPTC+Dyfonate 2.5+2 EPTC+Dyfonate 2.5+4 Cycloate+Dyfonate 4+2 Cycloate+Dyfonate 4+4 EPTC+Lorsban 2.5+2 Cycloate+Lorsban 4+2 EPTC 2.5 Cycloate 4	93 88 93 91 96 94 98 95	94 90 89 90 97 95 93 94	99 96 98 98 100 98 100 100	24 19 6 8 20 4 21 6	85 83 86 86 94 89 93 93	77 68 65 65 80 79 75 85	100 100 95 98 100 98 99 99	13 10 6 1 9 3 8 3
Mean High mean Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent) No. of reps	93 98 88 5 9 7 4	93 97 89 4 8 6 4	98 100 96 3 5 4 4	13 24 4 56 15 11 4	88 94 83 8 14 10 4	74 85 65 15 23 17 4	98 100 95 2 5 3 4	6 13 1 44 6 4 4

Summary

Sugarbeet injury and weed control tended to be greater on June 9 than on June 25. EPTC+Dyfonate at 2.5+4 lb/A gave less control of common lambsquarters than EPTC at 2.5 lb/A. Cycloate+Dyfonate gave less redroot pigweed control than cycloate alone.

(Experiment continued on next page)

			Root		Extract	Beet
	Rate	Sucrose	Yield	Impurity	Sucrose	Popul
Treatment	(1b/a)	(%)	(ton/a)	Index	(1b/a)	#/70ft
EPTC+Dyfonate EPTC+Dyfonate Cycloate+Dyfona Cycloate+Dyfona EPTC+Lorsban Cycloate+Lorsba EPTC Cycloate	te 4+4 2.5+2	14.0 13.2 14.0 13.9 13.5 13.7 13.7 13.7	21.5 25.4 22.3 23.8 22.9 23.2 25.0 21.6	1409 1598 1464 1470 1523 1452 1526 1597	4741 5072 4837 5180 4813 4990 5280 4510	72 69 66 72 69 74 70 72
Mean High mean Low mean Coeff. of varia LSD(1 Percent) LSD(5 Percent) No. of reps	ation	13.7 14.0 13.2 3.4 0.9 0.7 4.0	23.2 25.4 21.5 9.1 4.2 3.1 4.0	1505 1598 1409 7 207 152 4	4928 5280 4510 8 781 574 4	70 74 66 8 11 8 4

EPTC and cycloate plus insecticides, St. Thomas 1981. (continued)

Summary

Sugarbeets treated with EPTC or cycloate plus insecticides had extractable sucrose per acre and plant populations similar to EPTC or cycloate alone. rototiller incorporated on April 27. Bush Monofort sugarbeets were applied and preemergence TCA was applied April 28. The rototiller was operated 4 inches deep for treatments including EPTC or cycloate and 2 inches deep for the others. The soil surface 1 inch was dry at planting but sugarbeet emergence and common lambsquarters emergence was good. A frost on May 10 killed many of the sugarbeets. The first significant rain following planting was May 22 causing a second flush of common lambsquarters and a flush of redroot pigweed. Weed control was evaluated June 18.

Rate \$ inj Colq Colq Rrpw Treatment (1b/a) ratg \$ control rating EPTC 2 8 11 0 0 EPTC 3 23 82 57 50 EPTC 5 58 93 74 63 Cycloate 3 0 64 25 25 Cycloate 6 0 83 75 75 EPTC+TCA 2+6 15 86 43 40 Cycloate+TCA 2+6 15 86 43 40 Cycloate+TCA 2+6 15 86 43 40 Cycloate+TCA 3+6 5 76 15 15 EPTC-Cycloate 1+2 3 63 23 18 EPTC-Cycloate 2+2 8 89 80 79 EPTC-Cycloate 2+4 13 96 93 93 EPTC-C			Sgbt	Early Flus	nLate Flush			
Treatment(1b/a)ratg \$ control ratingEPTC281100EPTC323825750EPTC558937463Cycloate30642525Cycloate40533030Cycloate60837575EPTC+TCA2+615864340Cycloate+TCA3+65761515EPTC+Cycloate1+23632318EPTC+Cycloate1+48895046EPTC+Cycloate1+48895046EPTC+Cycloate2+28887869EPTC+Cycloate2+413969393EPTC+Cycloate3+324979387EPTC+Cycloate3+428949393TCA(Pre)701000Etho-F+Cycloate3+428949393TCA(Pre)701000Etho-F+Cycloate3+33313088Pyrazon-L+TCA7+60838489Diethaty1+TCA6+63313088Pyrazon-L+TCA7+60839392Etho-F+Cycloate3+288596Diethaty1+Cycloate<								
EPTC 3 23 82 57 50 EPTC 5 58 93 74 63 Cycloate 3 0 64 25 25 Cycloate 4 0 53 30 30 Cycloate 6 0 83 75 75 EPTC+TCA 2+6 15 86 43 40 Cycloate+TCA 3+6 5 76 15 15 EPTC+Cycloate 1+2 3 63 23 18 EPTC+Cycloate 1+3 0 78 40 38 EPTC+Cycloate 2+2 8 89 80 79 EPTC+Cycloate 2+3 8 88 78 69 EPTC+Cycloate 3+2 5 90 85 83 EPTC+Cycloate 3+4 28 94 93 93 EPTC+Cycloate 3+4 28 94 93 93 EPTC+Cycloate 3+3 24 97 93 87 <tr< th=""><th>Treatment</th><th>(lb/a)</th><th>ratg</th><th> %</th><th></th><th></th></tr<>	Treatment	(lb/a)	ratg	%				
EPTC 3 23 82 57 50 EPTC 5 58 93 74 63 Cycloate 3 0 64 25 25 Cycloate 4 0 53 30 30 Cycloate 6 0 83 75 75 EPTC+TCA 2+6 15 86 43 40 Cycloate+TCA 3+6 5 76 15 15 EPTC+Cycloate 1+2 3 63 23 18 EPTC+Cycloate 1+3 0 78 40 38 EPTC+Cycloate 2+2 8 89 80 79 EPTC+Cycloate 2+3 8 88 78 69 EPTC+Cycloate 3+2 5 90 85 83 EPTC+Cycloate 3+4 28 94 93 93 EPTC+Cycloate 3+4 28 94 93 93 EPTC+Cycloate 3+3 24 97 93 87 <tr< td=""><td>EDWC</td><td>•</td><td>0</td><td></td><td></td><td></td></tr<>	EDWC	•	0					
EPTC 5 58 93 74 63 Cycloate 3 0 64 25 25 Cycloate 4 0 53 30 30 Cycloate 6 0 83 75 75 EPTC+TCA 2+6 15 86 43 40 Cycloate+TCA 3+6 5 76 15 15 EPTC+Cycloate 1+2 3 63 23 18 EPTC+Cycloate 1+3 0 78 40 38 EPTC+Cycloate 2+2 8 89 80 79 EPTC+Cycloate 2+3 8 88 78 69 EPTC+Cycloate 2+4 13 96 93 93 EPTC+Cycloate 3+4 28 94 93 93 <		2						
Cycloate30642525Cycloate40533030Cycloate60837575EPTC+TCA2+615864340Cycloate+TCA3+65761515EPTC+Cycloate1+23632318EPTC+Cycloate1+30784038EPTC+Cycloate1+38895046EPTC+Cycloate2+28898079EPTC+Cycloate2+38887869EPTC+Cycloate3+25908583EPTC+Cycloate3+424979387EPTC+Cycloate3+428949393TCA(Preemerge)70000TCA(Preemerge)70000Ctho-F+TCA4+60838489Diethatyl+TCA6+60463588Ethor-F+Cycloate3+30939197Diethatyl+Cycloate3+30939197Diethatyl+Cycloate3+30939197Diethatyl+Cycloate3+30939197Diethatyl+Cycloate3+30939197Diethatyl+Cycloate3+28655376Diethatyl+Cycloate3+28		3						
Cycloate 4 0 53 30 30 Cycloate 6 0 83 75 75 EPTC+TCA 2+6 15 86 43 40 Cycloate+TCA 3+6 5 76 15 15 EPTC+Cycloate 1+2 3 63 23 18 EPTC+Cycloate 1+4 8 89 50 46 EPTC+Cycloate 2+2 8 89 80 79 EPTC+Cycloate 2+3 8 88 78 69 EPTC+Cycloate 2+4 13 96 93 93 EPTC+Cycloate 3+2 5 90 85 83 EPTC+Cycloate 3+3 24 97 93 87 EPTC+Cycloate 3+4 28 94 93 93 TCA (Premerge) 7 0 0 0 0 TCA (Prenerge) 7 0 10 0 0 Diethatyl+TCA 6+6 0 46 35 88 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3						
EPTC+TCA 2+6 15 86 43 40 Cycloate+TCA 3+6 5 76 15 15 EPTC+Cycloate 1+2 3 63 23 18 EPTC+Cycloate 1+4 8 89 50 46 EPTC+Cycloate 1+4 8 89 50 46 EPTC+Cycloate 2+2 8 89 80 79 EPTC+Cycloate 2+4 13 96 93 93 EPTC+Cycloate 3+2 5 90 85 83 EPTC+Cycloate 3+4 28 94 93 93 EPTC+Cycloate 3+4 28 94 93 93 EPTC+Cycloate 3+4 28 94 93 93 CAC (Preemerge) 7 0 10 0 0 TCA (PPI) 7 0 10 0 0 Diethatyl+TCA 6+6 0 46 35 88 Ethor-F+Cycloate 3+3 0 93 91								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
EPTC+Cycloate 1+2 3 63 23 18 EPTC+Cycloate 1+3 0 78 40 38 EPTC+Cycloate 1+4 8 89 50 46 EPTC+Cycloate 2+2 8 89 50 46 EPTC+Cycloate 2+2 8 88 78 69 EPTC+Cycloate 2+4 13 96 93 93 EPTC+Cycloate 3+2 5 90 85 83 EPTC+Cycloate 3+3 24 97 93 87 EPTC+Cycloate 3+4 28 94 93 93 TCA (Preemerge) 7 0 0 0 0 Etho-F+TCA 4+6 0 83 84 89 Diethatyl+TCA 6+6 0 46 35 88 Etho-F+TCA 4+6 0 83 93 92 Etho-F+Cycloate 3+3 0 93 91 97 Diethatyl+Cycloate 3+3 0 93								
EPTC+Cycloate 1+4 8 89 50 46 EPTC+Cycloate 2+2 8 89 80 79 EPTC+Cycloate 2+3 8 88 78 69 EPTC+Cycloate 2+4 13 96 93 93 EPTC+Cycloate 3+2 5 90 85 83 EPTC+Cycloate 3+3 24 97 93 87 EPTC+Cycloate 3+4 28 94 93 93 TCA (Preemerge) 7 0 0 0 0 TCA (Premerge) 7 0 10 0 0 Etho-F+TCA 4+6 0 83 84 89 Diethatyl+TCA 6+6 0 46 35 88 Ethofumesate-F 4 3 83 81 99 Diethatyl 6 3 31 30 88 Pyrazon-L+TCA 7+6 0 83 93 92 Etho-F+Cycloate 3+3 0 93 91			5					
EPTC+Cycloate 1+4 8 89 50 46 EPTC+Cycloate 2+2 8 89 80 79 EPTC+Cycloate 2+3 8 88 78 69 EPTC+Cycloate 2+4 13 96 93 93 EPTC+Cycloate 3+2 5 90 85 83 EPTC+Cycloate 3+3 24 97 93 87 EPTC+Cycloate 3+4 28 94 93 93 TCA (Preemerge) 7 0 0 0 0 TCA (Premerge) 7 0 10 0 0 Etho-F+TCA 4+6 0 83 84 89 Diethatyl+TCA 6+6 0 46 35 88 Ethofumesate-F 4 3 83 81 99 Diethatyl 6 3 31 30 88 Pyrazon-L+TCA 7+6 0 83 93 92 Etho-F+Cycloate 3+3 0 93 91			3					
EPTC+Cycloate 2+4 13 96 93 93 EPTC+Cycloate 3+2 5 90 85 83 EPTC+Cycloate 3+3 24 97 93 87 EPTC+Cycloate 3+4 28 94 93 93 CA (Preemerge) 7 0 0 0 0 CA (PPI) 7 0 10 0 0 Etho-F+TCA 4+6 0 83 84 89 Diethatyl+TCA 6+6 0 46 35 88 EthorImesate-F 4 3 83 81 99 Diethatyl+TCA 6+6 0 83 93 92 Etho-F+Cycloate 3+3 0 93 91 97 Diethatyl+Cycloate 3+3 0 93 91 97 Diethatyl+Cycloate 4+3 3 74 62 95 Etho-F+Cycloate 2+2 3 83 83 91 Diethatyl+Cycloate 3+2 8 65			0					
EPTC+Cycloate 2+4 13 96 93 93 EPTC+Cycloate 3+2 5 90 85 83 EPTC+Cycloate 3+3 24 97 93 87 EPTC+Cycloate 3+4 28 94 93 93 CA (Preemerge) 7 0 0 0 0 CA (PPI) 7 0 10 0 0 Etho-F+TCA 4+6 0 83 84 89 Diethatyl+TCA 6+6 0 46 35 88 EthorImesate-F 4 3 83 81 99 Diethatyl+TCA 6+6 0 83 93 92 Etho-F+Cycloate 3+3 0 93 91 97 Diethatyl+Cycloate 3+3 0 93 91 97 Diethatyl+Cycloate 4+3 3 74 62 95 Etho-F+Cycloate 2+2 3 83 83 91 Diethatyl+Cycloate 3+2 8 65			8			46		
EPTC+Cycloate 2+4 13 96 93 93 EPTC+Cycloate 3+2 5 90 85 83 EPTC+Cycloate 3+3 24 97 93 87 EPTC+Cycloate 3+4 28 94 93 93 CA (Preemerge) 7 0 0 0 0 CA (Premerge) 7 0 10 0 0 Etho-F+TCA 4+6 0 83 84 89 Diethatyl+TCA 6+6 0 46 35 88 EthorImesate-F 4 3 83 81 99 Diethatyl+TCA 6+6 0 83 93 92 Etho-F+Cycloate 3+3 0 93 91 97 Diethatyl+Cycloate 3+3 0 93 91 97 Diethatyl+Cycloate 4+3 3 74 62 95 Etho-F+Cycloate 3+2 8 65 53 76 Diethatyl+Cycloate 3+2 8 65			8			79		
EPTC+Cycloate 3+2 5 90 85 83 EPTC+Cycloate 3+3 24 97 93 87 EPTC+Cycloate 3+4 28 94 93 93 TCA (Preemerge) 7 0 0 0 0 TCA (PPI) 7 0 10 0 0 Etho-F+TCA 4+6 0 83 84 89 Diethatyl+TCA 6+6 0 46 35 88 Ethofumesate-F 4 3 83 81 99 Diethatyl 6 3 31 30 88 Pyrazon-L+TCA 7+6 0 83 93 92 Etho-F+Cycloate 3+3 0 93 91 97 Diethatyl+Cycloate 3+3 0 93 91 97 Etho-F+Cycloate 3+4 0 71 85 88 Diethatyl+Pyrazon-L 3+4 0 71 85 88 Diethatyl+Pyrazon-L 3+4 0 70 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>69</td></t<>						69		
EPTC+Cycloate 3+3 24 97 93 87 EPTC+Cycloate 3+4 28 94 93 93 TCA (Preemerge) 7 0 0 0 0 TCA (PPI) 7 0 10 0 0 Etho-F+TCA 4+6 0 83 84 89 Diethatyl+TCA 6+6 0 46 35 88 Ethoresate-F 4 3 83 81 99 Diethatyl 6 3 31 30 88 Pyrazon-L+TCA 7+6 0 83 93 92 Etho-F+Cycloate 3+3 0 93 91 97 Diethatyl+Cycloate 3+3 0 93 91 97 Etho-F+Cycloate 3+3 0 93 91 97 Diethatyl+Pyrazon-L 3+4 0 71 85 88 Diethatyl+Pyrazon-L 4+4 0 40 94 95 Etho-F+Cycloate 3+2 8 65 <t< td=""><td></td><td></td><td>13</td><td></td><td></td><td></td></t<>			13					
EPTC+Cycloate 3+4 28 94 93 93 TCA (Preemerge) 7 0 0 0 0 TCA (PPI) 7 0 10 0 0 Etho-F+TCA 4+6 0 83 84 89 Diethatyl+TCA 6+6 0 46 35 88 Ethofumesate-F 4 3 83 81 99 Diethatyl 6 3 31 30 88 Pyrazon-L+TCA 7+6 0 83 93 92 Etho-F+Cycloate 3+3 0 93 91 97 Diethatyl+Cycloate 4+3 3 74 62 95 Etho-F+Cycloate 3+3 0 93 91 97 Diethatyl+Cycloate 4+4 0 71 85 88 Diethatyl+Pyrazon-L 4+4 0 71 85 88 Diethatyl+Pyrazon-L 4+4 0 91 95 97 94 99 No 65 53 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
TCA (Preemerge)70000TCA (PPI)701000Etho-F+TCA4+60838489Diethatyl+TCA6+60463588Ethofumesate-F43838199Diethatyl63313088Pyrazon-L+TCA7+60839392Etho-F+Cycloate3+30939197Diethatyl+Cycloate4+33746295Etho-F+Pyrazon-L3+40718588Diethatyl+Pyrazon-L4+40409495Etho-F+Cycloate2+23838391Diethatyl+Pyrazon-L4+40409495Etho-F+Cycloate2+23838391Diethatyl+Pyrazon-L4+40409495Etho-F+Cycloate2+23838391Diethatyl+Cycloate3+28655376Diethatyl+Ethofumesate-F3+315888098Mean5897949999000Coeff. of variation852027202023LSD(5 Percent)9192218						87		
TCA (PPI)701000Etho-F+TCA $4+6$ 0838489Diethatyl+TCA $6+6$ 0463588Ethofumesate-F43838199Diethatyl63313088Pyrazon-L+TCA7+60839392Etho-F+Cycloate3+30939197Diethatyl+Cycloate4+33746295Etho-F+Cycloate3+40718588Diethatyl+Pyrazon-L3+40718588Diethatyl+Pyrazon-L4+40409495Etho-F+Cycloate2+23838391Diethatyl+Cycloate3+28655376Diethatyl+Ethofumesate-F3+315888098Mean8705964High mean58979499Low mean0000Coeff. of variation85202720LSD(1 Percent)12262923LSD(5 Percent)9192218		3+4		94	93	93		
Etho-F+TCA4+60838489Diethatyl+TCA6+60463588Ethofumesate-F43838199Diethatyl63313088Pyrazon-L+TCA7+60839392Etho-F+Cycloate3+30939197Diethatyl+Cycloate4+33746295Etho-F+Pyrazon-L3+40718588Diethatyl+Pyrazon-L4+40409495Etho-F+Cycloate2+23838391Diethatyl+Cycloate3+28655376Diethatyl+Cycloate3+28655376Diethatyl+Ethofumesate-F3+315888098Mean5897949999Low mean00000Coeff. of variation85202720LSD(1 Percent)12262923LSD(5 Percent)9192218				0	0	0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0		
Ethofumesate-F43838199Diethatyl63313088Pyrazon-L+TCA7+60839392Etho-F+Cycloate3+30939197Diethatyl+Cycloate4+33746295Etho-F+Pyrazon-L3+40718588Diethatyl+Pyrazon-L4+40409495Etho-F+Cycloate2+23838391Diethatyl+Cycloate3+28655376Diethatyl+Cycloate3+28655376Diethatyl+Ethofumesate-F3+315888098Mean8705964High mean58979499Low mean00000Coeff. of variation85202720LSD(1 Percent)12262923LSD(5 Percent)9192218					84			
Pyrazon-L+TCA 7+6 0 83 93 92 Etho-F+Cycloate 3+3 0 93 91 97 Diethatyl+Cycloate 4+3 3 74 62 95 Etho-F+Pyrazon-L 3+4 0 71 85 88 Diethatyl+Pyrazon-L 3+4 0 71 85 88 Diethatyl+Pyrazon-L 4+4 0 40 94 95 Etho-F+Cycloate 2+2 3 83 83 91 Diethatyl+Pyrazon-L 4+4 0 40 94 95 Etho-F+Cycloate 2+2 3 83 83 91 Diethatyl+Pyrazon-L 4+4 0 40 94 95 Etho-F+Cycloate 3+2 8 65 53 76 Diethatyl+Cycloate 3+2 8 65 53 76 Diethatyl+Ethofumesate-F 3+3 15 88 80 98 Mean 58 97 94 99 9 Low mean 0		6+6	0		35	88		
Pyrazon-L+TCA 7+6 0 83 93 92 Etho-F+Cycloate 3+3 0 93 91 97 Diethatyl+Cycloate 4+3 3 74 62 95 Etho-F+Pyrazon-L 3+4 0 71 85 88 Diethatyl+Pyrazon-L 3+4 0 71 85 88 Diethatyl+Pyrazon-L 4+4 0 40 94 95 Etho-F+Cycloate 2+2 3 83 83 91 Diethatyl+Pyrazon-L 4+4 0 40 94 95 Etho-F+Cycloate 2+2 3 83 83 91 Diethatyl+Pyrazon-L 4+4 0 40 94 95 Etho-F+Cycloate 3+2 8 65 53 76 Diethatyl+Cycloate 3+2 8 65 53 76 Diethatyl+Ethofumesate-F 3+3 15 88 80 98 Mean 58 97 94 99 9 Low mean 0			3	83	81	99		
Pyrazon-L+TCA 7+6 0 83 93 92 Etho-F+Cycloate 3+3 0 93 91 97 Diethatyl+Cycloate 4+3 3 74 62 95 Etho-F+Pyrazon-L 3+4 0 71 85 88 Diethatyl+Pyrazon-L 3+4 0 71 85 88 Diethatyl+Pyrazon-L 4+4 0 40 94 95 Etho-F+Cycloate 2+2 3 83 83 91 Diethatyl+Pyrazon-L 4+4 0 40 94 95 Etho-F+Cycloate 2+2 3 83 83 91 Diethatyl+Pyrazon-L 4+4 0 40 94 95 Etho-F+Cycloate 3+2 8 65 53 76 Diethatyl+Cycloate 3+2 8 65 53 76 Diethatyl+Ethofumesate-F 3+3 15 88 80 98 Mean 58 97 94 99 9 Low mean 0	Diethatyl		3	31	30	88		
Diethatyl+Cycloate4+33746295Etho-F+Pyrazon-L3+40718588Diethatyl+Pyrazon-L4+40409495Etho-F+Cycloate2+23838391Diethatyl+Cycloate3+28655376Diethatyl+Ethofumesate=F3+315888098Mean8705964High mean58979499Low mean00000Coeff. of variation85202720LSD(1 Percent)12262923LSD(5 Percent)9192218	Pyrazon-L+TCA	7+6	0	83	93	92		
Etho-F+Pyrazon-L3+40718588Diethatyl+Pyrazon-L4+40409495Etho-F+Cycloate2+23838391Diethatyl+Cycloate3+28655376Diethatyl+Ethofumesate-F3+315888098Mean8705964High mean58979499Low mean0000Coeff. of variation85202720LSD(1 Percent)12262923LSD(5 Percent)9192218		3+3	0	93	91	97		
Etho-F+Pyrazon-L3+40718588Diethatyl+Pyrazon-L4+40409495Etho-F+Cycloate2+23838391Diethatyl+Cycloate3+28655376Diethatyl+Ethofumesate-F3+315888098Mean8705964High mean58979499Low mean0000Coeff. of variation85202720LSD(1 Percent)12262923LSD(5 Percent)9192218	Diethatyl+Cycloate	4+3	3	74	62			
Diethatyl+Ethofumesate=F 3+3 15 88 80 98 Mean 8 70 59 64 High mean 58 97 94 99 Low mean 0 0 0 0 Coeff. of variation 85 20 27 20 LSD(1 Percent) 12 26 29 23 LSD(5 Percent) 9 19 22 18	Etho-F+Pyrazon-L	3+4	0	71	85	88		
Diethatyl+Ethofumesate=F 3+3 15 88 80 98 Mean 8 70 59 64 High mean 58 97 94 99 Low mean 0 0 0 0 Coeff. of variation 85 20 27 20 LSD(1 Percent) 12 26 29 23 LSD(5 Percent) 9 19 22 18	Diethatyl+Pyrazon-L	4+4	0		94	95		
Diethatyl+Ethofumesate=F 3+3 15 88 80 98 Mean 8 70 59 64 High mean 58 97 94 99 Low mean 0 0 0 0 Coeff. of variation 85 20 27 20 LSD(1 Percent) 12 26 29 23 LSD(5 Percent) 9 19 22 18		2+2	3		83	91		
Mean 8 70 59 64 High mean 58 97 94 99 Low mean 0 0 0 0 Coeff. of variation 85 20 27 20 LSD(1 Percent) 12 26 29 23 LSD(5 Percent) 9 19 22 18					53	76		
High mean58979499Low mean0000Coeff. of variation85202720LSD(1 Percent)12262923LSD(5 Percent)9192218	Diethatyl+Ethofumesate-F	3+3	15	88	80	98		
High mean58979499Low mean0000Coeff. of variation85202720LSD(1 Percent)12262923LSD(5 Percent)9192218	Mean		8	70	59	64		
Low mean0000Coeff. of variation85202720LSD(1 Percent)12262923LSD(5 Percent)9192218								
Coeff. of variation 85 20 27 20 LSD(1 Percent) 12 26 29 23 LSD(5 Percent) 9 19 22 18								
LSD(1 Percent)12262923LSD(5 Percent)9192218								
LSD(5 Percent) 9 19 22 18								
	NO. OT LEPS		onal in the same		Ten to the second	-		

Summary

Cycloate did not injure sugarbeets even at 6 lb/A. EPTC plus cycloate with EPTC rates of 1 or 2 lb/A gave less sugarbeet injury than EPTC at 3 lb/A. EPTC+cycloate at 2+2, 2+3, or 2+4 lb/A gave less sugarbeet injury and better late flush weed control than EPTC at 3 lb/A. Treatments that included pyrazon tended to give better control of the late flush of common lambsquarters after the rain as compared to the early flush before the rain. Control of Wild Proso Millet and Green Foxtail with Preplant Incorporated Herbicides, Clara City, 1981. TCA, EPTC, and cycloate were applied April 20 just before a one inch rain. The remainder of the treatments were applied and 'Bush Monofort' sugarbeets were seeded April 25. The rototiller incorporator was set 4 inches deep for treatments containing EPTC or cycloate and 2 inches deep for the others. Weed control and sugarbeet injury were evaluated June 3 and June 23.

			-June23-	June	3	
		Sugb	Grft	Wipm	Sugb	Grft
		inj	entl	cntl	cntl	entl
	Rate	ratg	ratg	ratg	ratg	ratg
Treatment	(lb/a)			(%)		
					1996	0-
TCA	7	0	95	58	0	87
Ethofumesate+TCA	4+6	0	97	67	0	95
Diethatyl+TCA	6+6	0	98	86	0	98
EPTC	3	0	93	78	0	97
Cycloate	4	0	96	59	0	93
EPTC+TCA	3+6	3	99	95	0	100
Cycloate+TCA	4+6	0	100	82	0	100
Ethofumesate+Cycloa	te 3+3	0	100	95	0	100
Diethatyl+Cycloate	4+3	0	98	79	0	98
Diethatyl+EPTC	4+2	0	96	85	0	96
S-734	1.5	0	96	74	0	95
Etho+S-734	4+1.5	0	99	79	0	99
Diet+S-734	6+1.5	0	98	77	0	97
S-734	1	0	97	40	0	89
Mean		0	97	75	0	96
High mean		3	100	95	0	100
Low mean		õ	93	40	0	87
Coeff. of variation		748	4	20	0	6
LSD(1 Percent)		3	7	28	0	10
LSD(5 Percent)		2	5	21	õ	8
No. of reps		4	4	4	4	4
NO. OF Peps						

Summary

None of the treatments caused important sugarbeet injury. TCA, ethofumesate + TCA, cycloate, and S-734 at 1 and 1.5 lb/A gave less control of wild proso millet than EPTC + TCA and ethofumesate + cycloate, the top two treatments. S-734 at 1 lb/A gave less control of wild proso millet than S-734 at 1.5 lb/A. Green foxtail control was better on June 23 than on June 3. Ethofumesate + TCA and diethatyl + TCA gave grass control similar to ethofumesate + S-734 at diethatyl + S-734.

Soil applied herbicides, Thompson 1981. Preplant incorporated herbicides were applied and rototiller incorporated, Hilleshog 309 sugarbeets were planted, and preemergence herbicides were applied May 9, 1981. Sugarbeet injury and weed control were evaluated visually June 25. The redroot pigweed emerged about 1 week prior to evaluation so the control rating reflects herbicide performance 40 days after application.

Treatment	Incorp. depth (inches)	Rate (1b/a)	Sugb inj ratg (%)	New Rrpw cntl ratg
EPTC+Diallate Cycloate+TCA+Dia Diethatyl+Cycloa Ethofumesate+Cy Diethatyl+TCA Diethatyl+TCA Ethofumesate+TC. Ethofumesate+TC. Diethatyl+EPTC TCA+Glyphosate+ TCA+Glyp+Bromox TCA+Glyp+Endotha TCA+Glyp+Dicamba	ate 4 cloate 4 2 A 0 A 2 4 2,4-D 0 6 ynil 0 6+ all 0 6+	2.5+1 4+6+1 3+4 6+6 6+6 4+6 4+6 4+2 •4+2 •4+.25 •4+.25 •4+.12	8 0 8 0 3 0 0 9 0 1 0 24	53 53 100 100 79 100 71 99 100 0 0 0 0
Mean High mean Low mean Coeff. of variat LSD(1 Percent) LSD(5 Percent) No. of reps	, tion		4 24 0 123 9 7 4	58 100 0 13 15 11 4

Summary

Incorporated diethatyl + TCA and ethofumesate + TCA gave redroot pigweed control superior to preemergence diethatyl+TCA and ethofumesate+TCA. Treatments which included diethatyl or ethofumesate gave redroot pigweed control superior to EPTC+diallate or cycloate+TCA+ diallate. Preemergence dicamba caused significant sugarbeet injury. Soil applied herbicides, St. Thomas 1981. Herbicides were applied and incorporated with a rototiller set 2 or 4 inches deep on May 6. Beta 1443 sugarbeets were planted and preemergence herbicides were applied May 7. About 1 inch of rain fell May 8 and 4.05 inches of rain occurred from May 7 to June 9. Plots were evaluated visually on June 9 and June 25. Weeds were counted in 40 square feet of the treated area of each plot and in 20 square feet of untreated area on each side of the treatment. Sugarbeets were counted in 60 feet of row in treated and untreated areas. Percent stand reduction and percent control on June 25 was averaged to give the combined evaluation parameter.

Stand Count Evalu									
		Sgbt	Rrpw	Colq	Fxtl	-Comb	ined	Evalua	
Incor		stand		stand		Sgbt	Rrpw	Colq	Fxtl
dept	h Rate	reduc	reduc	reduc	reduc	comb		comb	comb
Treatment (in.) (lb/a)			(%)			
Ethofumesate Diet+Etho-F Diethatyl+TCA	2 6 2 4 2 3+3 2 6+6	-11 -7 -8 -5	75 88 81 91	-23 81 51 52	79 84 90 93	-4 -2 -1 0	64 92 89 93 71	5 87 73 67 -23	87 90 94 96 83
Diethatyl+TCA Diet+Pyrazon-L Etho+TCA Etho+TCA Etho+Pyrazon-L	0 6+6 2 6+7 2 4+6 0 4+6 2 4+7		63 87 90 83 93	-60 72 76 64 88	83 83 86 78 89	-1 -6 -2 -3 -3	91 94 85 96	81 87 67 94	87 92 81 92
EPTC+Diallate Cycl+Diallate Cycl+TCA+Dial Diethatyl+EPTC Diet+Cycloate Etho+Cycloate S-734-F Diet+S-734-F Etho+S-734-F	4 2+1 4 4+1 4 3+6+1 4 4+2 4 4+3 4 3+3 2 1.5 2 6+1.5 2 4+1.5	20 16 -7 8	43 2 23 74 74 78 50 82 79	58 72 90 67 55 80 68 51 93	77 83 88 75 90 96 86 90 98	7 3 15 17 14 -2 6 7	64 37 49 85 86 87 60 83 88	76 84 93 82 77 91 75 55 94	89 91 87 95 97 93 95 99
Mean High mean Low mean Coeff. of varia LSD(1 Percent) LSD(5 Percent) No. of reps	ation	-1 20 -15 -2274 28 21 4	70 93 2 24 32 24 4	57 93 -60 50 54 40 4	86 98 75 9 14 11 4	3 17 -6 201 15 11 2	78 96 37 18 42 31 2	70 94 -23 23 48 35 2	91 99 81 7 20 14 2

Summary

Preemergence diethatyl+TCA and ethofumesate+TCA gave or tended to give less weed control than incorporated diethatyl+TCA and ethofumesate+TCA even though rainfall was plentiful following application. The combined evaluation indicated that diethatyl+cycloate, diethatyl+ EPTC, and ethofumesate+cycloate were the only treatments that caused significant sugarbeet injury.
Spring Applied Herbicides, Crookston, 1981. Preplant incorporated herbicides were applied and 'Hilleshog 309' sugarbeets were seeded 1.25 inches deep into moist soil on May 5. The rototiller incorporator was set 4 inches deep for diethatyl plus EPTC, diethatyl plus cycloate, and ethofumesate-flowable plus cycloate. All other incorporated treatments were incorporated 2 inches deep. Preemergence diethatyl plus TCA and ethofumesate + TCA were applied May 5 and other preemergence treatments were applied May 12. Weed control and sugarbeet injury were evaluated June 8 and June 29.

		Jun	e 8		June29	
		Sugb	Grft	Grft	Prpw	Sugb
		inj	cntl	entl	cntl	inj
The second se	Rate	ratg		ratg	ratg	ratg
Treatment	<u>(lb/a)</u>			(%)-		
Diethatyl PPI	6	20	99	90	100	1
Diet+Ethofumesate PPI	3+3	78	100	99	100	36
Ethofumesate-F PPI	4	29	99	98	100	9
Diet+Pyrazon-L PPI	6+7	15	100	97	100	1
Diet+EPTC PPI	4+2	28	100	97	98	18
	+.4+.25	31	30	34	0	8
	+.4+1.5	9	43	46	1	0
TCA+Glyphosate Pre	6+.4	13	32	40	0	0
	+.4+.12	11	33	53	0	3
	6+.4+.5	24	40	40	1	0
Diet+TCA Pre	6+6	20	93	88	80	1
Diet+TCA PPI	6+6	15	97	97	100	5
Diet+Cycloate PPI Etho-F+Cycloate PPI	4+4 3+4	38	97	97 100	100 100	13
Etho-F+Cycloate PPI Etho-F+Pyrazon-L PPI	3+4 4+7	25 13	99 99	97	100	9 5
Etho-F+TCA Pre	4+6	15	90	76	42	1
Etho-F+TCA PPI	4+6	11	100	98	100	3
	770		100	90	100	2
Mean		23	79	79	66	7
High mean		78	100	100	100	36
Low mean		9	30	34	0	0
Coeff. of variation		58	11	10	10	105
LSD(1 Percent)		25	17	15	20	13
LSD(5 Percent)		19	13	11	14	10
No. of reps		4	4	4	2	4

Summary

The greatest sugarbeet injury was caused by diethatyl plus ethofumesate. Postemergence herbicides added to TCA plus glyphosate gave sugarbeet injury similar to TCA plus glyphosate alone. The first significant rain following planting was on May 22 to 24. A rain closer to time of application of 2,4-D and dicamba would probably have caused sugarbeet injury. Preemergence TCA gave poor control of green foxtail indicating insufficient rainfall to activate TCA. Preemergence diethatyl plus TCA and ethofumesate plus TCA gave less control of prostrate pigweed than when the same treatments were incorporated. Postemergence Control of Wild Proso Millet and Green Foxtail, Clara City, 1981. 'Bush Monofort' sugarbeets were seeded April 25, 1981. Herbicides were applied in 17 gpa of water at 40 psi on June 3 when wild proso millet was 3 leaves to tillering (1 to 4 inches tall), green foxtail had 2 to 5 leaves, and sugarbeets had 4 to 6 leaves. Soil moisture was adequate at planting and when the herbicides were applied. Weed control and sugarbeet injury were evaluated June 23.

		Sugb	Grft	Wipm
		inj	entl	cntl
	Rate	ratg	ratg	ratg
Treatment	(1b/a)		(%)	
Dalapon+Surfactant	3+.5%	5	56	53
BAS 9052+0C	.2+.25G	ō	98	95
BAS 9052+0C	.3+.25G	0	99	97
BAS 9052+Desm+OC	.2+1+.25G	0	98	98
BAS 9052+Desm+OC	•3+1+•25G	3	98	97
PP-009+0C	.2+.25G	õ	83	86
PP-009+Desm+OC	.2+1+.25G	3	89	88
Diclofop+OC	2+.25G	Ō	83	66
Dicl+Desm+OC	2+1+.25G	0	91	94
RO 13-8895+0C	.2+.25G	0	90	90
RO 13-8895+0C	3+. 25G	0	99	. 99
RO 13-8895+Desm+OC	.2+1+.25G	0	81	70
RO 13-8895+Desm+OC	•3+1+•25G	0	78	78
CGA-82725+0C	.2+.25G	0	88	87
CGA-82725+Desm+OC	.2+1+.25G	0	88	89
Desmedipham+Dalapon	1+2	16	91	89
	2+.5+.5+.25G	0	98	97
	.2+.5+.5+.25G	0	79	69
Desmedipham	1	0	46	18
Desmedipham+Phenmedipham	•5+•5	0	68	33
Mean		1	85	79
High mean		16	99	99
Low mean		0	46	18
Coeff. of variation		277	12	12
LSD(1 Percent)		7	19	18
LSD(5 Percent)		5	15	14
No. of reps		4	4	4

Summary

Dalapon and diclofop gave less control of wild proso millet than BAS 9052 + 0C, RO 13-8895 + 0C, PP-009 + 0C, and CGA-82725 +0C. Desmedipham added to RO 13-8895 + 0C reduced wild proso millet control compared to RO 13-8895 + 0C alone. Desmedipham increased wild proso millet control from dalapon and diclofop, and had no influence on BAS 9052, PP-009, and CGA-82725. Desmedipham + dalapon caused more sugarbeet injury than the other treatments. Early Postemergence Wild Oat Control, Casselton, 1981. 'Great Western R1' sugarbeets were seeded May 1, 1981. Herbicides were applied in 17 gpa of water at 40 psi on May 21 when the wild oats had 1 to 3 leaves and the sugarbeets were cotyledon to 2 leaves. Soil moisture was marginal at planting and sugarbeet emergence was erratic. No rain fell for 22 days after planting and wild oats were wilted from drouth stress when the herbicides were applied. Rain started May 22 and soil moisture was fair to adequate throughout the rest of the growing season. Wild oat control and sugarbeet injury were evaluated June 20.

		June	20
		Wioa	Sugb
		cntl	inj
	Rate	ratg	ratg
Treatment	(lb/a)	(%)	
Barban	Side Anna Side		
		50	0
Dalapon+Surfactant	3+.5%	30	0
Etho+Dalapon+Surfactant	1+3+.5%	74	0 3 14
Diclofop	1.5	66	3
Diclofop+Desm	1.5+1	78	14
BAS 9052+0C	.2+.25G	58	0
BAS 9052+0C	•3+•25G	71	3
BAS 9052+0C	•4+•25G	94	0
BAS 9052+Desm+OC	.2+1+.25G	80	20
BAS 9052+Desm+OC	•3+1+•25G	91	25
BAS 9052+Desm	.2+1	60	13
Bas-90+Desm+Phen+OC .2+	.5+.5+.25G	82	25
Bas-90+Desm+Phen+OC .3+	.5+.5+.25G	95	25
BAS 9052+Endothall+OC		55	4
BAS 9052+0C+Desm T-0&T-15*		93	21
BAS 9052+0C+Desm T-0&T-15*		97	19
Desmedipham	1	14	
Desmedipham+Phenmedipham	.5+.5	23	5 5 3 3
RO 13-8895+0C	.2+.25G	92	3
RO 13-8895+0C	•3+•25G	95	2
RO 13-8895+Desm+OC	.2+1+.25G	90	16
RO 13-8895+Desm+OC	•3+1+•25G	88	25
	0.511102.50	00	20

(Table continued on next page)

Table . Continued

		Ju	ine 20
		Wioa	Sugb
		cntl	inj
	Rate	ratg	ratg
Treatment	(1b/a)		-(%)
RO 13-8895+Desm	.2+1	83	16
RO 13-8895+Endo+OC	.2+1+.25G	92	10
CGA-82725+0C	.2+.25G	88	0
CGA-82725+0C	.3+.25G	96	3
CGA=82725+Desm+OC	.2+1+.25G	95	0 3 15
CGA-82725+Desm+0C	.3+1+.25G	94	15
CGA-82725+Desm	.2+1	56	8
PP-009+0C	.2+.25G	86	0
PP-009+0C	.3+.25G	90	0
PP-009+Desm+OC	.2+1+.25G	94	15
PP-009+Desm+OC	.3+1+.25G	96	10
PP-009+Desm	.2+1	79	11
Mean		77	10
High mean		97	25
Low mean		14	0
Coeff. of variation		13	68
LSD(1 Percent)		19	12
LSD(7 Percent)		14	9
No. of reps		4	4
* 745 0052 . 00	malied finat and	desmedinham	applied 15

* BAS 9052 + OC was applied first and desmedipham applied 15 minutes later.

Summary

The drouth stress when the herbicides were applied probably reduced wild oat control since the level of control was lower than in other experiments where soil moisture was adequate. BAS 9052 at 0.2 lb/A gave less wild oat control than BAS 9052 at 0.4 lb/A. RO 13-8895, CGA-82725, and PP-009 at 0.2 lb/A gave better wild oat control than BAS 9052. The addition of desmedipham, desmedipham plus phenmedipham, or endothall to the herbicides for grass control did not reduce wild oat control. Desmedipham or desmedipham plus phenmedipham added to BAS 9052 plus oil concentrate gave improved wild oat control compared to BAS 9052 plus oil concentrate alone. Late Postemergence Wild Oat Control, Casselton, 1981. 'Great Western R1' sugarbeets were seeded May 1, 1981. Herbicides were applied in 17 gpa of water at 40 psi on June 5 when the wild oats had 5 leaves, green foxtail had 1 to 2 leaves, and sugarbeets were from cotyledon to 6 leaves. Soil moisture was marginal at planting and no rain fell until May 22. Soil moisture was adequate on June 5 and was fair to adequate throughout the rest of the growing season. Wild oat control was evaluated June 20 and July 20. Sugarbeet injury, green foxtail control and common lambsquarter control were evaluated June 20.

Treatment	Rate (1b/a)	Sugb inj ratg	June Wioa cntl ratg	Colq cntl ratg	Grft cntl ratg	Wioa cntl ratg
RO-13-8895+0C RO-13-8895+0C	$\begin{array}{c} 1\\ 3+.5\%\\ 1+3+.5\%\\ 1.5\\ .2+.25G\\ .3+.25G\\ .4+.25G\\ 2+1+.25G\\ .2+.25G\\ .3+.25G\\ 2+1+.25G\\ .2+.25G\\ .2+.25G\\ .2+.25G\\ .3+.25G\\ .3+.25G\end{array}$	0 15 35 5 0 0 24 0 24 0 35 0 35 0 35 0 33	9 18 50 28 94 99 100 79 93 93 73 88 88 88 88 88 96	0 24 74 0 0 0 0 0 0 0 0 0 0 0 0 0	0 55 83 79 96 96 96 96 91 91 72 91 72 92 86 90 95	3 60 84 78 95 100 100 94 100 100 100 100 100
Mean High mean Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent) No. of reps		8 35 0 120 17 13 4	73 100 9 13 18 13 4	7 74 0 74 9 7 4	79 96 0 14 21 16 4	87 100 3 15 25 19 4

Summary

BAS 9052, RO 13-8895, and CGA-82725 gave wild oat control superior to barban, dalapon, and diclofop. Addition of endothall to BAS 9052 and RO 13-8895 reduced control of wild oat and green foxtail compared to BAS 9052 and RO 13-8895 alone. The full effects of RO 13-8895, diclofop, dalapon, CGA-82725, and PP-009 on wild oat had not occurred by June 20, 15 days after application, since wild oat control improved from June 20 to July 20. Evaluations of control from BAS 9052 were similar on June 20 and July 20. Postemergence herbicides, St. Thomas 1981. Beta 1443 sugarbeets were planted and TCA was applied at 6 lb/A over the entire plot area on May 7. About 1 inch of rain fell May 8 and 4.05 inches of rain occurred from May 7 to June 9. Postemergence herbicides were applied June 9 when redroot pigweed were emerging to 1.5 inches, green foxtail was 0.5 to 3 inches, common lambsquarters was 1 to 3 inches and sugarbeets had 4 to 6 leaves. Plots were evaluated visually June 25. Weeds were counted in 40 square feet of the treated area of each plot and in 20 square feet of untreated area on each side of the treatment. Sugarbeets were counted in 60 feet of row in treated and untreated areas. Percent stand reduction and percent control were averaged to give the combined evaluation parameter.

							al Ev		
		Stand	i Cou	int Ev	val		Rrpw		
		Sgbt H	Rrpw	Colq	Fxtl		entl		
	Rate	Stand	i Re	educti	ion	ratg	ratg	ratg	ratg
Treatment	(1b/a)				(%)			
BAS 9052+0C Endothall+BAS 9052+0C Desmedipham+Phenmedipham Desm+Phen+BAS 90+0C .5+. Desmedipham+Endothall	1 1+2 1.5+.75 1.5+.75 1+.2+.25G .2+.25G 1+.2+.25G .5+.5 5+.2+.25G 1+.5 5+.2+.25G	3 -8 -6 1 7 5 6 -2 -15 -6	63 71 77 72 83 20 20 40 67 50 68 30 0	82 65 100 99 84 20 -21 69 96 57 72 77 0	27 57 52 17 87 96 93 53 88 24 90 38 0	1 15 6 10 0 1 10 1 10 1 5 1 0	80 95 94 93 98 0 0 73 91 81 93 71 0	85 94 100 97 0 93 100 88 96 95 0	45 93 78 63 100 100 100 75 100 68 100 74 0
Mean High mean Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent) No. of reps		-2 7 -15 -512 20 15 4	51 83 0 23 23 17 4	61 100 -21 40 47 35 4	56 96 0 27 29 22 4	4 15 0 81 7 5 4	67 98 0 7 9 6 4	73 100 5 7 5 4	76 100 0 12 17 13 4

* Formed a precipitate.

(Experiment continued on next page)

		Cor	nbined	Evaluati	0n====
		Sgbt	Rrpw	Colq	Fxtl
man a l	Rate	comb	comb	comb	comb
Treatment	(1b/a)			(%)	
Desmedipham Desmedipham+Dalapon	1	2	72	84	36
Ethofumesate+Desmedipham	1+2	4	83	80	75
Etho-F+Desmedipham	1.5+.75	2	86	100	65
Dec Dig come	1.5+.75	4	83	100	40
BAS 9052+0C	+.2+.25G	9	91	91	94
The first state of the second state of the sec	.2+.25G	3	10	10	98
Desmedipham+Phenmedipham	+.2+.25G	3 -1	10	-11	97
DesmtPhony PAS 00,00	.5+.5		57	81	64
Desm+Phen+BAS 90+0C .5+.5-		-3	79	98	94
Desmedipham+Endothall	1+.5	-3	66	73	46
Desm+Endo+BAS 90+0C 1+.5+	2+.25G	-3	81	84	95
Desmedipham+Phenmed (SN503)		-1	51	86	56
Metamitron+Desmedipham *	4+1	0	0	0	0
Mean					U
High mean		1	59	67	66
Low mean		9	91	100	98
Coeff. of variation		-3	0	-11	0
LSD(1 Percent)		581	23	16	16
LSD(1 Percent)		21	41	32	33
		15	29	23	24
No. of reps		2	2	2	2

Postemergence herbicides, St. Thomas 1981. (continued)

* Formed a precipitate.

Summary

Metamitron + desmedipham formed a precipitate when mixed and no weed control evaluations were made for this treatment. The following observations were based on visual evaluations. Desmedipham+dalapon, ethofumesate+desmedipham, and desmedipham+BAS 9052+ oil concentrate gave more sugarbeet injury and better broadleaf and grass control than desmedipham alone. Desmedipham+phenmedipham gave less control of redroot pigweed but better control of common lambsquarters and green foxtail than desmedipham alone. Ethofumesate EC + desmedipham gave better control of green foxtail than ethofumesate-flowable + desmedipham. The premixed formation of desmedipham + phenmedipham gave weed control similar to the tank mix. Postemergence Herbicides, Thompson, 1981. 'Hilleshog 309' sugarbeets were seeded May 9, 1981. Herbicides were applied at 3:00 pm at 72F in 17 gpa water at 40 psi on June 9 when sugarbeets had 4 to 6 leaves, green foxtail was 0.5 to 3 inches tall, redroot pigweed was 0.25 to 1 inch tall, and quackgrass was 10 to 12 inches tall. Soil moisture was adequate at planting and when herbicides were applied. Weed control and sugarbeet injury were evaluated June 25.

		Sugb	Grft	Rrpw	Qugr
		inj	entl	cntl	entl
	Rate	ratg	ratg	ratg	ratg
	(1b/a)			%)	
Treatment	(10/4/				
Desmadisher	1	3	39	92	5
Desmedipham	1+.2	3	100	99	10
Desm+BAS 9052	1+.2+.25G	18	100	100	40
Desm+BAS 90+0C Desm+BAS 90+C0	1+.2+.25G	11	100	100	53
BAS 9052+0C	.2+.25G	0	100	0	55
Endothall+Dalapon+Surfactant	1+2+.5%	8	98	47	24
Desm+Dalapon	1+2	24	98	100	39
Desm+Endothall	1+.5	9	80	97	3
Endothall+BAS 9052+0C	1+.2+.25G	13	100	40	25
Desm+Phenmedipham	.5+.5	3	80	98	15
Desm+Phen+BAS 90+OC .5+	.5+.2+.25G	31	100	100	68
	.4+.2+.25G	50	100	100	75
Etho+Desm+Phen	1.5+.4+.4	38	98	100	20
Et+De+Phen+BAS 9052 1.	5+.4+.4+.2	30	100	100	24
Et+De+Phen+BAS 90+C0 1.5+.4+	.4+.2+.25G	45	100	100	65
Trifluralin+Desm	.75+1	3	65	99	5
Propachlor+Desm	5+1	54	84	100	13
Acifluorfen (Tackle)	.25	43	43	96	0
Acifluorfen (Tackle)	•5	86	84	100	0
Acifluorfen (Blazer)	.25	79	75	98	0
Acifluorfen (Blazer)	•5	93	91	100	0
Diethatyl	6	0	84	85	0
			0-	00	- II
Mean		29	87	89	24 75
High mean		93	100	100	0
Low mean		0	39 8	0 5	37
Coeff. of variation		26		5 7	17
LSD(1 Percent)		14	13	6	13
LSD(5 Percent)		11	10 4	4	4
No. of reps		4	4	4	-
					the state of the s

Summary

All treatments including desmedipham and acifluorfen gave excellent control of redroot pigweed. All treatments including BAS 9052 gave excellent control of green foxtail while none of the treatments gave excellent control of quackgrass. Acifluorfen (Tackle) at 0.25 lb/A gave less sugarbeet injury and less foxtail control than acifluorfen (Blazer) at 0.25 lb/A. Desmedipham plus BAS 9052 plus oil concentrate gave more sugarbeet injury than desmedipham plus BAS 9052. Ethofumesate in combination with several herbicides gave more sugarbeet injury than the same herbicide treatment without ethofumesate. Postemergence trifluralin plus desmedipham and postemergence diethatyl did not injure sugarbeets but postemergence propachlor plus desmedipham caused severe sugarbeet injury. Postemergence herbicides, Crookston 1981. Hilleshog 309 sugarbeets were planted and TCA at 6 lb/A was applied over the entire plot area on May 5, 1981. Early postemergence treatments were applied to the center four rows of six-row plots June 8 when sugarbeets had 4 to 6 leaves and green foxtail was 1/2 to 2 inches tall. Late postemergence treatments were applied June 16 when the sugarbeets had 6 to 8 leaves and green foxtail was 1/2 to 9 inches tall. Sugarbeet injury was evaluated visually on June 29 and green foxtail control was evaluated on June 29 and July 22.

		Jun	e29	July 22
		Fxtl	Sugb	Fxtl
Time		cntl	inj	cntl
of	Rate	ratg	ratg	ratg
Treatment Application ((lb/a)		(%)	
Diethatyl June 8 Acifluorfen (Tackle) June 8 Acifluorfen (Blazer) June 8 Acifluorfen (Tackle) June 8 Acifluorfen (Blazer) June 8 Acifluorfen (Tackle) June 16 Acifluorfen (Blazer) June 16 Acifluorfen (Tackle) June 16 Acifluorfen (Blazer) June 16 Desmedipham June 8 Ethofumesate-F+Desm June 8 1.	6 .25 .25 .5 .25 .25 .25 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	84 76 80 90 93 58 65 75 75 78 75 83 83 89 94	4 31 39 65 78 25 28 44 50 0 11 10 14	79 55 71 88 94 61 54 83 86 50 61 83 89
	+.296	97	11	96
Mean High mean Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent) No. of reps		81 97 58 10 16 12 4	29 78 0 27 15 11 4	75 96 50 15 22 16 4

Summary

Diethatyl applied postemergence lay-by treatment gave about 80% green foxtail control and negligable sugarbeet injury. Acifluorfen caused severe sugarbeet injury. June 16 applications caused less injury than June 8 applications and sugarbeets treated on June 16 recovered more completely from the injury. Ethofumesate flowable+des-medipham+crop oil gave better control of green foxtail than ethofume-sate flowable+desmedipham.

		and the second se	
		iligani postanaini an 19 fan doctari, parti	

-Vermanne

Postemergence wild oat control in wheat, Fargo. Era wheat was seeded April 30 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-leaf wheat and wild oat May 22 and 3.5 to 4-leaf wheat and wild oat June 5. Rainfall for a 1 week period following application at the 1.5 to 2-leaf and 3.5 to 4-leaf stage was 3.3 and 0.9 inch, respectively. Herbicides were applied with a bicycle-wheel plot sprayer delivering 8.5 gpa at 35 psi except barban which was applied in 4.5 gpa at 45 psi. The experiment was a randomized complete block with 4 replications. Experimental units were 8 by 24 ft. Wild oat control and wheat injury ratings were on July 17. Wild oat density was 30 plants/ft sq.

an and the lates of the second second	Rate		Wheat		%Cont
Treatment	oz/A	Yield	%ir	%sr	Wioa
		bu/A		101	·
Barban 2-1f					
	6	26.4	0	0	66
Barban+Nitrogen 2-1f Barban+MSMA 2-1f	6+1G	29.1	0	0	71
Diclofop 2-1f	4+32	27.2	0	0	38
Diclofop 2-1f	12	31.8	0	0	88
Diclofop Promotic C. 10	16	32.5	0	0	88
Diclofop+Bromoxynil 2-lf Diclofop+MSMA 2-lf	12+4	33.8	1	0	80
Barban 3.5-1f	8+32	33.0	1	0	76
	8	25.7	0	0	53
Barban+Nitrogen 3.5-1f	8+1G	27.4	1	0	71
Barban+MSMA 3.5-lf	4+24	30.0	9	0	86
Diclofop 3.5-lf	16	35.1	0	0	96
Diclofop 3.5-1f	20	33.1	3 3 6	0	96
Diclofop+Bromoxynil 3.5-lf	16+4	33.8	3	0	95
Diclofop+MSMA 3.5-1f	8+24	35.6		0	94
Difenzoquat 3.5-1f	12	28.0	8	0	91
Difenzoquat 3.5-1f	16	29.1	14	0	97
Difenzoquat-DF 3.5-1f	12	27.9	6	0	95
Difenzoquat-DF 3.5-1f	16	31.1	8	0	98
Difenzoquat+Brox+MCPA 3.5-1f	12+4+4	32.1	5	0	92
Difenzoquat+MSMA 3.5-1f	8+24	32.1	5	0	94
SD45328 3.5-1f	3	31.1	5	0	93
SD45328 3.5-1f	4	35.2	4	0	97
Flamprop 3.5-1f	8	32.5	6	0	95
MSMA 3.5-lf	32	30.3	4	0	88
Control		18.0	0	0	0
Mana and a second se					
Mean		30.5	4	0	81
High mean		35.6	14	0	98
Low mean		18.0	0	0	0
Coeff. of variation		14.0	94	0	11
LSD(1 Percent)		7.9	6	0	17
LSD(5 Percent)		6.0	5	0	13
No. of reps		4.0	4	4	4

Summary

Wheat injury ranged from 0 to 14%; however, no treatment reduced wheat stand. Wild oat control with barban was not increased by nitrogen or MSMA at the 2-leaf stage but increased 18 and 32%; respectively at the 3.5-leaf stage. Wild oat control with diclofop was slightly better at the 3.5 than 2-leaf stage and was not influenced by the addition of bromoxynil. Wild oat control with difenzoquat was not influenced by formulation or bromoxynil and MCPA. Wild oat control with SD-45328 at 3 oz/A was similar to control with flamprop at 8 oz/A. Herbicide treatments increased wheat yields 8 to 18 bu/A. Postemergence wild oat control in wheat, Minot 1981. Coteau wheat was seeded April 10 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-leaf wheat and wild oat May 6 and 3.5 to 4-leaf wheat and wild oat May 19. Rainfall for a 1 week period following application at the 1.5 to 2 leaf and 3.5 to 4-leaf stage was 0.1 and 0.7 inch; respectively. Herbicides were applied with a bicycle wheel sprayer delivering 8.5 gpa at 35 psi except barban was applied in 4.5 gpa at 45 psi. The experiment was a randomized complete block with 4 replications. Experimental units were 8 by 16ft. Wild oat control and crop injury ratings were on July 8. Wild oat density was 30 plants/ft square.

	Rate		Whe	at	% Cont
The strength	oz/A		eld	%ir	Wioa
Treatment	04/11		u/A	-S depending	+0.965.98
		12.00		Alter a state	
Barban 2-1f	6	1	3.9	0	77
Barban+Nitrogen 2-1f	6+1G	1	3.2	0	86
Barban+MSMA 2-1f	4+32	1	3.8	0	82
Diclofop 2-1f	12	1	5.9	0	73
Diclofop 2-1f	16	1	3.6	0	79
Diclofop+Bromoxynil 2-1f	12+4	1	3.1	0	82
Diclofop+MSMA 2-1f	8+32	1	5.5	0	86
Barban 3.5-1f	8	1	4.5	0	72
Barban+Nitrogen 3.5-1f	8+1G	1	4.8	0	75
Barban+MSMA 3.5-1f	4+24	1	2.7	0	83
Diclofop 3.5-lf	16	1	8.6	0	94
Diclofop 3.5-lf	20		18.6	0	97
Diclofop+Bromoxynil 3.5-1f	16+4		16.6	0	91
Diclofop+MSMA 3.5-1f	8+24		16.8	0	91
Difenzoquat 3.5-1f	12		11.1	0	60
Difenzoquat 3.5-1f	16		11.3	0	66
Difenzoquat-DF 3.5-1f	12		11.5	0	65
Difenzoquat-DF 3.5-1f	16		12.5	0	55
Difenzoquat+Brox+MCPA 3.5-1f	12+4+4		11.9	0	72
Difenzoquat+MSMA 3.5-1f	8+24		15.3	0	87
SD45328 3.5-1f	3		12.3	1	79 80
SD45328 3.5-1f	4		13.9	1	85
Flamprop 3.5-1f	8		12.5	1	71
MSMA 3.5-lf	32		12.5	0	0
Control			8.4	U	U
			13.8	0	75
Mean			18.6	1	97
High mean			8.4	Ö	0
Low mean			15.2	553	14
Coeff. of variation			3.9	2	19
LSD(1 Percent)			2.9	1	14
LSD(5 Percent)			4.0	4	4
No. of reps			100		

Summary

Little wheat injury was observed with any treatment. Wild oat control with barban was increased only slightly by the addition of N or MSMA at both stages of application. Wild oat control with diclofop was better at the 3.5 than 2-leaf stage and was not influenced by the addition of bromox-oxynil or MSMA. Wild oat control with difenzoquat was not influenced by formulation but was increased slightly by the addition of MSMA. Wild oat control with SD-45328 at 3 or 4 oz/A was similar to flamprop at 8 oz/A. Wheat yields were closely related to wild oat control.

Postemergence wild oat control in wheat, Langdon 1981. Cando durum was seeded June 8 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-leaf wheat on June 24 and 3.5 to 4-leaf wheat on July 6. Rainfall for a 1 week period following application at the 1.5 to 2-leaf and 3.5 to 4 leaf stage was 0.8 and 0.9 inch, respectively. Herbicides were applied with a bicycle wheel sprayer delivering 8.5 gpa at 35 psi, except barban was applied in 4.5 gpa at 45 psi. The experiment was a randomized complete block with 4 replications. Experimental units were 8 by 16 ft. Weed control and injury ratings were on August 5.

	Rate	Wheat	Per	cent cont	rol
Treatment	oz/A	%ir	Fxtl	Colq	Taoa
Barban 2-1f		124.43	11-5		a Calence Ca
Barban+Nitrogen 2-1f	6	0	0	0	75
Barban+MSMA 2-11	6+1G	0	0	0	90
Diclofop 2-1f	4+32	10	90	89	95
Diclofop 2-1f	12	0	78	0	85
	16	0	86	0	90
Diclofop+Bromoxynil 2-1f	12+4	0	85	95	90
Diclofop+MSMA 2-1f	8+32	9	93	93	95
Barban 3.5-1f	8	0	0	0	60
Barban+Nitrogen 3.5-1f	8+1G	1	0	0	75
Barban+MSMA 3.5-1f	4+24	13	94	96	95
Diclofop 3.5-1f	16	0	68	0	80
Diclofop 3.5-lf	20	0	48	0	80
Diclofop+Bromoxynil 3.5-1f	16+4	1	93	98	85
Diclofop+MSMA 3.5-1f	8+24	14	93	93	95
Difenzoquat 3.5-1f	12	3	0	0	90
Difenzoquat 3.5-1f	16	0	0	0 -	90
Difenzoquat-DF 3.5-1f	12	4	0	0	90
Difenzoquat-DF 3.5-1f	16	3	0	0	90
Difenzoquat+Brox+MCPA 3.5-1f		0	0	100	90
Difenzoquat+MSMA 3.5-1f	8+24	15	93	98	99
SD45328 3.5-1f	3	0	0	0	95
SD45328 3.5-1f	4	0	0	0	95
Flamprop 3.5-1f	8	0	0	0	99
MSMA 3.5-1f	32	16	93	94	80
Control		0	0	0	0
Mean		4	40	34	84
High mean		16	94	100	99
Low mean		0	0	0	Ō
Coeff. of variation		74	35	7	0
LSD(1 Percent)		5	27	4	Ō
LSD(5 Percent)		4	20	3	õ
No. of reps		4	4	4	- 1
					•

Summary

Wheat was injured 9 to 16% by treatments with MSMA. Foxtail control was good with diclofop at the 2-leaf stage or with treatments containing MSMA. Common lambsquarter control was good with bromoxyil or MSMA. Wild oat control in wheat, Williston 1981. Len wheat was seeded April 10 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-lf wheat and wild oat on May 7 and 3.5 to 4-leaf wheat and wild oat May 20. Herbicides were applied with a bicycle wheel plot spayer delivering 8.5gpa at 35 psi except barban which was applied at 4.5 gpa at 45 psi. The experiment was a randomized complete block with 4 replications. Experimental units were 8 by 25 ft. Wild oat control and wheat injury ratings were on July 9. Wild oat density was 8 plants/sq. ft.

			Whea	t		
	Rate	Yield	Twt		leight %	6 Cont
Treatment	oz/A	bu/A	lb/bu	%ir	(cm)	Wioa
Treatment	01/11					an a sum
Barban 2-1f	6	29.7	57.4	1	80	79
Barban+Nitrogen 2-1f	6+1G	32.7	58.3	1	80	85
Barban+MSMA 2-1f	4+32	35.5	57.4	0	75	91
Diclofop 2-1f	12	33.4	56.5	0	78	65
Diclofop 2-1f	16	35.7	56.5	0	76	95
Diclofop+Bromoxynil 2-1f	12+4	34.1	53.9	0	80	85
Diclofop+MSMA 2-1f	8+32	33.9	52.5	0	80	93
Barban 3.5-1f	8	33.8	51.1	0	80	80
Barban+Nitrogen 3.5-1f	8+1G	31.5	53.3	1	77	92
Barban+MSMA 3.5-1f	4+24	31.9	54.7	3	77	93
Diclofop 3.5-lf	16	32.0	55.3	0	74	87
Diclofop 3.5-lf	20	33.1	55.6	1	77	89
Diclofop+Bromoxynil 3.5-lf	16+4	30.9	57.0	0	68	82
Diclofop+MSMA 3.5-1f	8+24	35.2	57.1	0	73	91
Difenzoquat 3.5-1f	12	29.9	55.9	0	72	79
Difenzoquat 3.5-1f	16	31.3	55.2	1	71	90
Difenzoquat-DF 3.5-1f	12	33.3	56.3	1	72	85
Difenzoquat-DF 3.5-1f	16	31.6	57.1	4	73	87
Difenzoquat+Brox+MCPA 3.5-1f	12+4+4	32.2	56.5	0	74	75
Difenzoquat+MSMA 3.5-1f	8+24	31.8	56.3	1	71	91
SD45328 3.5-1f	3	31.9	56.4	0	78	84
SD45328 3.5-1f	4	32.0	57.0	0	76	90
Flamprop 3.5-1f	8	30.2	56.0	0	72	89
MSMA 3.5-lf	32	30.2	55.9	0	70	87
Control		25.4	55.0	0	76	0
			0			82
Mean		32.1	55.8	1	75	
High mean		35.7	58.3	4	80	95
Low mean		25.4	51.1	0	68	0
Coeff. of variation		12.0	0.	314	5	10
LSD(1 Percent)		7.1	0.	3	10	15
LSD(5 Percent)		5.4	0.	3	8	12 4
No. of reps		4.0	1.0	4	2	4

Summary

Little wheat injury was observed with any treatment. Wild oat control was 75% or greater with all treatments except 12 oz/A diclofop applied at the 2-leaf stage. Wild oat control with SD-45328 at 3 oz/A was similar to control with flamprop at 8 oz/A.

Herbex combinations with wild oat herbicides in wheat, Fargo 1981. Era wheat was seeded April 24 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-leaf wheat and wild oat May 14 and 3.5 to 4-lf wheat and wild oat May 28. Both wheat and wild oat were under moisture stress when applications were made at the 1.5 to 2-leaf stage. First rain after application was 3.3 inch May 22 to 24. In addition 0.3 inch fell within 3 days after application at the 3.5 to 4-leaf stage. Herbicides were applied with a bicycle wheel sprayer delivering 8.5 gpa at 35psi except barban was in 4.5 gpa at 45 psi. The experiment was a randomized complete block with 4 replications. Weed control and injury ratings were on July 17. Wild oat density was 30 plants/ft square.

(<u>a</u>) (1)	Rate	Wh	eat	% Cont	
Treatment	oz/A	%ir	%sr	Wioa	
Barban 2-1f					
Barban+Herbex 2-1f	4	0	0	62	
Barban+Herbex 2-11 Barban+Herbex 2-1f	4+.125G	0	0	56	
Barban+Herbex 2-11 Barban+Herbex 2-1f	3+.187G	0	0	39	
Diclofop 2-1f	2+.25G	0	0	21	
Diclofop+Herbex 2-lf	12	0	0	55	
Diclofop+Herbex 2-1f	12+.125G	0	0	69	
Diclofop+Herbex 2-11 Diclofop+Herbex 2-1f	8+.187G	0	0	28	
Difenzoquat 4-1f	6+.25G	0	0	50	
	12	4	0	99	
Difenzoquat+Herbex 4-1f	12+.125G	3	0	96	
Difenzoquat+Herbex 4-1f	8+.187G	0	0	89	
Difenzoquat+Herbex 4-1f MSMA 4-1f	6+.25G	0	0	80	
MSMA+Herbex 4-1f	48	3	0	81	
MSMA+Herbex 4-11	48+.125G	1	0	81	
MSMA+Herbex 4-11	32+.187G	5	0	85	
Control	24+.25G	0	0	53	
CONCLOT		0	0	0	
Maar					
Mean		1	0	61	
High mean		5	0	99	
Low mean		0	0	0	
Coeff. of variation		217	0	18	
LSD(1 Percent)		4	0	21	
LSD(5 Percent)		3	0	16	
No. of reps		4	4	4	
				and Marine and	

Summary

Wild oat control with the various herbicides was not increased by the addition of Herbex spray adjuvant. Little crop injury was observed with any treatment.

Wild oat herbicide combinations, Fargo 1981. Era wheat was seeded April 30 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-leaf wheat and wild oat May 22 and 3.5 to 4-leaf wheat and wild oat June 5. Rain fall for a 1 week period following application at the 1.5 to 2 and 3.5 to 4 leaf stage was 3.3 and 0.9 inch, respectively. Herbicides were applied with a bicycle wheel sprayer delivering 8.5 gpa at 35 psi. The experiment was a randomized complete block with four replications. Weed control and injury ratings were on July 17. Wild oat density was 30 plants/ft square.

	Rate		Percent control-	
Treatment	oz/A	%ir	%sr	Wioa
		the second s		C II
Barban 2-1f	4	0	0	64
SD45328 2-LF	3	5	0	92
Diclofop 2-1f		1	• 0	76
Difenzoquat 2-1f	8	3	0	37
Barban+SD45328 2-1f	4+3	4	0	86
Barban+Diclofop 2-1f	4+8	0711	0	91
Barban+Difenzoquat 2-1f	4+8	0	0	84
Diclofop+SD45328 2-1f	8+3	1	0	86
Diclofop+Difenzoquat 2-1f	8+8	0	0	84
Difenzoquat+SD45328 2-1f	8+3	0	0	65
Barban 4-1f	4	0	. 0	55
SD45328 4-1f	3	7	0	94
Diclofop 4-1f	3 8	7	0	67
Difenzoguat 4-1f	8	3	0	85
Barban+SD45328 4-1f	4+3		0	93
Barban+Diclofop 4-1f	4+8	3	0	88
Barban+Difenzoquat 4-1f	4+8	6	0	90
Diclofop+SD45328 4-1f	8+3	9	0	96
Diclofop+Difenzoquat 4-1f	8+8	8	0	94
Difenzoquat+SD45328 4-1f	8+3	11	0	95
Control		0	0	0
0000000				
Mean		4	0	77
High mean		11	0	96
Low mean		0	0	0
Coeff. of variation		128	0	22
LSD(1 Percent)		8	0	32
LSD(5 Percent)		6	0	24
No. of reps		4	4	4
NO. OT LEPS				

Summary

Wild oat control was excellent with 3 oz/A SD-45328 at both the 2 and 4-leaf stage. Wild oat control was slightly better with barban-diclofop, barban-difenzoquat, or diclofop-difenzoquat combinations than with the individual herbicides at either stage. Wild oat herbicide combinations, Minot 1981. Coteau wheat was seeded April 10 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-lf wheat and wild oat May 6 and 3.5 to 4-leaf wheat and wild oat May 19. Rainfall for a 1 week period following application at the 1.5 to 2-leaf and 3.5 to 4-leaf stage was 0.1 and 0.7 inch, respectively. Herbicides were applied with a bicycle wheel sprayer delivering 8.5 gpa at 35 psi. The experiment was a randomized complete block with 4 replications. Experimental units were 8 by 16 ft. Wild oat control and crop injury ratings were on July 8. Wild oat density was 30 plants/ft square.

and the spectrum strips of protocols and protocols	Rate		Wheat	% Cont
Treatment	oz/A	Yield	%ir	Wioa
		bu/A		
Porton 0.18				
Barban 2-1f	4	17.3	0	80
SD45328 2-LF	3	14.4	0	70
Diclofop 2-1f	8	14.3	0	76
Difenzoquat 2-1f	8	12.0	0	53
Barban+SD45328 2-1f	4+3	18.5	0	81
Barban+Diclofop 2-1f	4+8	17.5	0	90
Barban+Difenzoquat 2-1f	4+8	15.1	0	70
Diclofop+SD45328 2-1f	8+3	16.1	0	84
Diclofop+Difenzoquat 2-1f		16.0	. 0	77
Difenzoquat+SD45328 2-1f Barban 4-1f	8+3	15.3	0	65
SD45328 4-1f	4	13.7	0	38
Diclofop 4-1f	3 8	15.9	. 0	83
Difenzoquat 4-1f		15.3	0	81
Barban+SD45328 4-1f	8	9.7	0	48
Barban+Diclofop 4-11	4+3	12.3	1	71
Barban, Diforgaguat l 16	4+8	15.8	1	89
Barban+Difenzoquat 4-1f Diclofop+SD45328 4-1f	4+8	12.9	· 0	55
Diclofop+Difenzoquat 4-1f	8+3	16.3	0	93
Difenzoquat+SD45328 4-11		15.0	0	81
Control	8+3	12.8	0	66
		8.2	0	0
Mean		11 -		
High mean		14.5 18.5	0	69
Low mean			1	93
Coeff. of variation		8.2 21.5	0	0
LSD(1 Percent)		21.5 5.9	632	13
LSD(5 Percent)		5•9 4.4	1	17
No. of reps		4.4	1 4	13
		4.0	4	4

Summary

Little crop injury was observed with any treatment. Wild oat control was slightly better with barban-diclofop or diclofop-SD-45328 combinations than with the herbicides alone at both stages of application. New postemergence herbicides for wild oat control, NW-22 Fargo Era wheat was seeded April 24 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-leaf wheat and wild oat May 14 and 3.5 to 4-leaf wheat and wild oat, May 29. Both wild oat and wheat were growing under moisture stress when applications were made at the 1.5 to 2-leaf stage. First rain after application was 3.3 inch rain fell over a 3 day period May 22 to 24. In addition 0.3 inch rain fell within 3 days after application at the 3.5 to 4 leaf stage. Herbicides were applied with a bicycle-wheel plot sprayer delivering 8.5 gpa at 35 psi except barban which was applied in 4.5 gpa at 45 psi. The experiment was a randomized complete block with 4 replications. Experimental units were 8 by 24 foot plots. Weed control and wheat injury ratings were on July17. Wild oat density was 30 plants/ft sq.

	Rate		Wheat		%Cont
Treatment	oz/A	Yield	%ir	%sr	Wioa
11 eatments		bu/A		-	
				5125	
Barban 2-1f	6	28.9	0	0	63
Diclofop 2-1f	12	31.7	0	0	68
Mefluidide 2-1f	0.5	9.6	19	4	23
Mefluidide+Aciflurofen 2-1:	f 0.5+4	19.6	0	0	9
CGA-82725 2-1f	2	35.8	0	0	45
CGA-82725 2-1f	4	40.0	0	0	84
CGA-82725 2-LF	6	41.2	0	0	83
SSH-0860+0C 2-1f	24+.25G	37.1	0	0	71
Hexazinone 2-1f	1	22.1	0	0	16
Hexazinone+DPX_4189 2-lf	1+0.5	24.7	0	0	26
Difenzoquat 4-1f	12	41.9	1	0	98
MSMA 4-1f	32	36.7	0	0	73
MSMA+DPX-4189 4-1f	24+0.5	34.4	0	0	73
CGA-82725 4-1f	2	46.5	1	0	97
CGA-82725 4-1f	4	48.2	1	0	100
CGA-82725 4-1f	6	44.6	3	0	100
Control		17.0	0	0	0
				•	60
Mean		32.9	1	0 4	100
High mean		48.2	19		
Low mean					
				2	
				5	
No. of reps		4.0	-7		
<u> </u>		9.6 15.5 9.6 7.2 4.0	0 154 4 3 4	0 825 3 3 4	0 22 25 19 4

Summary

Wild oat control with CGA-82725 was better at the 4 than 2leaf stage of application. Wheat yields were increased 19 to 24 bu/A and 28 to 30 bu/A by CGA-82725 application at the 2 and 4-1f stage; respectively, compared to the untreated control. Postemergence wild oat control with SSH0860 was similar to control with barban or diclofop. Mefluidide at 0.5 oz/A injured wheat which resulted in a significant yield reduction compared to the untreated control.

8

Hard red spring wheat response to herbicides, Fargo. An experiment was conducted on silty clay soil with pH 7.5 and 6% organic matter to evaluate hard red spring wheat cultivar response to several herbicides. Wheat cultivars were seeded April 17 in 6 inch row spacings. SSH-0860 was applied preemergence and harrow incorporated once (PEI) on April 23. Post treatments were applied to 2 to 2.5-leaf wheat on May 15 or 4.5 to 5-leaf wheat June 4. First rain was 3.3 inch over a 3 day period of May 22 to 24. In addition 1.25 inch of rain fell during the first two weeks of June. SSH-0860 was applied in 17 gpa and postemergence treatments in 8.5 gpa at 35 psi. The experiment was a randomized complete block with a split-block arrangement and 3 replications.

Rate Waldro	2	Alex		Cultiva			
Treatment Stage 1b/A	11	ATEX	Butte	Solar	Walera	Era	Mean
			(1)	leld bu	(A)		
SSH-0860 PEI 2 3	5	42	25	00	07		nd zer 7
			25	28	27	31	31
	3	47	23	32	28	31	32
Prn1+MCPA 2 2+0.25 3	7	44	26	29	27	30	32
Prn1(F)+MCPA 2 1.1+0.25 3	7	42	24	27	24	27	31
Prn1(F)+MCPA 2 2+0.25 3		44	24	28	28	30	32
Chlorsulfuron 2 0.06 3	7	46	30	30	28	32	34
	2	38	18	26	24	28	
	2	41	24				28
				27	24	28	30
	7	31_	26	31	29	34	28
	5	31	24	28	27	28	26
SD-45328 5 0.25 3	4	36	24	27	27	29	30
Control 3	4	41	26	28	26	28	31
Mean 3		40	24	28	27	30	51
		10	<u> </u>	20	<u> </u>	20	
LSD 0.05	Tr.	rt=3	Cult=2) г	Post her Curl	0	
			Cult=2	•	[rt by Cu]	10=0	

Summary

Difenzoquat, regardless of formulation, and propanil plus MCPA applied at the 5-leaf stage reduced yield when averaged over cultivar. However, yield reductions with both difenzoquat and propanil plus MCPA were cultivar dependent. Difenzoquat reduced yield of Waldron and Alex and propanil plus MCPA Butte wht. Durum wheat response to herbicides, Fargo. An experiment was conducted on silty clay soil with pH 7.5 and 6% organic matter to evaluate durum wheat cultivar response to several herbicides. Cultivars were seeded April 17 in 6 inch row spacings. SSH-0860 was applied preemergence and harrow incorporated once (PEI) on April 23. Post treatments were applied to 2 to 2.5-leaf wheat on May 15 or 4.5 to 5-leaf wheat on June 4. First rain was 3.3 inch over a 3 day period of May 22 to 24. In addition 1.25 inch of rain fell during the first two weeks of June. SSH-0860 was applied in 17 gpa and postemergence treatments in 8.5 gpa at 35 psi. The experiment was a randomized complete block with a split-block arrangement and 3 replications.

					Cultivar		
		Rate	Calvin	Edmore	Vic	Ward	Mean
Treatment	Stage	lb/A	0		(Yield bu/A)		
	20480				and the second sec		
SSH-0860	PEI	2	39	34	33	36	36
Propanil+MCPA	2 1	.1+0.25	34	30	32	35	33
Propanil+MCPA	2	2+0.25	33	30	29	32	31
Propanil(F)+MCPA	2 1	.1+0.25	31	31	28	34	31
Propanil(F)+MCPA		2+0.25	37	31	33	35	34
Chlorsulfuron	2	0.06	36	33	33	31	33
Propanil+MCPA		.1+0.25	27	26	22	23	24
Chlorsulfuron	5	0.06	33	30	33	38	33
Difenzoquat	5	1	37	22	24	39	30
Difenzoquat(SP)	5	1	34	20	24	35	28
SD-45328	5	0.25	34	35	33	37	35
Control			. 36	31	31	35	33
		Mean	34	30	30	34	
	T	SD 0.05	Trt=34	Cul	t=2 Trt	by Cult=8	
			11 0-) 1				

Summary

Difenzoquat, regardless of formulation, and propanil plus MCPA applied at the 5-leaf stage reduced yield when averaged over cultivar. However, yield reductions with both difenzoquat and propanil plus MCPA were cultivar dependent. Difenzoquat reduced yield of Edmore and Vic and propanil plus MCPA Calvin, Vic, and Ward durum wheat. Barley response to herbicides, Fargo. An experiment was conducted on silty clay soil with pH 7.5 and 6% organic matter to evaluate barley cultivar response to several herbicides. Barley cultivars were seeded April 17 in 6 inch row spacings. SSH-0860 was applied preemergence and harrow incorporated once (PEI) on April 23. Post treatments were applied to 2 to 2.5-leaf barley on May 15 or 4.5 to 5-leaf barley on June 4. First rain was 3.3 inch over a 3day period of May 22 to 24. In addition 1.25 inch of rain fell during the first two weeks of June. SSH-0860 was applied in 17 gpa, postemergence treatments in 8.5 gpa at 35 psi. The experiment was a randomized complete block with a split-block arrangement and 3 replications.

			Treatment			
	SSH-0860	Dicamba	Chlorsu	ulfuron		
Cultivar	PEI 21b/A	2 leaf 0.12 lb/A	0.06 lb/A (Yield bu/A)	5 leaf- 0.06 lb/A	Control	Mean
Larker Glenn Bonanza Hector Park Vanguard Manker Beacon Bumper Morex	48 46 45 44 48 34 43 49 52 49 52 49 ean 46	50 42 52 44 49 34 47 51 54 44 47	42 38 42 39 50 36 47 48 51 42 44	50 47 51 43 48 33 43 54 56 53 47	47 42 46 42 43 32 44 49 50 47 44	47 43 47 42 48 34 45 50 53 47
L:	SD 0.05	Trt=NS	Cult=3	Trt by Cult=NS		

Summary

Barley yields when averaged over cultivar were not reduced by any treatment. Bumper was the highest yielding and Vanguard the lowest yielding cultivar in this trial. Barley response to propanil plus MCPA, Fargo. An experiment was conducted on silty clay soil with pH 7.5 and 6% organic matter to evaluate barley cultivar response to propanil plus MCPA. Barley cultivars were seeded April 17 in 6 inch row spacings. Treatments were applied in 8.5 gpa at 35 psi to 2 to 2.5-leaf barley on May 15 or 4.5 to 5-leaf barley on June 4. First rain was 3.3 inch over a 3 day period May 22 to 24. In addition 1.25 in rain fell during the first two weeks of June. The experiment was a randomized complete block with a split-block arrangement and 3 replications.

		Treat	ment		
		-2 leaf	5 leaf		
	1.1+0.25	5 1b/A 2+0.25 1b/A	2+0.25 1b/A	Control	mean
Cultivar		(Yield	bu/A)		
				Server and a server and a server	
Larker	37	34	15	47	33
Glenn	42	27	8	42	30
Bononza	42	27	11	46	32
Hector	43	35	12	42	36
Park	45	40	18	43	37
Vanguard	30	25	10	32	24
Manker	43	35	12	44	34
	48	42	11	49	38
Beacon	40	40	20	50	39
Bumper	43	44	10	47	36
Morex	Mean 42	35	13	44	
	riean 42		18		
	LSD 0.05	Trt=4	Cult=3	Trt by Cult=11	

Summary

Barley yields when averaged over cultivar were reduced 21 and 71% by propanil plus MCPA at 2+0.25 lb/A at the 2 and 5-lf stage, respectively. Yield reductions ranged from 7 (Morex) to 42% (Bonanza) at the 2-leaf and from 60 (Bumper) to 81% (Glenn) at the 5-leaf stage. Triallate depth of incorporation, Fargo. Triallate was applied and field cultivator or harrow incorporated twice (PPI), Era wheat treated or non-treated with carboxin seeded, and triallate applied and harrow incorporated twice (PEI) April 14. The soil was dry to a depth of 2 inch and rainfall for a 2 week period following application totaled 0.4 inch. All treatments were applied with a bicycle-wheel plot sprayer delivering 17 gpa at 35 psi. The experiment was a randomized complete block with 4 replications. Experimental units were 8 by 22 ft. Wild oat control and wheat injury ratings were on July 10. Wild oat density was 30 plants/ft sq.

	Rate	Wh	Wheat		
Treatment	lb/A	Yield	%sr	%Control Wioa	
		bu/A		Subtrine in	
Triallate PPI-FC					
	0	10.7	3	0	
Triallate PPI-FC	0.5	25.1	0	57	
Triallate PPI-FC	0.75	24.9	0	63	
Triallate PPI-FC	1	25.2	8	78	
Triallate PPI-FC	1.25	23.0	6	78	
Triallate PPI-HW	0	13.7	0	0	
Triallate PPI-HW	0.5	21.8	0	59	
Triallate PPI-HW	0.75	22.5	0	65	
Triallate PPI-HW	1	24.1	3 6	81	
Triallate PPI-HW	1.25	22.4	6	77	
Triallate&Carboxin PPI-FC	0	10.6	0	0	
Triallate&Carboxin PPI-FC	0.5	24.0	0	66	
Triallate&Carboxin PPI-FC	0.75	26.0	3	73	
Triallate&Carboxin PPI-FC	1	26.8	6	85	
Triallate&Carboxin PPI-FC	1.25	27.2	5	80	
Triallate PEI	0	11.8	0	0	
Triallate PEI	0.5	16.6	0	9	
Triallate PEI	0.75	19.1	0	21	
Triallate PEI	1	19.9	0	33	
Triallate PEI	1.25	22.6	0	44	
Mean		20.9	2	48	
High mean		27.2	2 8		
Low mean		10.6	0 0	85	
Coeff. of variation		19.9		0	
LSD(1 Percent)		7.8	203	26	
LSD(5 Percent)			7 6	24	
No. of reps		5.9	0 4	18	
no. or reps		4.0	4	4	

Summary

Wild oat control was better with preplant applications field cultivator or harrow incorporated than preemergence applications harrow incorporated. Little wheat injury was observed with any treatment. Triallate treatments increased wheat yield 6 to 15 bu/A compared to the untreated control.

13

Triallate impregnated on urea fertilizer for wild oat control, Fargo 1980-81. Fall treatments were applied on plowed soils November 5 and not incorporated (FS) or incorporated twice with a field cultivator to a depth of 3 inches (FI) immediately after application. The entire experimental area was field cultivated and harrowed, Era wheat seeded and spring treatments applied and harrow incorporated twice (SI) on April 15. The liquid formulation of triallate was applied with a bicycle wheel sprayer delivering 17 gpa at 35 psi and triallate impregnated on fertilizer spread by hand at a rate of 150 lb of urea/A. The soil was dry to a depth of 2 inches and rainfall for a 2 week period following seeding totalled 0.4 inch. Weed control and wheat injury ratings were on July 2. Wild oat density was 20 plants/ft square.

	Rate	Whea	t	% Cont
Treatment	1b/A	%ir	%sr	Wioa
Triallate+Fertilizer Triallate+Fertilizer Triallate liquid Triallate liquid Triallate+Fertilizer Triallate liquid Control	FI 1 FS 1 FI 1 FS 1 SI 1 SI 1	0 0 0 0 0 0	3 3 1 0 0 0 0	55 43 55 18 4 15 0
Mean High mean Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent) No. of reps	0.01 0.85 0.85 0.85 5.75 0.61 0.61	0 0 0 0 0 4	1 3 0 317 6 4 4	27 55 0 49 27 20 4

Summary

Wild oat control was similar with fall applications of trillate impregnated on fertilizer surface applied or incorporated and the liquid formulation incorporated. No spring treatment controlled wild oat. Wild oat control in wheat with fall applied herbicides, Fargo 1980-81. Fall treatments were applied on plowed soil October 31 and not incorporated (F) or incorporated twice with a field cultivator to a depth of 3 inches (FI) immediately after application. The entire experimental area was field cultivated and harrowed, spring preplant incorporated treatments applied and field cultivator incorporated twice (SPPI), Era wheat seeded and spring preemergence treatments applied and harrow incorporated twice (SPEI) on April 15. The sprayable formulations (L) were applied with a bicyclewheel sprayer delivering 17 gpa at 35 psi and the granular formulations (G) applied with a cone applicator. The soil was dry to a depth of 2 inches and rainfall for a 2 week period following seeding totalled 0.4inches. Weed control and wheat injury ratings were on July 2. Wild oat density was 20 plants/ft square.

Rate		Whe	at	% Cont
Treatment 1b/A		%ir	%sr	Wioa
	1.18			<u> </u>
Triallate FG+2,4-D 1+.25		0	6	76
Triallate FGI+2,4-D 1+.25		0	0	74
SSH-0860 FL 1.5		0	0	15
SSH-0860 FLI 1.5		0	0	15
SSH-0860 FG 1.5		0	0	15
SSH-0860 FGI 1.5		0	0	0
SSH-0860 FL 2.0		0	0	29
SSH-0860 FLI 2.0		0	0	36
SSH-0860 FG 2.0		0	0	5
SSH-0860 FGI 2.0		0	0	11
UBI-734 F+2,4-D 1+.25		0	0	13
UBI-734 FI+2,4-D 1+.25		0	0	.5
SSH-0860 SL PPI 1.5		0	0	26
SSH-0860 SL PPI 2.0		0	0	41
Tria SL PEI+2,4-D 1+.25		0	1	35
UBI-734 SL PEI+2,4-D 1+.25		0	0	6
Control		0	Ő	0
				U
Mean		0	0	23
High mean		0	6	76
Low mean		0	0	0
Coeff. of variation		0	303	66
LSD(1 Percent)		0	3	29
LSD(5 Percent)		0	2	22
No. of reps		4	$\frac{1}{4}$	4
				100000

Summary

The only treatments which controlled wild oat were fall applications of granular triallate either surface applied or incorporated.

Fall applied herbicides in wheat, Absaraka. Fall treatments were applied on plowed soil October 30 and not incorporated (FS), incorporated twice with a field cultivator to a depth of 3 (FI-3) or 6 (FI-6) inches immediately after application. The entire experimental area was field cultivated and harrowed, spring preplant incorporated treatments applied and field cultivator incorporated twice (SPPI-Mult) or harrowed twice (SPPI-Harrow), Era wheat seeded, and spring preemergence treatments applied and harrow incorporated twice (SPEI) May 4. All treatments were applied with a bicycle-wheel sprayer delivering 17 gpa at 35 psi. The soil was dry to a depth of 2 inch with no rain until May 22. Weed control and wheat stand reduction and injury ratings were on June 11. Weed density was moderate.

	Rate			-Wheat		-% Con	trol-
Treatment	1b/A	totalla	bu/A	%ir	%sr	Fxtl	Colq
	0.5	and Marson P	30.8	3	4	97	74
Trifluralin FI-3	0.5		30.3	1	6	96	70
Trifluralin FI-6	0.5		40.8	1	8	94	66
Trifluralin FI-3	•75			4	16	99	84
Trifluralin FI-6	•75		41.7			6	0
Triallate FS	1		44.2	0	0	0	0
Triallate FI-3	1		32.7	0	3		a Charles and a second second
SSH-0860 FI-3	1.5		44.9	0	0	90	100
DPX-4189 FS	.03		43.6	0	0	96	99
DPX-4189 FI-3	.03		49.4	5	4	98	99
Triallate+SSH-0860 FI-3	1+1		39.1	1	4	85	94
Triallate+Trifluralin FI-	3 1+.5		44.0	6	15	99	85
Triallate+Trifluralin FI-6	5 1+.5		37.7	8	27	100	88
Triallate+DPX-4189 FS	1+.03		45.4	4	1	96	100
Triallate+DPX-4189 FI-3	1+.03		48.1	5	3	97	100
Trifluralin SPPI-Mult	0.5		39.7	11	32	98	88
Trifluralin SPPI-Harrow	0.5		36.9	0	9	86	65
SSH-0860 SPPI	1.5		43.6	5	3	90	98
Triallate SPEI	1.0		37.4	0	0	0	0
Trifluralin SPEI	0.5		36.9	0	0	85	69
DPX-4189 SPEI	.03		43.7	3	1	94	99
Triallate+Trifluralin SPE			35.6	3	0	90	79
Triallate+DPX-4189 SPEI	.03+1		42.7	3	0	95	99
Control	0		34.4	0	0	0	0
001101 01			-				
M			40.2	3	6	78	72
Mean			49.4	11	32	100	100
High mean	.0		30.3	0	Ō	0	0
Low mean			18.7	139	91	7	11
Coeff. of variation			13.9	7	10	10	14
LSD(1 Percent)			10.5	6	7	7	11
LSD(5 Percent)			4.0	4	4	4	4
No. of reps			1.0				

Summary

Wheat injury with fall applications of trifluralin generally increased as depth of incorporation increased; however, fall applications of trifluralin were safter than spring preplant applications field cultivato inc. Spring preplant applications harrow inc before seeding injured wheat more than preemergence applications harrow inc after seeding. Green foxtail and common lambsquarters control was excellent with fall or spring applications of SSH-0860 and chlorsulfuron and grft control excellent with fall or spring applications of trifluralin. Triallate and SSH-0860 combinations with other herbicides, Fargo. Era wheat and Park barley were seeded 4/15 in 6 inch row spacings. Herbicide treatments were applied with a bicycle-wheel plot sprayer delivering 17 gpa at 35 psi and harrow incorporated twice April 16. The soil was dry to a depth of 2 inch and rainfall for a 2 week period following application totaled 0.4inch. The experiment was a randomized complete block with 4 replications. Experimental units were 8 by 32 ft. Wild oat ratings were on July 2, other weed control and crop injury ratings were on July12. Weed densities were moderate to light.

	Rate	:W	heat		Bar	lev -	Pe	rcent	; Co	ontro	[0
Treatment	1b//	Yield	%ir	%sr	%ir	%srl	Vimu	Fxtl	locz	Vibwk	Vioa
		bu/A		-		_	_				
Triallate		34.7	0	0	0	0	0	0	0	•	17 11
Triallate+Trifluralin	1+.75		Ő	3	0	1	0	97	0 75	0 14	74 81
Triallate+Profluralin	1+.75		1	1	0	0	0	95	72	0	78
Triallate+Fluchloralin	1+.75		Ó	3	õ	3	Ő	96	80	14	68
Triallate+Pendimethalin	1+1		0	3	õ	1	0	95	53	28	88
Triallate+Pendimethalin	1+1.5		0	1	Ő	3	0	97	70	15	81
Triallate+SSH-0860	1+1	-	Ő	3	Ő	1	68	76	37	0	76
Triallate+SSH-0860	1+1.5		0	4	3	3	75	79	33	24	82
Triallate+R-40244	1+.25	21-2	0	0	0	3	20	10	20	0	80
Triallate+R-40244	1+.5		Ő	1	Ő	3	44	26	62	8	84
Triallate+MC-10108	1+.5		. 1	0	1	õ	60	59	67	33	77
Triallate+Chloramben	1+1.5		Ó	3	Ó	6	64	91	82	18	71
Triallate+DPX-4189	1+.015		Ő	3	õ	3	56	83	87	14	77
Triallate+DPX-4189	1+.03		3	4	0	3	76	90	78	16	82
Triallate+DPX-4189	1+.06	42.4	Ō	4	0	5	85	95	87	16	80
Triallate+Trif+DPX-4189	1+.75+.03	36.3	1	4	3	4	76	100	75	40	79
Triallate+Trif+R-40244	1+.75+.5	35.0	1	1	õ	0	74	97	75	31	78
Triallate+Trif+MC10108	1+.75+.5	37.6	0	9	0	6	75	99	88	40	81
SSH-0860	1	30.3	0	Ő	0	0	66	76	35	5	45
SSH-0860	1.5	29.8	0	0	0	4	79	73	70	23	34
SSH-0860+Trifluralin	1+0.5	31.7	0	0	0	0	56	97	47	28	55
SSH-0860+Trifluralin	1+0.75	37.9	0	0	3	0	81	99	77	36	62
Control		15.6	0	0	õ	0	0	Ó	0	0	0
Mean		36.0	0	2	0	2	46	75	59	17	70
High mean		43.2	3	9	, 3	6	85	100	88	40	88
Low mean		15.6	0	0	,) 0	-0	0	0	0	40	00 0
Coeff. of variation		18.5	433	171	486	172	36	11	34	89	23
LSD(1 Percent)		12.3	3	6	3	6	30	15	44	29	30
LSD(5 Percent)		9.3	2	5	3	5	23	11	33	22	23
No. of reps		4.0	4	4	4	4	4	4	3	4	25
						·		7	J	т	-

Summary

Herbicide treatments increased wheat yields 18 to 22 bu/A compared to the untreated control. Wild oat control with triallate was not influenced by any herbicide combination. Chloramben or chlorsulfuron combinations with triallate provided fair to good control of wild mustard, green foxtail, and kochia; dinitroanaline combinations, excellent green foxtail control and fair kochia control; and SSH-0860 combinations fair wild mustard and green foxtail control.

17

SSH-0860 in wheat and barley, Fargo 1981. Preplant (PPI) treatments were applied and incorporated twice with field cultivator, Era wheat and Park barley seeded, preemergence incorporated (PEI) treatments applied and harrowed twice, and preemergence (PE) treatments applied April15. The soil was dry to a depth of 2 inch and rainfall for a 2 week period following application totalled 0.4 inch. All treatments were applied with a bicycle wheel sprayer delivering 17 gpa at 35 psi. The experiment was a randomized complete block with four replications. Wild oat and crop injury ratings were on July 10. Wild oat density was 20 plants/ft square.

		Rate	Wh	eat	Bar	ley	% Cor	trol
Treatment		lb/A	%ir	%sr	%ir	%sr	Wioa	Wimu
Triallate SSH-0860 SSH-0860 SSH-0860 Triallate SSH-0860 SSH-0860 Triallate SSH-0860 SSH-0860 SSH-0860 SSH-0860	PPI PPI PPI PEI PEI PEI PE PE PE PE	1 1.5 2 1 1.5 2 1 1.5 2 1 1.5 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			92 21 41 44 46 16 26 36 13 8 8 25 0	0 85 94 100 0 81 94 97 0 64 90 99
Control Mean High mean Low mean Coeff. of LSD(1 Perc LSD(5 Perc No. of rep	ent) ent)	ation	0 0 0 0 0 0 4	0 0 0 0 0 0 4	0 0 0 0 0 0 4	0 0 0 0 0 4	29 92 0 55 31 23 4	62 100 0 18 21 15 4

Summary

PPI application of triallate was the only treatment which effectively controlled wild oat. Wild mustard control was good with SSH-0860 at 1 to 2 lb/A PPI or PEI and 1.5 to 2 lb/A PE.

New preemergence herbicides for wild oat control, Fargo 1981. Era wheat and Park barley were seeded, incorporated (PEI) treatments applied and harrowed twice, and surface (PE) treatments applied April 15. The soil was dry to a depth of 2 inch and rainfall for a 2 week period following application totalled 0.4 inch. All treatments were applied with a bicycle wheel sprayer delivering 17 gpa at 35 psi. The experiment was a randomized complete block with 4 replications. Weed control and crop injury ratings were on July 2. Wild oat density was 20 plants/ft square.

		Rate	Whe	eat	Ban	rley-	Pe	rcent	contr	01
Treatment	288	lb/A	%ir	%sr	%ir	%sr	Wimu	Fxtl	Wibw	Wioa
Triallate	דתת									
Triallate+bivert	PEI	1	0	3	0	0	0	0	0	60
SD-92818		1+.25G	0	5	0	0	0	0	0	48
SD-92818	PEI	0.5	0	0	0	1	0	71	0	3
SD-92818	PEI	1	0	0	1	0	0	87	0	3
SD-96803	PEI	2	0	1	0	0	0	90	0	11
SD-96803	PEI	0.5	0	0	1	0	0	74	0	9
SD-96803	PEI	1	3	1	3 4	3	0	81	0	19
SD-95481	PEI	2	1	0			0	93	0	26
SD-95481	PEI	0.5	0	0	1	1	0	83	0	13
SD-95481	PEI	1	1	0	1	1	0	99	0	19
SD-49818	PEI	2	6	6	6	3	50	100	0	40
SD-92818	PEI PE		0	0	0	0	0	88	0	14
SD-92818	PE	0.75	0	0	0	0	0	60	0	0
SD-92818	PE	1.5	3	0	4	0	0	86	0	0
SD-96803	PE	3	0	0	0	0	0	85	0	3
SD-96803	PE	0.75	0	0	0	0	0	61	0	9
SD-96803	PE	1.5	0	0	0	0	0	79	0	6
SD-95481	PE	3	0	0	0	0	0	80	0	10
SD-95481	PE	1.5	0 0	0	0	0	0	83	0	10
SD-95481	PE			0	0	0	0	85	0	6
SD-49818	PE	3 1.5	3	1	1	1	0	91	0	36
Control	r E	1.5	0	0	0	0	0	71	0	4
001101 01			U	0	0	0	0	0	0	0
Mean			1	1	1	1	2	72	0	15
High mean			6	6	6	3	50	100	0	60
Low mean			0	0	0	õ	0	0	0	
Coeff. of variati	ion		266	276	206	349	0	19	0	0 93
LSD(1 Percent)			3	4	4	4	0	25	0	93 26
LSD(5 Percent)			3	3	3	3	0	19	0	20
No. of reps			4	4	4	4	1	4	1	20 4
•				·			'	-1	1	-1

Summary

No treatment controlled wild oat as effectively as triallate. Foxtail control with the SD compounds was slightly better when incorporated than surface applied. SD-95481 was more effective on foxtail than the other compounds tested. Little crop injury was observed with any treatment.

19

Barban formulation comparison, Fargo 1981. Era wheat was seeded April 30 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-lf wheat and wild oat May 22. Rainfall for a 1 week period following application totalled 3.3 inch. Herbicides were applied with a bicycle wheel sprayer delivering 4.5 gpa at 45 psi. The experiment was a randomized complete block with 4 replications. Weed control and injury ratings were on July 17. Wild oat density was 20 plants/ft square.

	Rate	 	Wheat		% Control
Treatment	lb/A	%ir		%sr	Wioa
	1.	0		0	73
Barban (21b/Gallon)	4	0		0	73
Barban (21b/Gallon)	6	0		0	77
Barban (21b/Gallon)	8	0		0	
Barban (21b/Gallon)+N	6+1G	0		0	74
Barban (11b/Gallon)	4	0		0	75
Barban (11b/Gallon)	6	1		0	79
Barban (11b/Gallon)	8	4		0	83
Barban (11b/Gallon)+N	6+1G	0		0	81
Control		0		0	0
001101 01					
Maan		1		0	68
Mean High mean		4		0	83
		0		0	0
Low mean Coeff. of variation		275		0	11
LSD(1 Percent)		- 4		0	14
		3		0	11
LSD(5 Percent)		4		4	4
No. of reps		6			200000000

Summary

Wild oat control with barban was similar regardless of formulation.

Broadleaf herbicide combinations with barban, Fargo 1981. Era wheat was seeded May 5 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-leaf wheat and wild oat May 22 except propanil applications before or after barban were May 18, 20, 26 and 28. Rainfall for a 1 week period following application was 3.3 inch. Herbicides were applied with a bicycle wheel sprayer delivering 4.5 gpa at 45 psi. The experiment was a randomized complete block with 4 replications. Weed control and injury ratings were on July 17. Wild oat density was 10 plants/ft square.

	Rate	Wh	%	% Control		
Treatment	oz/A	%ir	%sr	Wioa	Wimu	
Devel						
Barban	6	0	0	60	0	
	6+0.25	0	0	72	100	
Barban+Chlorsulfuron	6+0.5	4	0	78	100	
Barban+Chlorsulfuron	6+1	0	0	60	100	
Barban+R-40244	6+2	4	0	72	100	
Barban+R-40244	6+4	0	0	65	100	
Barban+Acifluorfen	6+6	0	0	54	90	
Barban+Mefluidide	6+0.5	3	0	71	80	
Barban+Propanil	6+24	õ	0	55	100	
Barban+Propanil 4daybefore	6+24	3	0	74	100	
Barban+Propanil 2daybefore	6+24	õ	0	78	100	
Barban+Propanil 2dayafter	6+24	10	õ	71	100	
Barban+Propanil 4dayafter	6+24	7	õ	78	100	
Barban+RH-043-E	6+4	ò	õ	65	95	
Control		Ō	õ	0	0	
			Ŭ	U	U	
Mean		2	0	63	78	
High mean		10	õ	78	100	
Low mean		0	õ	0	0	
Coeff. of variation		129	0	14	0	
LSD(1 Percent)		5	0	17	and a state of the second	
LSD(5 Percent)		4	0		0	
No. of reps		4	4	13	0	
		7	ч ,	4	1	

Summary

Wild oat control with 6 oz/A barban was not reduced by the addition of other herbicides. Further chlorsulfuron, R-40244, mefluidide and split applications of propanil increased wild oat control with barban slightly.

21

Broadleaf herbicide combinations with diclofop, Fargo 1981. Era wheat was seeded April 15 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-leaf wheat and wild oat May 12. Both wheat and wild oat were under stress when applications were made. First rain was 3.3 inch which fell over a 3 day period of May 22-24. Herbicides were applied with a bicycle wheel sprayer delivering 8.5 gpa at 35 psi. The experiment was a randomized complete block with 4 replications. Weed control and injury ratings were on July 6. Wild oat density was 20 plants/ft square.

	Rate	Wheat		Percent contr	·ol
Treatment	oz/A	%ir	Kocz	Wimu	Wioa
0 00 00	0		9		1.81 7.58
Diclofop	8	0	0	0	65
Diclofop	12	0	0	0	78
Diclofop+DPX-5648	8+0.25	0	95	99	65
Diclofop+DPX-5648	12+0.25	29	100	98	85
Diclofop+DPX-5648	12+0.5	38	100	100	95
Diclofop+Chlorsulfur	on 12+1	0	95	98	66
Diclofop+R-40244	12+2	0	85	90	59
Diclofop+R-40244	12+4	1	90	94	86
Diclofop+Acifluorfer	n 12+6	0	88	100	65
Diclofop+Mefluidide	12+0.5	0	0	0	83
Diclofop+Bromoxynil	12+4	0	88	81	90
Diclofop+RH-043	12+4	0	95	90	70
Control		0	0	0	0
Mean		5	64	65	70
High mean		38	100	100	95
Low mean		0	0	0	0
Coeff. of variation		54	7	6	10
LSD(1 Percent)		5	15	7	14
LSD(5 Percent)		4	10	5	10
No. of reps		4	2	4	4

Summary

Wild oat control with diclofop was increased slightly by the addition of DPX-5648 or bromoxynil and reduced slightly by the addition of chlorsul-furon, R-40244, acifluorfen or RH-043. Wheat was injured by diclofop combinations with DPX-5648.

Broadleaf herbicide combinations with difenzoquat, Fargo 1981. Era wheat was seeded April 30 in 6 inch row spacings. Herbicide applications were made to 3.5 to 4-leaf wheat and wild oat June5 except propanil applications before difenzoquat were on June 1 and 3. Rainfall for a 1 week period following application was 0.9 inch. Herbicides were applied with a bicycle wheel sprayer delivering 8.5 gpa at 35 psi. The experiment was a randomized complete block with 4 replications. Weed control and injury ratings were on July 17. Wild oat density was 20 plants/ft square.

the second s	Rate	Wh	eat	-Perce	ent co	ntrol-
Treatment	oz/A	 %ir	%sr	Wioa	Wimu	Fxtl
Difenzoquat	12	3	0	84	0	
Difenzoquat+2,4-D ES	12+4	9	0		0	0
Difenzoquat+2,4-D AM	12+4	8		86	100	0
Difenzoquat+R=40244	12+2	8	0	83	100	0
Difenzoquat+R=40244	12+2		1	86	100	0
Difenzoquat+Chlorsulfuron		4	3	90	100	0
Difenzoquat+Chlorsulfuron	12+0.25	1	0	82	100	100
Difenzoquat+Chlorsulfuron	12+.05	10	0	82	100	99
	12+1	9	0	81	100	100
Difenzoquat+Propanil	12+24	0	0	38	96	88
Difenzoquat+Propanil 2daybefor		1	0	68	95	77
Difenzoquat+Propanil 4daybefor	e 12+24	8	0	91	100	83
Control		0	0	0	0	0
Mean		5	0	72	83	46
High mean		10	3	91	100	100
Low mean		0	õ	0	0	0
Coeff. of variation		88	343	15	3	
LSD(1 Percent)		8	2	21		15
LSD(5 Percent)		6			5	13
No. of reps		4	2	16	4	10
		4	4	4	4	4

Summary

Wild oat control with difenzoquat was not influenced by the addition of 2,4-D amine or ester, R-40244 and chlorsulfuron. Wild oat control with difenzoquat was reduced over 40% by the addition of propanil. Further a 2 day separation between application of propanil and difenzoquat did not overcome the antagonism.

Hard red spring wheat response to difenzoquat, Minot 1981. Hard red spring wheat cultivars were seeded May 5. Difenzoquat was applied at 1 lb/A to 3 to 5-leaf wheat June 8 with a tractor mounted sprayer delivering 20 gpa at 30 psi. The wheat had previously been treated with 3 lb/A propachlor on May 8 and 6+6 oz/A of bromoxynil+MCPA on June 8. Injury data is based on two observations and yield on a 9 sq ft hand harvested sample.

Constanting of the Constanting o					ield
	%	Injury	Mat Delay	Untreated	red trt
Cultivar	June 24	July 22	Days	bu/A	%
	Sere Store		AN80.	110	0
Baapt	1	15	2	40	0 46
Thatcher	60	30	9	51 44	40 31
Lew	70	60	13	44	
Waldron	70	60	14	40 47	39 13
Coteau	30	10	7	47	35
Alex	70	45	9 4	41	0
Benito	10	0	4	41	0
James	20	15 10	2	40	0
Butte	10	10	6	53	28
Olaf	50	65	9	45	35
Len	70	15	3	60	15
Solar	30 15	. 5	2	61	16
Walera Prolorund 711	10	15	2	42	5
Era	20	10	2	56	22
Wared	30	15	3 2 2 2 5 2	55	19
Prodax	15	0	2	42	3
906 R	90	70	15	51	43
Aim	90	55	9	60	42
Oslo	20	15	5 4	53	17
Tracey	10	5		46	6
Pondera	20	5	1	36	1
Marberg	5	0	5	47	2
Probrand 715	30	10	4	52	7
Pioneer X7618	80	60	13	48	24
Pioneer 2360	40	25	3	48	19 16
MN70170R	30	0	3	59	
ND573	15	5	3 3 3 8 5	47	0 18
ND574	30	40	0	51 52	18
ND575	20	10	5 11	49	46
ND580	80	70	11	51	51
ND581	80	70 5	11	33	0
ND582	20 50	5 10	6	36	1
ND583	50	0	6 3 5 8	33	0
ND584	30	5	5	26	0
ND585	20	5	8	32	0
ND586 MP180	20	5 5 10	2	52	17
HI 100	27	10			

Summary

Hard red spring wheat cultivars exhibited marked differences in tolerance to 1 lb/A difenzoquat. Wheat cultivar injury ratings on July 22 ranged from 0 to 70% and yield reductions from 0 to 51%. Durum wheat response to difenzoquat, Minot 1981. Durum wheat cultivars were seeded May 5, 1981. Difenzoquat was applied at 1 lb/A to 3 to 5 leaf wheat June 8 with a tractor mounted sprayer delivering 20 gpa at 30psi. The wheat had previously been treated with 3 lb/A propachlor on May 8 and 6+6 oz/A of bromoxynil+MCPA on June 8. Injury data is based on two observations and yield on a 9 sq ft hand harvested sample.

-Cliffe-Leibhain	al season a			Y	ield
	%	Injury	Mat Delay	Untreated	red trt
Cultivar	June 24	July 22	Days	bu/A	%
Vic	20	15	2	1.1	
Ward	30	15	2	44	26
Rugby	5	0	0	43	1
Crosby	1	0	0	47	0
Coulter		0	0	52	alited 1000 14
Rolette	5 5	5	2	58	30
Botno	2 1		1	44	2
Edmore		10	0	48	17
Cando	50	20	0	52	26
Calvin	1	0	0	51	19
D771	1	0	1	42	34
D773	60		3 9	53	12
D7609		45	9	56	27
D7609	52	20	6	45	13
D782	5 5	0	2 2	49	12
D785	2 1			39	0
D7732	5	0	0	50	0
D7733	5 70	45	0	43	0
D7751	50			45	12
D7798	60	45 40	5	44	20
D77189	5	40 0	9 6	52 42	29
D77197	5	0			0
D77200	5	0	یں ع 2	42 46	0
D77204	1	0	3	40 47	0
D791	50	50	10	47 42	2 42
D792	40	50			
D792 D793	40	0	9 0	53	33
D794	40	45	11	55 52	2 50
דעוע	40	45	11	52	50

Summary

Durum wheat cultivars exhibited marked differences in tolerance to 1 lb/A difenzoquat. Durum cultivar injury ratings on July 22 ranged from 0 to 55% and yield reductions from 0 to 50%. Durum cultivars with Edmore parentage were generally more susceptible to difenzoquat than the other cultivars tested. SD-45328 for wild oat control, Fargo. Era wheat and Beacon barley were seeded April 24 in 6 in row spacings. Herbicides applications were made to 1.5 to 2-leaf crop and wild oat May 14 and 3.5 to 4-leaf crop and wild oat May 28. Both wild oat an crop were growing under moisture stress when applications were made at the 1.5 to 2-leaf stage. First rain after application was 3.3 inch over a 3 day period May 22 to 24. In addition 0.3 inch rain fell within 3 days after application at the 3.5 to 4-leaf stage. Herbicides were applied with a bicycle-wheel sprayer delivering 8.5 gpa at 35 psi. The experiment was a randomized complete block with 4 replications. Experimental units were 8 by 32ft. Wild oats and crop injury ratings were on July 17. Wild oat density was 30 plants/ft sq.

RateWheatBarley- %ContTreatmentoz/AYield %ir %sr%ir %sr%ir %srWioaDiclofop 2-1f0.7539.800 <th c<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>d a 1</th></th>	<th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>d a 1</th>								d a 1
bu/A Diclofop 2-lf 0.75 39.8 0 0 0 85 SD-45328 2-lf 0.15 40.9 0 0 0 93 SD-45328 2-lf 0.18 40.7 0 0 0 93 SD-45328 2-lf 0.21 43.3 0 0 1 93 SD-45328 2-lf 0.25 44.5 0 0 1 93 SD-45328 4-lf 0.25 44.5 0 0 1 93 SD-45328+00 2-lf 0.18+.250 45.8 0 3 0 98 Flamprop 2-lf 0.5 45.3 0 1 0 96 Difenzoquat 4-lf 0.75 42.7 3 0 4 0 99 SD-45328 4-lf 0.21 42.3 1 0 4 0 99 SD-45328 4-lf 0.25 44.3 1 0 8 100 SD-45328 4-lf 0.25 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Diclofop 2-lf 0.75 39.8 0 0 0 0 85 SD-45328 2-lf 0.15 40.9 0 0 0 0 89 SD-45328 2-lf 0.21 43.3 0 0 1 93 SD-45328 2-lf 0.25 44.5 0 1 0 93 SD-45328 2-lf 0.25 44.5 0 0 1 93 SD-45328 2-lf 0.25 44.5 0 0 0 94 SD-45328+Nitrogen 2-lf $0.18+.256$ 45.8 0 3 0 SD-45328+02 2-lf $0.18+.256$ 45.8 0 3 0 98 Flamprop 2-lf 0.5 45.3 0 1 0 96 Difenzoquat 4-lf 0.75 42.7 3 0 4 98 SD-45328 4-lf 0.15 45.2 4 0 3 99 SD-45328 4-lf 0.25 44.3 1 0 4 0 SD-45328 4-lf 0.25 44.3 1 0 4 0 SD-45328 4-lf 0.25 44.3 1 0 4 99 SD-45328 4-lf 0.25 44.3 1 0 4 99 SD-45328 4-lf 0.25 44.3 1 0 8 100 SD-45328+02 $4-1f$ $0.18+.256$ 41.7 1 0 4 99 Flamprop $4-1f$ 0.5 43.1 1 0 5 99 <	Treatment	oz/A		%ir	%sr	%ir	%sr	Wioa	
SD-453282-1f0.1540.9000089SD-453282-1f0.1840.700093SD-453282-1f0.2143.301093SD-453282-1f0.2544.501098SD-45328+Nitrogen2-1f0.18+1G39.700094SD-45328+Nitrogen2-1f0.18+.25G45.803098Flamprop2-1f0.545.301096Difenzoquat4-1f0.7542.7304098SD-453284-1f0.1545.2403099SD-453284-1f0.1545.2403099SD-453284-1f0.1545.2403099SD-453284-1f0.2142.3104000SD-453284-1f0.2544.3108100SD-45328+Nitrogen4-1f0.18+1G42.92050100SD-45328+Nitrogen4-1f0.543.1105099Control26.2000000Mean41.910209000Low mean26.2000000Low me			bu/A						
SD-453282-1f0.1540.9000089SD-453282-1f0.1840.700093SD-453282-1f0.2143.301093SD-453282-1f0.2544.501098SD-45328+Nitrogen2-1f0.18+1G39.700094SD-45328+Nitrogen2-1f0.18+.25G45.803098Flamprop2-1f0.545.301096Difenzoquat4-1f0.7542.7304098SD-453284-1f0.1545.2403099SD-453284-1f0.1545.2403099SD-453284-1f0.1545.2403099SD-453284-1f0.2142.3104000SD-453284-1f0.2544.3108100SD-45328+Nitrogen4-1f0.18+1G42.92050100SD-45328+Nitrogen4-1f0.543.1105099Control26.2000000Mean41.910209000Low mean26.2000000Low me					and the second	and the second se			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Diclofop 2-1f	0.75	39.8	0	0	0	0	85	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.15	40.9	0	0	0	0	89	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.18	40.7	0	0	0	0	93	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.21	43.3	0	0	1	0	93	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.25	44.5	0	0	1	0	98	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8+1G	39.7	0	0	0	0	94	
Difenzoquat 4-lf 0.75 42.7 3 0 4 0 98 SD-45328 4-lf 0.15 45.2 4 0 3 99 SD-45328 4-lf 0.18 44.6 4 0 4 99 SD-45328 4-lf 0.21 42.3 1 0 4 0 SD-45328 4-lf 0.25 44.3 1 0 8 100 SD-45328 4-lf 0.25 44.3 1 0 8 0 SD-45328+Nitrogen 4-lf $0.18+16$ 42.9 2 0 5 0 SD-45328+OC 4-lf $0.18+.256$ 41.7 1 0 4 99 Flamprop 4-lf 0.5 43.1 1 0 5 99 Control 26.2 0 0 0 0 Mean 41.9 1 0 2 90 High mean 26.2 0 0 0 0 Low mean 26.2 0 0 0 0 Coeff. of variation 10.5 237 0 119 0 LSD(1 Percent) 8.3 4 0 6 5 LSD(5 Percent) 6.2 3 4 0 9			45.8	0	0	3	0	98	
Difenzoquat 4-lf 0.75 42.7 3 0 4 0 98 SD-45328 4-lf 0.15 45.2 4 0 3 0 99 SD-45328 4-lf 0.18 44.6 4 0 4 0 99 SD-45328 4-lf 0.21 42.3 1 0 4 0 100 SD-45328 4-lf 0.25 44.3 1 0 8 0 100 SD-45328 4-lf 0.25 44.3 1 0 8 0 100 SD-45328+Nitrogen 4-lf $0.18+16$ 42.9 2 0 5 0 100 SD-45328+OC 4-lf $0.18+.256$ 41.7 1 0 4 99 Flamprop 4-lf 0.5 43.1 1 0 5 99 Control 26.2 0 0 0 0 Mean 41.9 1 2 0 90 High mean 26.2 0 0 0 0 Low mean 26.2 0 0 0 0 Coeff. of variation 10.5 237 0 119 0 LSD(1 Percent) 8.3 4 0 6 5 LSD(5 Percent) 6.2 3 0 4 0				0	0	1	0	96	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.75		3	0		0	98	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			45.2	4	0	3	0	99	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.18	44.6	4	0	4	0	99	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.21	42.3	1	0	4	0	100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.25		1	0	8	0	100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8+1G		2	0	5	0	100	
Flamprop 4-lf 0.5 43.1 1 0 5 0 99 Control 26.2 0 0 0 0 0 Mean 41.9 1 0 2 0 90 High mean 45.8 4 0 8 0 100 Low mean 26.2 0 0 0 0 Coeff. of variation 10.5 237 0 119 0 LSD(1 Percent) 8.3 4 0 6 0 LSD(5 Percent) 6.2 3 0 4 0				1	0	4	0	99	
Control 26.2 0000Mean 41.9 102090High mean 45.8 4080100Low mean 26.2 00000Coeff. of variation 10.5 237 011903LSD(1 Percent) 8.3 40605LSD(5 Percent) 6.2 30403				1	0	5	0		
Mean 41.9 102090High mean 45.8 4080100Low mean 26.2 00000Coeff. of variation 10.5 237 011903LSD(1 Percent) 8.3 40605LSD(5 Percent) 6.2 30403							0		
Mean 45.8 4080100Low mean 26.2 00000Coeff. of variation 10.5 237 0 119 03LSD(1 Percent) 8.3 40605LSD(5 Percent) 6.2 30403	2								
High mean 45.8 4080100Low mean 26.2 00000Coeff. of variation 10.5 237 0 119 03LSD(1 Percent) 8.3 40605LSD(5 Percent) 6.2 30403	Maan		41.9	1	0	2	0	90	
Inight mean 26.2 0000Low mean 26.2 0000Coeff. of variation 10.5 237 0 119 03LSD(1 Percent) 8.3 40605LSD(5 Percent) 6.2 30403								-	
Coeff. of variation10.5237011903LSD(1 Percent)8.340605LSD(5 Percent)6.230403									
LSD(1 Percent) 8.3 40605LSD(5 Percent) 6.2 3 0 4 0 3									
LSD(5 Percent) $6.2 \ 3 \ 0 \ 4 \ 0 \ 3$								5	
								3	
NO. OI reps								4	
	No. of reps								

Summary

Slight crop injury was observed with 4-leaf treatments; however, no treatment reduced crop stand. Wild oat control with SD-45328 at 0.18 lb/A was slightly better than with diclofop at 0.75 lb/A and similar to flamprop at 0.5 lb/A or difenzoquat at 0.75 lb/A. Wild oat control with SD-45328 was slightly better at the 4 than 2-leaf stage. Wheat yields were 14 to 20 bu/A higher in herbicide treated than control plots thus reflecting the excellent wild oat control obtained.
SD-45328 for wild oat control in wheat, Minot 1981. Coteau wheat was seeded April 10 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-leaf wheat and wild oat May 6 and to 3.5 to 4-leaf wheat and wild oat May 19. Rainfall for a 1 week period following application at the 1.5 to 2-lf and 3.5 to 4-leaf stage was 0.1 and 0.7 inch, respectively. Herbicides were iment was a randomized complete block with 4 replications. Experimental units were 8 by 16ft. Wild oat control and crop injury ratings were on July 8. Wild oat density was 30 plants/ft square.

Marca I.	Rate	Whe	at	d 0
Treatment	lb/A	Yield	%ir	% Cont
		bu/A	~~ <u>~</u>	Wioa
Diolofor 0 10	122 Induct		and the second	
Diclofop 2-1f	0.75	16.0	0	80
SD-45328 2-1f	0.15	12.9	õ	
SD-45328 2-1f	0.18	13.1	õ	67
SD-45328 2-1f	0.21	13.1	õ	65
SD-45328 2-1f	0.25	13.9	õ	73
SD-45328+Nitrogen	2-1f 0.18+1G	13.9	0	80
SD-45328+0C 2-1f	0.18+.25G	13.6	Ö	75
Flamprop 2-1f	0.5	13.0	0	73
Difenzoquat 4-1f	0.75	13.0	0	64
SD-45328 4-1f	0.15	15.0	0	73
SD-45328 4-1f	0.18	13.8	0	79
SD-45328 4-1f	0.21	15.2	0	76
SD-45328 4-1f	0.25	16.4	0	87
SD-45328+Nitrogen	4-1f 0.18+1G	16.4	1	88
SD-45328+0C 4-1f	0.18+.25G	17.3	3	88
Flamprop 4-1f	0.5	18.4	0	93
Control		8.7	0	94
08			0	0
Mean		14.3	0	State State State
High mean		18.4		74
Low mean		8.7	3 0	94
Coeff. of variation	on	19.2		0
LSD(1 Percent)		5.2	599	12
LSD(5 Percent)		3.9	2	17
No. of reps		4.0	2	13
		TeU	4	4

Summary

Wild oat control with SD-45328 increased as rate increased and was better at the 4 than 2-leaf stage. Wheat yields were 4 to 10 bu/A higher in treated than control plots. SD-45328 for wild oat control in wheat, Williston 1981. Len wheat was seeded April 10 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-leaf wheat and wild oat on May 7 and to 3.5 to 4-leaf wheat and wild oat on May 20. Herbicides were applied with a bicycle wheel plot sprayer delivering 8.5 gpa at 35 psi. The experiment was a randomized complete block with 4 replications. Experimental units were 8 by 25 ft. Wild oat control and wheat injury ratings were on July 9. Wild oat density was 8 plants/sq. ft.

		Whea	t		Set L
Rate	Yield	Twt		Height	% Cont
31-/4	bu/A	lb/bu	%ir	(cm)	Wioa
Treatment 10/A		C. S. e. U.		0.5	00
Diclofop 2-lf 0.75	19.7	51.8	0	80	82
SD-45328 2-1f 0.15	17.0	51.4	0	83	60
SD-45328 2-1f 0.18	14.5	48.4	0	80	73
SD-45328 2-1f 0.21	21.9	53.4	0	82	72
SD-45328 2-1f 0.25	15.6	52.2	0	73	79 75
SD-45328+Nitrogen 2-1f 0.18+1G	21.1	53.1	0	73 72	82
SD-45328+0C 2-1f 0.18+.25G	22.5	52.8	1	78	71
Flamprop 2-1f 0.5	19.7	51.1	0	75	84
Difenzoquat 4-1f 0.75	23.9	53.9	0	69	83
SD-45328 4-1f 0.15	22.6	52.6	0	79	87
SD-45328 4-1f 0.18	28.1	54.6 51.0	0	74	93
SD-45328 4-1f 0.21	19.1 23.1	56.1	Ő	77	96
SD-45328 4-1f 0.25	19.3	52.5	1	70	96
SD-45328+Nitrogen 4-1f 0.18+1G SD-45328+0C 4-1f 0.18+.25G	19.9	51.4	0	75	97
	22.3	52.7	1	59	95
r rampi op i eri	19.4	55.8	0	80	0
Control					0.000
8.6 E	20.6	52.6	0	75	78
Mean Nich mean	28.1	56.1	1	83	97
High mean	14.5	48.4	0	59	0
Low mean Coeff. of variation	29.7	0.	473	7	0
LSD(1 Percent)	11.5	0.	2	15	6 8 6
LSD(5 Percent)	8.6	0.	1	11 2	4
No. of reps	4.0	1.0	4	2	

Summary

Little wheat injury was observed with any treatment. Wild oat control with SD-45328 was better at the 4 than 2leaf stage and was increased by the addition of nitrogen or petroleum oil concentrate.

SD-45328 for wild oat control in barley, Fargo. Park barley was seeded May 14 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-leaf barley and wild oat June8 and 3.5 to 4-leaf barley and wild oat June 16. Rainfall for a 1 week period following application at the 1.5 to 2 and 3.5 to 4-leaf stage was 0.9 and 0.6inch; respectively. Herbicides were applied with a bicycle wheel plot sprayer delivering 8.5 gpa at 35 psi. The experiment was a randomized complete block with 4 replications. Experimental units were 8 by 24 ft. Wild oat and barley injury ratings were on July 17. Wild oat density was 2 plants/ft sq.

	Rate		Barley		%Cont
Treatment	lb/A	Yield	%ir	%sr	Wioa
		bu/A	246	,	n 1 Oct
		2			
Diclofop 2-1f	0.75	55.3	9	0	89
SD-45328 2-1f	0.15	53.5	0	0	80
SD-45328 2-1f	0.18	57.7	9	0	83
SD-45328 2-1f	0.21	61.8	7	0	92
SD-45328 2-1f	0.25	58.4	3	0	98
	.18+1G	61.3	8	0	91
SD-45328+0C 2-1f 0.1	8+.25G	57.2	6	0	95
Flamprop 2-1f	0.5	60.8	4	0	98
Difenzoquat 4-1f SD-45328 4-1f	0.75	58.8	6	0	96
SD-45328 4-1f	0.15	54.1	15	0	90
SD-45328 4-11 SD-45328 4-1f	0.18	50.4	18	0	97
SD-45328 4-1f	0.21	48.6	20	0	98
	0.25	41.6	34	0	100
	.18+1G	50.5	23	0	96
	8+.25G	47.8	31	0	98
Flamprop 4-1f Control	0.5	48.4	25	0	100
COUCHOL	0	56.7	0	0	0
Mean					
High mean		54.3	13	0	88
Low mean		61.8	34	0	100
Coeff. of variation		41.6	0	0	0
LSD(1 Percent)		8.1	44	0	9
LSD(5 Percent)		9.8	11	0	15
No. of reps		7.3	8	0	12
10. 01 1 eps		3.0	4	4	4
	the second s				

Summary

Wild oat control with SD-45328 was generally better at the 4 than 2-leaf stage of application. Wild oat control with SD-45328 was similar with 0.15 lb/A at the 4-leaf stage or 0.21 lb/A at the 2-leaf stage. SD-45328 at rates of 0.18 lb/A or above significantly reduced barley yields at the 4 but not the 2-leaf stage. SD-45328 formulation comparison, Fargo. Era wheat and Park barley were seeded April 15 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-leaf crop and wild oat May 12 and 3.5 to 4-lf crop and wild oat May 28. Both wild oat and crop were growing under moisture stress when applications were made at the 1.5 to 2-leaf stage. First rain after application was 3.3 inch over a 3day period May 22 to 24. In addition 0.3 inch rain fell within 3 days after application at the 3.5 to 4-lf stage. Herbicides were applied with a bicycle-wheel plot sprayer delivering 8.5 gpa at 35 psi. The experiment was a randomized complete block with 4 replications. Experimental units were 8 by 32 ft. Wild oat and crop injury rating were on July 2. Wild oat density was 10 plants/ft square.

Rate	Wh	eat	Barl		%Cont
Treatment 1b/A	%ir	%sr	%ir	%sr	Wioa
SD-4532862 2-1f .15 SD-4532862 2-1f .18 SD-4532862 2-1f .18 SD-4532862 2-1f .21 SD-4532842 2-1f .12 SD-4532842 2-1f .15 SD-4532842 2-1f .18 SD-4532862 4-1f .15 SD-4532862 4-1f .18 SD-4532862 4-1f .18 SD-4532842 4-1f .12 SD-4532842 4-1f .15 SD-4532842 4-1f .18 Control	0 0 0 1 1 1 0 0 4 0 0 0		0 0 0 0 6 5 1 8 4 8 0	0 0 0 0 0 0 0 0 0 0 0 0	60 66 86 90 80 92 88 82 78 97 0
Mean High mean Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent) No. of reps	0 4 0 348 3 2 4	0 0 0 0 0 4	2 8 0 163 8 6 4	0 0 0 0 0 4	75 97 0 19 27 20 4

Summary

Wild oat control was generally better with the 0.42 than 0.62 lb/gal formulation of SD-45328 at both stages of application. Little crop injury was observed at the 2-leaf stage; however, slight crop injury was observed with all treatments at the 4-leaf stage. SD-45328 formulation comparison in wheat, Minot 1981. Coteau wheat was seeded April 10 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-leaf wheat and wild oat May 6 and 3.5 to 4-leaf wheat and wild oat May 19. Rainfall for a 1 week period following application at the 1.5 to 2-leaf and 3.5 to 4-leaf stage was 0.1 and 0.7 inch, respectively. Herbicides were applied with a bicycle wheel sprayer delivering 8.5 gpa at 35 psi. The experiment was a randomized complete block with 4 replications. Experimental units were 8 by 16 ft. Wild oat control and crop injury ratings were on July 8. Wild oat density was 30 plants/ft square.

	Rate	Wh	eat	% Cont
Treatment	lb/A	Yield	%ir	Wioa
		bu/A	,	WICA
	2.28			
SD-4532862 2-1f	•15	12.0	0	55
SD-4532862 2-1f	.18	13.4	0	66
SD-4532862 2-1f	.21	14.3	0	61
SD-4532842 2-1f	.12	11.1	0	63
SD-4532842 2-1f	.15	13.1	0	68
SD-4532842 2-1f	.18	14.4	0 0	76
SD-4532862 4-1f	.15	15.2	0	73
SD-4532862 4-1f	. 18	15.5	0 (8)	80
SD-4532862 4-1f	.21	15.6	0	81
SD-4532842 4-1f	.12	14.4	Ő	74
SD-4532842 4-1f	.15	15.2	Ő	86
SD-4532842 4-1f	.18	14.4	0	89
Control		8.3	Ő	0
		6	, in the second s	U
Mean		13.6	0	67
High mean		15.6	0	89
Low mean		8.3	Ő	0
Coeff. of variation	- D	16.3	0	14
LSD(1 Percent)		4.2	0	18
LSD(5 Percent)		3.2	0	14
No. of reps		4.0	4400	4
<u> </u>	a	2. 8.8.	7	4

Summary

Wild oat control tended to be better with the 0.42 than 0.62 lb/gal formulation at both stages of application. Wheat yields generally reflected wild oat control.

SD-45328 formulations and additives, Fargo 1981. Era wheat and Beacon barley were seeded April 24 in 6 inch row spacings. Herbicide applications were made to 3.5 to 4-leaf wheat, barley and wild oat May 28. Rainfall for a 1 week period following application totalled 0.5inch with 0.3 inch within 3 days. Herbicides were applied with a bicycle wheel sprayer delivering 8.5 gpa at 35 psi. The experiment was a randomized complete block with 4 replications. Weed control and injury ratings were on July 17. Wild oat density was 30 plants/ft square.

	Rate		Wheat		Bar	ley	% Cont
Treatment	lb/A	Yield	%ir	%sr	%ir	%sr	Wioa
11 Gabmonro		bu/A		28			
	0	13.4			21-2	221-222	
SD-45328	.15	36.4	1	0	3	0	93
SD-45328	.18	41.4	0	0	7	0	97
SD-45328	.21	43.5	1	0	9	0	98
SD-45328 (.42)	.12	40.3	0	0	0	0	89
SD-45328 (.42)	.15	42.2	2	0	3	0	95
SD-45328 (.42)	.18	45.3	1	0	3	0	98
SD-45328+X-77	.18+5%	41.6	1	0	7	0	97
SD-45328+WK	.18+5%	39.2	3	0	4	0	98
SD-45328+Citowet	t .18+5%	39.9	3	0	3	0	94
SD-45328+Bivert	.18+1qt	44.7	1	0	3	0	95
SD-45328+LOTM	.18+1qt	44.0	2	0	5	0	95
SD-45328+0C	.18+1qt	41.1	3	0	3	0	97
SD-45328+Herbex	.18+1qt	40.0	0	0	6	0	98
Control		18.9	0	0	0	0	0
001101 01							Lick his
Mean		39.9	1	0	4	0	89
High mean		45.3	3	0	9	0	98
Low mean		18.9	0	0	0	0	0
Coeff. of variat	ion	12.9	211	0	105	0	3
LSD(1 Percent)		9.8	5	0	8	0	5
LSD(5 Percent)		7.4	4	0	6	0	
No. of reps		4.0	4	4	4	4	4
mer of the							

Summary

Little crop injury was observed with any treatment. Wild oat control was excellent with all treatments ranging from 89 to 98%. Wheat yields were 17 to 26 bu/A higher in treated than control plots.

Broadleaf combinations with SD-45328, Fargo 1981. Era wheat was seeded April 30 in 6 inch row spacings. Herbicide applications were made to 3.5 to 4-leaf wheat and wild oat June 5 except propanil applications before SD-45-328 were on June 1 and 3. Rainfall for a 1 week period following application was 0.9 inch. Herbicides were applied with a bicycle wheel sprayer delivering 8.5 gpa at 35 psi. The experiment was a randomized complete block with 4 replications. Weed control and injury ratings were on July 17. Wild oat density was 30 plants/ft square.

Theotreet	Rate	Whe	at	Perc	ent con	trol
Treatment	oz/A	%ir	%sr	Wioa	Wimu	Fxtl
SD45328 SD45328 SD45328+Chlorsulfuron SD45328+Chlorsulfuron SD45328+Chlorsulfuron SD45328+R-40244 SD45328+R-40244 SD45328+Metribuzin-W SD45328+MSMA SD45328+MSMA SD45328+MSMA SD45328+MSMA SD45328+Propanil SD45328+Propanil SD45328+Propanil SD45328+Propanil SD45328+Propanil SD45328+Propanil SD45328+Propanil SD45328+Propanil SD45328+RH-043-E MSMA Control	$2 \\ 4 \\ 4+0.25 \\ 4+0.5 \\ 4+1 \\ 4+2 \\ 4+4 \\ 2+24 \\ 2+32 \\ 4+24 \\ 4+32 \\ 4+24 \\ 4+24 \\ 4+24 \\ 4+24 \\ 4+24 \\ 4+24 \\ 4+24 \\ 4+24 \\ 32 \end{bmatrix}$	0 11 9 4 13 4 9 3 8 6 8 14 1 0 6 1 5 0	0 0 0 0 3 1 6 0 0 0 0 0 0 0 0 0 0 0 0	77 98 87 75 83 82 87 58 85 80 86 91 36 55 88 46 72 0	0 0 100 100 100 100 100 100 100 100 100	0 0 100 100 100 0 8 38 68 81 44 81 83 75 78 13 79 0
Mean High mean Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent) No. of reps		6 14 0 74 8 6 4	1 6 0 301 3 2 4	71 98 0 17 23 17 4	81 100 0 13 20 15 4	52 100 38 37 28 4

Summary

Wild oat control with SD-45328 was not influenced by the addition of MSMA, reduced 10 to 20% by the addition of chlorsulfuron or R-40244 and reduced over 40% by the addition of propanil, metribuzin or RH-043. A 2 day separation between application of propanil and SD45328 did not overcome the

Broadleaf combinations with SD-45328, Minot 1981. Coteau wheat was seeded April 10 in 6 inch row spacings. Herbicide applications were made to 3.5 to 4-leaf wheat and wild oat May 19. Rainfall for a 1 week period following application totalled 0.7 inch. Herbicides were applied with a bicycle wheel sprayer delivering 8.5 gpa at 35 psi. The experiment was a randomized complete block with 4 replications. Experimental units were 8 by 16 ft. Wild oat control and crop injury ratings were on July 8. Wild oat density was 30 plants/ft square.

		Who	at	% Cont
and the second	Rate		%ir	Wioa
Treatment	oz/A	Yield	<i>p</i> 11	11200
		bu/A	and the second	No. of Concession, Name
			0	63
SD-45328	2	11.1	0 3 0	88
SD-45328	4	12.6	3	80
SD-45328+Chlorsulfuron	4+0.25	13.2		84
SD-45328+Chlorsulfuron	4+0.5	12.0	1	
SD-45328+Chlorsulfuron	4+1	12.9	1	83
SD-45328+R-40244	4+2	13.6	0	84
SD-45328+R-40244	4+4	13.9	0	85
SD-45328+Metribuzin-W	4+4	12.8	1	77
SD-45328+MSMA	2+24	12.8	0	81
SD-45328+MSMA	2+32	11.5	6	90
	4+24	15.3	3	91
SD-45328+MSMA	4+32	17.4	4	93
SD-45328+MSMA	4+24	12.6	0	66
SD-45328+Propanil		14.0	0	73
SD-45328+Propanil spli		12.9	0	66
	before 4+24 4+4	11.2	0	68
SD-45328+RH-043-E		11.5	3	74
MSMA	32	7.5	õ	0
Control		1.5	Ŭ	
		12.7	1	75
Mean		17.4	6	93
High mean			0	Ő
Low mean		7.5	212	11
Coeff. of variation		19.7	5	15
LSD(1 Percent)		4.7	4	11
LSD(5 Percent)		3.5	4	4
No. of reps		4.0	4	-

Summary

Wild oat control with SD-45328 was not influenced by the addition of chlorsulfuron, R40244 and MSMA but reduced by the addition of propanil, metribuzin or RH-043. A 1 day separation between application of propanil and SD-45328 did not overcome the antagonism. Barley response to SD-45328, Fargo. An experiment was conducted on silty clay soil with pH 7.5 and 6% organic matter to evaluate barley cultivar response to SD-45328. Barley cultivars were seeded April 17 in 6 inch row spacings. Treatments were applied in 8.5 gpa at 35 psi to 4.5 to 5leaf barley on June 4. Rainfall for a two week period following application totaled 1.25 inch. The experiment was a randomized complete block with a split-block arrangment and 3 replications.

			Treatme	ent		
	SD-4532	3	SD-45328	SD-45328		
Cultivar	5-1f 0.12	1b/A 5-	-1f 0.25 1b/A	5-1f 0.5 1b/A	Control	Mean
Larker Glenn Bonanza	43 32		40 33	33 22	47 42	41 32
Hector Park	35 34 46		33 31 44	18 18 29	46 42 43	33 31 41
Vanguard Manker Beacon	31 37 36		28 33 26	23 19 14	32 44	29 33
Bumper Morex	53 45		42 35	25 20	49 50 47	31 43 37
	lean 39		35	22	44	51
L	SD 0.05	Trt=4	Cult=3	Trt by Cult=11	122	

Summary

Barley yields when averaged over cultivar were reduced 11, 21, and 50% by SD-45328 at 0.12, 0.25, and 0.5 lb/A, respectively. Yield reductions ranged from 0 (Bumper, Park) to 26% (Glenn, Bonanza, Beacon) at 0.12 lb/A; from 0 (Park) to 47% (Bonanza) at 0.25 lb/A, and from 29 (Vanguard, Larker) to 71% (Beacon) at 0.5 lb/A.

CGA-82725 in barley, Fargo 1981. Park barley was seeded May 14 in 6 inch row spacings. Herbicide applications were made to 1.5 to 2-leaf barley and wild oat June 8 and 3.5 to 4-leaf barley and wild oat June 16. Rainfall for a 1 week period following application at the 1.5 to 2 and 3.5 to 4-lf stage was 0.9 and 0.6 inch, respectively. Herbicides were applied with a bicycle wheel sprayer delivering 8.5 gpa at 35 psi. The experiment was a randomized complete block with 4 replications. Wild oat and barley injury ratings were on July 17. Wild oat density was 2 plants/ft square.

	a <u>1999-1999</u> -1999-1999	Rate		Barley		% Control
Treatment		oz/A	Yield	%ir	%sr	Wioa
11 Cu omorro		302	bu/A			
A Control Mean	dI C.	0 91-9	C 0.25 16/4	1-3 1.0	5-16 9.18	198924460
CGA-82725	2-1f	2	57.4	5	0	91
CGA-82725	2-1f	4	49.9	14	0 03	98
CGA-82725	2-1f	6	41.5	25	0	100
CGA-82725+MCPA	2-1f	2+4	61.0	0	0	63
CGA-Bromoxynil	2-1f	2+4	57.3	7	0	88
CGA-82725	4-1f	2	43.4	40	0	100
CGA-82725	4-1f	4	16.4	80	0	100
GCA-82725	4-1f	6	11.6	83	0	100
CGA-82725+2,4-D	4-1f	2+4	57.4	6	0	88
Control			52.0	0	0	0
						ashb?
Mean			44.8	26	0	83
High mean			61.0	83	0	100
Low mean			11.6	0	0	0
Coeff. of variation			7.8	25	0	14
LSD(1 Percent)			8.2	12	0	22
LSD(5 Percent)			6.0	9	0	16
No. of reps			3.0	4	4	4
HOT OF TOPS						

Summary

Barley injury with CGA-82725 was greater at the 4 than 2-leaf stage of application and was reduced by the addition of MCPA or 2,4-D. Wild oat control was good with all treatments except CGA-82725 applications with MCPA at the 2-leaf stage.

Wild oat control in flax, Fargo 1981. Preplant (PPI) treatments were applied and incorporated twice with a field cultivator on May 1. Culbert flax was seeded in 6 inch rows and preemergence treatments applied on May 2. Postemergence applications were made to 1 inch flax and 1.5 to 2-leaf wild oat on May 22 and 3 inch flax and 4-leaf wild oat on June 5. First rain was 3.3inch over a 3 day period of May 22 to 24. In addition 1.25 inch of rain fell during the first 2 weeks of June. PPI and PE treatments were in 17 gpa and postemergence in 8.5 gpa at 35 psi except barban was 4.5 gpa at 45 psi. Wild oat density was 10 plants/ft square.

Tractment	Rate		Flax		% Cont
Treatment	lb/A	Yield	%ir	%sr	Wioa
		bu/A	the second second	,	WIOG
Triallate+MCPA PPI+P	1 5 0 05				and the second
Diallate+MCPA PPI+P	1.5+0.25	18.1	0	1	97
EPTC+MCPA PPI+P	1.5+0.25	18.9	0	1	96
Trifluralin+MCPA PPI+P	3+0.25	19.3	0	6	92
	1+0.25	10.1	1	26	65
Dial+Metolachlor+MCPA PPI+P	1.5+2+0.25	17.8	0	6	96
Dial+Metolachlor+MCPA PPI+P	1.5+3+0.25	18.1	0	1	97
Triallate+EPTC+MCPA PPI+P	1+3+0.25	21.4	0	13	99
Triallate+Trif+MCPA PPI+P	1+0.75+0.25	16.6	0	20	96
Propachlor+Barban PE+P	3+0.37	6.9	0	1	60
Prcl+Barban+DPX-4189 PE+P	3+.37+.015	5.4	0	0	41
Diclofop P	0.75	13.1	. 0	Ő	86
Diclofop+Bromoxynil P	0.75+0.25	11.7	. 0	0	84
Diclofop+DPX-4189 P	0.75+0.015	7.5	8	10	
Bas-9052+0C P	0.25+0.25G	16.0	0	0	77
Bas-9052+MCPA+OC P 0.25+	-0.25+0.25G	16.2	0	0	92
Bas-9052+Brox+OC P 0.25+	-0.25+0.25G	14.6	0	0	92
Bas-9052+DPX-4189+OC P 0.25	+.015+.25G	7.5	33	3	89
Asulam+S P	0.75+.1%	17.2	- 0		83
Asulam+MCPA+S P 0.7	5+0.25+.1%	17.8	4	0	96
Control	5.00-51010	3.3	4	0	95
		J•J	0	0	0
Mean		13.9	2	3,000	0.00.00
High mean		21.4	2	4	82
Low mean			33	26	99
Coeff. of variation		3.3	0	0	0
LSD(1 Percent)		21.5	135	95	6
LSD(5 Percent)		5.6	6	8	10
No. of reps		4.2	4	6	7
		4.0	4	4	4

Summary

Flax was injured by trifluralin or chlorsulfuron in combination with diclofop and Bas-9052. Wild oat control was good with all treatments except trifluralin and barban. Flax yields generally reflected wild oat control and/ or crop injury with the various treatments. Wild oat control in sunflower, Fargo 1981. Preplant (PPI) treatments were applied and incorporated twice with a field cultivator on May 1. Hybrid 894 sunflower was seeded in 30 inch rows and preemergence (PE) treatments applied on May 2. Postemergence application were made to 2-leaf sunflower and 1.5 to 2-leaf wild oat on May 22 and to 4 to 6-leaf sunflower and 3.5 to 4 leaf wild oat June 3. First rain was 3.3 inch over a 3 day period of May 22 to 24. In addition 1.25 inch rain fell during the first 2 weeks of June. PPI and PE treatments were applied in 17 gpa and postemergence in 8.5gpa at 35 psi except barban was in 4.5 gpa at 45 psi. Wild oat density was twenty plants/ft square.

	Rate	SI	inflower	% Control
	lb/A	%ir	%sr	Wioa
Treatment	10/11			
Triallate PPI	1	0	0	95
EPTC PPI	3	0	0	88
Trifluralin PPI	1	0	0	73
Trifluralin PPI	2	0	0	88
Ethafluralin PPI	0.94	0	0	75
UBI-S734 PPI	1.5	0	0	18
Triallate+UBI-S734 PPI	1+1.5	0	0	96
Triallate+Trifluralin PPI	1+1	0	0	95
Triallate+Chloramben PPI	1+2	0	0	94
Tria+Trif+Chloramben PPI	1+1+2	0	0	96
Triallate+EPTC PPI	1+3	1	0	99
Triallate+EPTC+Chloramben PPI	1+2+2	0.213.0	0	99
Tria+UBI-S734+Chloramben PPI	1+1.5+1.5	0 0.1540.	0	96
EPTC+Trifluralin PPI	2+1	0 0.55.0	0	91
EPTC+R-40244 PPI	3+0.5	0	0	91
EPTC+Chloramben PPI	2+2	0	0	87
Propachlor+Barban PE+P	5+0.75	0	0	83
Propachlor+Clam+Barban PE+P	3+2+0.75	0	0	79
Propachlor+Difenzoquat PE+P	5+0.75	50	0	94
Propachlor+SD-45328 PE+P	5+0.25	0	0	93
Diclofop P	1.5	0	0	91
Diclofop+R-40244 P	1.5+0.12	1	0	87
Bas-9052 P	0.25	0	0	87
373 0 0 0				07
Mean		2	0	87
High mean		50	0	99 18
Low mean		0	0	
Coeff. of variation		52	0	7
LSD(1 Percent)		2	0	11
LSD(5 Percent)		2	0	9 4
No. of reps		4	4	4
		and the second		NEL-CALO-IN Count and an Annual Count of the Development of the

Summary

Difenzoquat at 0.75 lb/A severely injured sunflower. Wild oat control generally was good with all treatments except UBI-S734.

Wild oat control in corn, Fargo 1981. Preplant (PPI) treatments were applied and incorporated twice with a field cultivator on May 1. Agsco 2xA1 corn was seeded in 30 inch rows and preemergence (PE) treatments applied on May 2. Postemergence applications were made to 1 inch corn and 1.5 to 2-leaf wild oat on May 21 and 2 to 3 inch corn and 3.5 to 4-leaf wild oat on June 4. First rain was 3.3 inch over a 3 day period of May 22 to 24. In addition 1.25 inch rain fell during the first 2 weeks of June. PPI and PE treatments were applied in 17 gpa and postemergence in 8.5 gpa at 35psi except barban was in 4.5 gpa at 45 psi. Wild oat density was 20 plants/ft

	Rate	Cor	n=====	% Control
Treatment	lb/A	%ir	%sr	Wioa
EPTC+R-25788 PPI EPTC+R-25788+EXT PPI Cyanazine-W PPI Cyanazine-W PE Propachlor PE Propachlor+Barban PE+2-1f Propachlor+Difenzoquat PE+4-1f Propachlor+Difenzoquat PE+4-1f Propachlor+SD-45328 PE+4-1f Propachlor+SD-45328 PE+4-1f Cyanazine-W 2-1f Cyanazine-W+LOTM 2-1f Control	4 4 3 5 5+0.37 5+0.75 5+0.62 5+1 5+0.18 5+0.25 2 1+.25G	0 3 5 6 0 1 29 33 0 1 0 1 0 0 0	3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	95 93 73 69 0 75 85 88 91 92 96 40 66 0
Mean High mean Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent) No. of reps		6 33 0 120 13 9 4	0 3 508 3 3 4	69 96 0 9 12 9 4

Summary

Difenzoquat at 0.62 and 1 lb/A injured corn. Wild oat control was good with EPTC, barban at 0.51b/A, difenzoquat and SD-45328. Postemergence wild oat control with 1 lb/A cyanazine in combination with LOTM was better than 2 lb/A alone. Wild oat control in soybeans, Fargo 1981. Preplant (PPI) treatments were applied and incorporated twice with a field cultivator on May 19. Evans soybean was seeded in 30inch rows and preemergence (PE) treatments applied on May 20. Postemergence applications were made to unifoliolate soybean and 1.5 to 2-leaf wild oat on June 8 and 2nd trifoliolate soybean and 3.5 to 4.5-leaf wild oat on June 16. First rain was 3.3 inch over a 3 day period of May 22 to 24. In addition 0.95 and 0.6 inch rain fell within 1 week after application of the early and late postemergence applications, respectively. PPI and PE treatments were applied in 17 gpa and postemergence in 8.5 gpa at 35 psi except barban was in 4.5 gpa at 45 psi. Wild oat density was 9 plants/ft square.

	Rate		Soybean	% Control
	lb/A	%ir	%sr	Wioa
Treatment	TOLE		and the second secon	
in the second	3	0	0	92
Alachlor PPI	1.5+5	0	0	94
Diallate+Propachlor PPI+PE		0	0	99
Triallate+Propachlor PPI+PE	1.5+5	0	0	55
Alachlor PE	3	G. G. G. 4	0	65
Acetachlor PE	1.75		0	36
Propachlor PE	5	0 8	0	95
Propachlor+Barban PE+2-1f	5+0.37		0	97
Propachlor+Barban PE+2-1f	5+0.75	9		93
Propachlor+Difenzoquat PE+4-1f	5+0.62	28	0	93
Propachlor+Difenzoquat PE+4-1f	5+1	34	0	89
Propachlor+SD-45328 PE+4-1f	5+0.18	0	0	88
Propachlor+SD-45328 PE+4-1f	5+0.25	4	0	
Diclofop 2-1f	1.25	0	0	99
Bas-9052+0C 2-1f 0.2	5+0.25G	0	0	100
Control		0	0	0
CONCLOT				
0 D		6	0	80
Mean	· · · · · ·	34	0	100
High mean		``0	0	0
Low mean		72	0	9
Coeff. of variation		8	0	13
LSD(1 Percent)		6	0	10
LSD(5 Percent)		. 4	4	4
No. of reps		- 4 State		

Summary

Difenzoquat at 0.62 and 1 lb/A injured soybeans. Wild oat control was good with all treatments except preemergence applications of alachlor, acetachlor and propachlor. Wild oat control in drybeans, Fargo 1981. Preplant (PPI) treatments were applied and incorporated twice with a field cultivator, UI 111 pinto beans were seeded in 30 inch rows and preemergence (PE) treatments applied on June4. Postemergence applications were made to unifoliolate pinto beans and 1 to 2-leaf wild oat on June 22 and 1st trifoliolate pinto beans and 2 to 3-lf wild oat on June 29. Rainfall during June totaled 1.8 inches. PPI and PE treatments were applied in 17 gpa and postemergence in 8.5 gpa at 35 psi except barban was in 4.5 gpa at 45 psi. Wild oat density was 1 plant/ft square.

The second se	Rate	Dr	ybeans	% 0	ontrol
Treatment	lb/A	%ir	%sr	Wioa	Fxtl
					TROL
Alachlor PPI	3	2	0	91	95
Diallate+Propachlor PPI+PE	1.5+5	0	0	98	98
Triallate+Propachlor PPI+PE	1.5+5	0	0	97	
Alachlor PE	3	5	0		97
Acetachlor PE	1.75	12	0	77	98
Propachlor PE	5	0	0	89	99
Propachlor+Barban PE+2-1f	5+0.37	0		0	95
Propachlor+Barban PE+2-1f	5+0.75	0	0	93	93
Propachlor+Difenzoquat PE+4-lf	5+0.62	11	0	96	96
Propachlor+Difenzoquat PE+4-lf	5+1		0	96	96
Propachlor+SD-45328 PE+4-1f	5+0.18	13	0	100	98
Propachlor+SD-45328 PE+4-1f		0	0	95	95
Diclofop 2-1f	5+0.25	0	0	98	95
	1.25	0	0	98	96
Control	5+0.25G	0	0	99	99
CONCROL		0	0	0	0
Mean					
High mean		3	0	82	90
Low mean		13	0	100	99
		0	0	0	0
Coeff. of variation		88	0	5	4
LSD(1 Percent)		6	0	9	8
LSD(5 Percent)		4	0		6
No. of reps		3	3	7 3	3

Summary

Acetachlor at 1.75 lb/A and difenzoquat at 0.62 and 1 lb/A injured pinto beans 11 to 13%. Foxtail control was excellent with all treatments and wild oat control good with all treatments except PE application of alachlor and propachlor.

	Rate oz/A	Dryl %ir	beans %sr	-Percent Wioa	Control- Fxtl
Treatment	02/ A				
PP009+0C	2+1qt	0	0	95	92 96
PP009+0C	4+1qt	0	0	97	90
Maan		0	0	96	94
Mean Nigh moon		0	0	97	96
High mean Low mean		0	0	95	92
Coeff. of vari	ation	0	. 0	1	5
LSD(1 Percent)		0	0	5	19
LSD(5 Percent)		0	0	3	10
No. of reps		4	4	4	4

PP009 in drybeans, Fargo 1981. UI 111 pinto beans were seeded in 30 inch rows June 4. PP009 was applied June 29 to 1st trifoliolate beans and 2 to 3-leaf wild oat with a bicycle-wheel sprayer delivering 8.5 gpa at 35 psi.

Summary

Pinto bean tolerance to PP009 was excellent at both 2 and 4 oz/A. Wild oat and foxtail control was excellent regardless of rate.

.

Preemergence incorporated herbicides for foxtail control in wheat, NW-22 Fargo 1981. 'Era' wheat was seeded and herbicides applied and harrow incorporated twice unless indicated (1INC), May 15. Treatments were applied in 17 gpa at 35 psi to a Fargo silty clay soil with 7.5 pH and 5.5% organic matter. The soil surface 3 inches was powdery dry and 3.3 inches of rain occured on May 22-24. The experiment was a randomized complete block with four replications and treatments were to a 7 ft strip the length of 10 by 24 ft plots. Wheat injury (%ir) and stand reduction (%sr) and weed control was evaluated on June 10. The plot area was treated with MCPA at 6 oz/A to control broadleaf weeds after evaluation.

	Rate	W	Theat_		Por			
Treatment	oz/A	Yield	%ir	har	Yoft	Wimu	Conti	10°
		bu/A	P-11	1001	1010	WILING	w.bw	ROCZ
T . 101								
Trifluralin 2INC-PEI	12	20.0	0	5	99	0	100	80
Trifluralin 1INC-PEI	12	18.0	0	0	97	0	95	95
Trifluralin-G 1INC-PEI	12	18.2	0	1	90	0	90	65
Ethafluralin 2INC-PEI	12	20.2	0	3	98	0	100	95
Ethafluralin 1INC-PEI	12	17.4	0	4	96	0	95	90
EL-5219 1INC PEI	12	21.6	0	0	93	0	90	80
EL-5219 2INC PEI	12	19.2	0	3	98	0	100	90
Trifluralin PEI	8	18.6	0	4	98	0	95	95
SSH-0860 PEI	24	20.0	0	0	83	99	90	85
Trifluralin+DPX-4189 PEI	8+0.5	16.9	0	5	99	100	100	100
Trifluralin+Triallate PEI	12+16	18.3	0	5	98	0	95	95
Profluralin PEI	12	18.6	0	0	97	4	95	95
Fluchloralin PEI	8	17.4	0	3	96	0	100	90
Fluchloralin PEI	10	17.3	0	1	97	0	99	90
Fluchloralin PEI	12	15.2	0	3	98	0	95	100
Fluchloralin+Triallate PEI	10+16	18.2	0	3	98	0	90	95
Fluchloralin+Triallate PEI	12+16	17.3	0	5	99	16	95	100
Pendimethalin PEI	12	17.7	0	1	99	5	95	98
Pendimethalin PEI	16	20.8	0	3	99	20	100	98
Pendimethalin PEI	24	20.1	0	3	98	23	95	95
Pendimethalin+Triallate PEI	16+16	20.1	0	4	100	5	100	95
Pendimethalin+Triallate PEI	24+16	17.5	0	6	99	21	98	95
DPX-4189 PEI	0.5	17.6	4	0	91	99	100	100
Control		14.2	0	0	0	Ő	0	0
Mean		18.3	0	2	00			
High mean		21.6	0 4	2	92	16	92	88
Low mean		14.2	4	6	100	100	100	100
Coeff. of variation				0	0	0	0	0
LSD(1 Percent)		15.3	625	120	4	66	0	0
LSD(5 Percent)		5.2	2	5	6	20	0	0
No. of reps		3.9 4.0	1 4	4	5	15	0	0
		4.0	4	4	4	4	1	1

Summary

The yellow foxtail and wild mustard densities were high, but redroot pigweed and kochia were variable and present in only one replication. All treatments gave 90% or more foxtail control except SSH-0860. Foxtail control was similar with one or two incorporations for the herbicides involved. Foxtail control was 9% less with trifluralin granuale than liquid, incorporated once. Wheat yield was increased up to 6 bu/A by treatment for foxtail control.

1

Preemergence weed control in wheat, Carrington 1981. Coteau wheat was seeded only about 1 in. deep because of hard soil on May 27 and preemergence incorporated (PEI) treatments applied and incorporated by raking and preemergence (PE) treatments applied on May 29. Weed control and wheat injury evaluation was on August 3 and harvest on September 3.

				Wheat				
	Rate	Yield	Twt	(%)				ntrol
Treatment	oz/A	bu/A	lb/bu	Mois	%ir	%sr	Fxtl	Kocz
		and a second as good to be added	28118					
Trifturalin PEI	8	26.0	45.4	18	0	0	79	63
Profluralin PEI	8	24.8	45.0	18	0	0	69	59
Pendimethalin PEI	8	25.0	45.6	18	0	0	75	48
	12	23.7	44.4	. 19	0	0	83	38
Pendimethalin PEI	10	24.8	45.1	19	0	0	61	34
Fluchloralin PEI	8+0.5	21.0	47.1	13	1	6	100	98
Trifluralin+Clsu PEI	48	30.6	45.0	18	0	0	67	0
Propachlor PE	12	27.2	47.8	12	0	0	93	90
Pendimethalin PE	0.5	22.2	47.1	12	0	1	100	100
Chlorsulfuron PE	0.5	22.5	45.8	17	0	0	0	0
Control		22.05	-J.O			1.1		
		24.8	45.8	16	0	1	73	53
Mean			45.0	10	1	6	100	100
High mean		30.6	47.0	19	0	0	0	0
Low mean		21.0		22	632	325	22	50
Coeff. of variation		14.7	6.6		2	525	32	51
LSD(1 Percent)		7.1	5.9	7	2	4	23	38
LSD(5 Percent)		5.3	4.4	5	4	4	4	4
No. of reps		4.0	4.0	4	4	4	4	4

Summary

Chlorsulfuron at 0.5 oz/A alone or in combination with trifluralin gave 98% or more control of foxtail and kochia. Pendimethalin preemergence gave higher weed control than when preemergence soil incorporated. Preemergence weed control in wheat, Williston 1981. Len HRS wheat was seeded at 75 lb/A, preemergence treatments applied and flex tine harrowed twice May 4. Research area was in fallow in 1980 and was broadcast fertilized with N at 70 lb/A. Harvest was 88 sq. ft of wheat area from each plot on August 14. Preemergence surface (PE) treatments were applied on May 5. Environmental conditions on May 4 were 63 F, 30% R.H., and northwest wind at 8 mph and on May 5 53 F, 49% R.H. and east wind at 15 mph.

					Wheat-					
The early set		Rate	Yield	Twt	Hght			Perce	nt co	ntrol
Treatment		oz/A	bu/A	lb/bu	(cm)	%sr	%ir	Tymu	Ruth	Grft
Trifluralin	PEI	8	24.0	57.3	69	0	0	0	8	oli
Profluralin	PEI	8	23.8	56.6	70	1	1	0	5	94
Pendimethalin	PEI	8	23.5	57.0	68	1	1	30	15	91 87
Pendimethalin	PEI	12	22.9	57.0	70	3	Ó	25	13	94
Fluchloralin	PEI	10	24.1	57.3	66	3	3	18	20	94 94
Trif+Clsu	PEI	8+.5	23.3	57.3	66	5	4	99	81	94 81
Propachlor	PE	48	22.4	56.3	68	0	0	19	0	46
Pendimethalin	PE	12	22.2	57.4	67	0	2	0	13	
Chlorsulfuron	PE	0.5	21.7	56.6	64	1	3	100	81	71
Control			21.9	56.9	65	Ó	0	0		55
			,	5005	0)	U	U	U	0	0
Mean			23.0	57.0	67	1	1	29	24	71
High mean			24.1	57.4	70	5	4	100	81	94
Low mean			21.7	56.3	64	0	0	0	0	0
Coeff. of varia	tion		12.0	0.	4	155	181	63	74	17
LSD(1 Percent)			5.4	0.	9	4	5	36	34	23
LSD(5 Percent)			4.0	0.	6	3	3	27	25	17
No. of reps			4.0	1.0	2	4	4	4	4	4

Summary

Green foxtail control exceeded 80% for all PEI treatments. However, all PE herbicide treatments gave less green foxtail control than the PEI herbicide treatments. For example, pendimethalin at 12 oz/A PEI gave 93% green foxtail control compared to only 71 for pendimethalin at 12 oz/A PE. Russian thistle was only controlled by the treatment with chlorsulfuron. Postemergence weed control in wheat, Carrington 1981. Coteau wheat was seeded only about 1 in. deep because of hard packed soil on May 27. Herbicides were applied to 4 leaf wheat and weeds less than 2 in. tall on June16. Wheat injury and weed control evaluations were on August 3. Harvest was on September 3.

				-Wheat			ा <u>व</u> ्यात् वि	
	Rate	Yield	Twt	(%)			-% cor	
Treatment	oz/A	bu/A	lb/bu	Mois	%ir	%sr	Fxtl	Kocz
11 00000000		ALC: NO		1.2.2.2.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.	ALC: NO			
2,4-D	4	19.8	44.1	19	0	0	0	55
Bromoxynil	4	24.9	49.5	13	0	0	0	93
Bromoxynil+MCPA	4+4	20.7	46.1	12	0	0	10	93
Dicamba+MCPA	1.5+4	23.0	48.1	12	0	0	0	99
Propanil	18	27.9	49.9	12	0	0	84	99
Propanil	24	29.4	50.0	13	1	0	85	96
Propanil+MCPA EST	18+4	27.4	49.3	13	0	0	82	93
Diclofop+Bromoxynil	12+4	28.2	48.9	14	0	0	88	91
Chlorsulfuron	0.25	29.1	49.0	13	0	0	93	95
Chlorsulfuron	0.5	28.2	50.8	12	0	0	100	100
Control		20.8	42.8	20	0	0	0	0
CONCLOT								
Moon		25.4	48.0	14	0	0	49	83
Mean		29.4	50.8	20	1	0	100	100
High mean		19.8	42.8	12	0	0	0	0
Low mean Coeff. of variation	0	13.2	5.8	17	663	0	21	14
LSD(1 Percent)	1 28	6.5	5.4	5	1	0	20	23
LSD(7 Percent)		4.8	4.0		.1	0	15	17
		4.0	4.0	3	4	4	4	4
No. of reps		100		0.1				

Summary

Foxtail control was similar with propanil at 18 oz/A, 24 oz/A or 18 oz /A with MCPA at 4 oz/A, chlorsulfuron at 0.25oz/A controlled green foxtail. Kochia control exceeded 90% with all herbicide treatments except 2,4-D at 4 oz/A. Postemergence weed control in wheat, Langdon 1981. Rugby durum was seeded on June 8. Herbicides were applied to 2 leaf wheat, 2 to 4 leaf wild mustard and 0.5 in. tall foxtail on June 24 with 70 F, partly cloudy sky and a 10 to 20 mph wind from the northwest. Crop injury and weed control evaluation was on July 23.

-	Rate	Wh	leat		Percent	con	trol
Treatment	oz/A		%ir	Fxtl		lq	Rrpw
		anger ber an		1.93		<u> </u>	
2,4-D	4		0	0	1	00	99
Bromoxynil	4		0	0		92	94
Bromoxynil+MCPA	4+4		0	5		91	91
Dicamba+MCPA	1.5+4		0	9		93	95
Propanil	18		3	56		83	76
Propanil	24		4	90		84	84
Propanil+MCPA EST	18+4		4	73		88	81
Diclofop+Bromoxynil	12+4		0	73		89	84
Chlorsulfuron	0.25		0	33		84	90
Chlorsulfuron	0.5		0	31		96	90
Mean			1	37		90	89
High mean			4	90	1	00	99
Low mean			0	0		83	76
Coeff. of variation			185	42		7	6
LSD(1 Percent)			4	30		13	11
LSD(5 Percent)			3	22		9	8
No. of reps			4	4		4	4
							-

Summary

Chlorsulfuron did not adequately control foxtail in this experiment, but controlled common lambsquarters and redroot pigweed. Foxtail control tended to be higher with propanil+MCPA than propanil alone at 18 oz/A. Propanil at 24 oz/A tended to give higher foxtail control than propanil at 18+ MCPA at 4 oz/A. Postemergence weed control in wheat, Williston 1981. Len wheat at 75 lb/A was seeded on fallow, broadcast fertilized with 70 lb/A N before seeding, May 4. Treatments were applied to four leaf wheat, 2 to 3 inch Russian thistle and other weeds less than 1 inch and at 69% R.H. and 58F on June 5. Weed populations were sparse. Harvest was 88 sq. ft of wheat on August 14.

	-		T.TL-	oot.			anan an	Carried Street of the Street o	
	Dete	Yield		Hei	ont.		-Perce	nt cor	ntrol-
	Rate		lb/bu		cm)	%ir	Tymu	Ruth	Grft
Treatment	oz/A	bu/A	TD/DU			/0 1 1	Туша	1102 011	
	4	21.7	56.6		62	0	100	94	0
2,4-D			57.6		65	Ő	99	96	0
Bromoxynil	4	25.1			68	0	98	94	Ő
Bromoxynil+MCPA	4+4	27.5	57.8					88	5
Dicamba+MCPA	1.5+4	24.8	57.7		69	0	100		
Propanil	18	24.4	58.0		64	5	79	0	55
Propanil	24	22.7	57.4		64	10	78	0	73
Propanil+MCPA EST	18+4	24.7	57.7		63	6	99	69	81
Diclofop+Bromoxynil	12+4	23.9	57.5		64	3	99	98	94
Chlorsulfuron	.25	26.4	57.3		69	0	100	95	74
	.5	25.0	57.3		69	3	100	98	90
Chlorsulfuron	• 2				71	0	0	0	0
Control		23.8	57.4		11	0	U	Ű,	
		24.5	57.5		66	3	86	66	43
Mean			58.0		71	10	100	98	94
High mean		27.5	-		62	0	0	0	0
Low mean		21.7	56.6				6	9	17
Coeff. of variation		14.1	0.		4	118			14
LSD(1 Percent)		6.8	0.		8	6	11	12-	
LSD(5 Percent)		5.0	0.		6	4	8	9	10
No. of reps		4.0	1.0		2	4	4	4	4
NO. OI ICPD									

Summary

Chlorsulfuron at 0.25 oz/A controlled broadleaf weeds and gave 73% foxtail control. Propanil at 18 oz/A with MCPA ester at 4 oz/A gave higher foxtail control than propanil at 18 oz/A alone and similar foxtail control and wheat injury to propanil at 24 oz/A. Propanil alone did not control Russian thistle. Broadleaf weed control in wheat, NW-22 Fargo 1981. 'Era' wheat was seeded to a silty clay soil with 7.5 pH and 5.5% organic matter on April 8. The entire plot area was treated with diclofop at 12 oz/A on May8. Treatments were applied to 4 to 6 leaf wheat, 3 to 4 leaf wild buckwheat, 5 leaf wild mustard, 8 leaf common lambsquarters, and 1 to 2 inch kochia on May 27. Soil conditions were wet and 0.05, 0.06, and 0.16 inch rain occurred on May 28, 31, June 1, and 3, respectively. Treatments were applied in 8.5 gpa to 8 by 24ft plots in a randomized complete block experiment. Crop injury and weed control evaluations were on June 9.

			-Wheat					
	Rate	Yie			Per	cent	conti	rol
Treatment	oz/A	Bu		%sr	Wimu	Kocz	Colq	Wibw
2,4-D DMA	4	37	-	0	99	98	100	31
2,4-D SULV	4	47	.8 C	0	100	95	100	35
MCPA DMA	4	39			, 96	50	100	25
MCPA	4	45			99	90	100	. 10
Dicamba+MCPA DMA	1.5+4	43		3 0	99	95	100	96
Dicamba+MCPA DMA	2+4	39		6 0	98	95	100	95
Dicamba-2E+MCPA	DMA 1+4	39				88	100	85
Dicamba+2,4-D DM	A 1+4	38			98	95	100	96
Dicamba+2,4-D DM		41				95	100	99
Dicamba+DPX-4189		40				100	100	100
Bromoxynil	4	39				100	100	100
Bromoxynil+MCPA	4+4	44				100	100	100
Bromoxynil+MCPA	3+6	43) 0		100	100	100
Bromoxynil+MCPA	. 2+4	44				98	100	99
Bromoxynil+MCPA	2+6	42				100	100	100
Bromoxynil+2,4-D		41		0		100		100
Bromoxynil+2,4-D		46		0 0		100		100
Bromoxynil+DPX-4		47		30		90		-
DPX-4189	0.25	45		1 0				
DPX-4189+WK	0.25+.25%	39		1 0				•
DPX-4189+WK	0.5+.25%	42		1 0				
MC-10982	6	42						
R-0625	2	38		5 0				
R-0625	4	39		-				
R-0625+WK	2+.125%	38						
R-0625+WK	4+.125%	38						
SAN-10315	24	45						
SAN-10315	48	44						
Dinoseb	24	43		8 C		-		
Control		38	.0	o c) 0	0	0	0
							110	
Mean		41		6 C				
High mean			.8 3					
Low mean				0 0				
Coeff. of variat	ion		.1 5					
LSD(1 Percent)				5 3				
LSD(5 Percent)					2 2			
No. of reps		4	.0	4 1	4 4	1	4	4

Summary

All treatments effectively controlled wild mustard and common lambsquarters. MC-10982, R-0625, and SAN-10315 at some of the rates used injured wheat. MCPA at 4 oz/A gave less kochia control than MCPA ester or 2,4-D amine at 4 oz/A. Wild buckwheat was controled by all herbicides except MCPA or 2,4-D applied alone. Wheat yield generally related to the level of weed control.

and rair with 0.25 oz/A.

Chlorsulfuron plus additives for weed control in wheat, NW-22 Fargo 1981. 'Era' wheat was seeded to a silty clay soil with 7.5pH and 5.5% organic matter on May 15. Treatments were applied during 75F and 60% relative humidity in 8.5 gpa at 35 psi to 8 by 24 ft plots with 2.5 leaf wheat, 2 to 3 leaf yellow foxtail, and 0 to 2 inch kochia, June 4. Kochia and yellow foxtail densities were 6 to 8 and 100 to 200 plants per square foot, respectively. The entire plots area was treated with toxiphene at 1.5 lb/A for aphid control, July 17. Weed control and wheat injury evaluations were on July 1 and August 20. Wheat was harvested on September 3.

10 000 00 00							
Treatment	Rate	Yield	Aug	Ju	ly	Aug	ust
	oz/A	bu/A	%ir	Yeft	Kocz	Yeft	Kocz
Chlorsulfuron	.125	19.	0	58	70	67	61
Chlorsulfuron+WK	.125+0.25%	17.	1	61	87	56	98
Chlorsulfuron+LOTM	.125+.25G	19.	1	64	89	70	100
Chlorsulfuron+0C	125+ 250	20	2	611			400

10

Weed control in wheat, Renville County 1981. Len wheat was seeded May 11 in 6 inch row spacings. Treatments were applied to 2 to 4-leaf wheat and 1 in foxtail on June 12 with a bicycle wheel sprayer delivering 8.5gpa at 35psi. The experiment was a randomized complete block with 4 replications and expimental units were 8 by 20 ft. Weed control and crop injury ratings were on July 22.

			Wheat		
	Rate	Yield	Twt		% Cont
Treatment	oz/A	Bu/A	lb/bu	%ir	Grft
		20 5	58.2	0	0
Bromoxynil+MCPA	6+6	32.5		5	69
Bromoxynil+Diuron	4+8	32.3	59.5	5	83
Chlorsulfuron+WK	0.25+.1%	32.2	59.0	0	73
Chlorsulfuron+LOTM	0.25+0.25G	32.8	59.0		86
Chlorsulfuron	0.25	35.0	59.0	0	96
Chlorsulfuron+WK	0.5+.1%	35.2	59.0	3	
Chlorsulfuron+WK	1+.1%	36.6	58.7	5	98
R-40244	4	32.4	58.8	5	0
MC10108	4	28.5	59.2	11	0
MC10108	8	28.7	59.6	25	65
RH-043-E	4	31.4	59.5	3	0
Control		29.2	58.2	0	. 0
			50.0	5	47
Mean		32.2	59.0	25	98
High mean		36.6	59.6	25	90
Low mean	da anti-desarre	28.5	58.2	96	20
Coeff. of variation	1	17.4	0.		18
LSD(1 Percent)		10.8	0.	9	14
LSD(5 Percent)		8.0	0.	7	. 4
No. of reps		4.0	1.0	4	. 4

Summary

MC-10108 (acifluorfen methyl ester) was the only treatment which resulted in significant wheat injury. Foxtail control ranged from good to excellent with chlorsulfuron. Postemergence foxtail control in wheat, NW-22 Fargo 1981. ' Era ' wheat was seeded to Fargo silty clay soil with 7.5 pH and 5.5% organic matter on May 15. Treatments were applied in 8.5 gpa at 35 psi to 3 leaf wheat and 2 leaf yellow foxtail growing in soil with adequate moisture on June 6. Rainfall was 0.04 inches on June7 and 0.06 on June10. Wheat injury (%ir) and weed control were evaluated on June17. The experiment was a randomized complete block with for replications and experimental units were 8 by 24ft. Kochia control was not evaluated because of a variable infestation.

Rate	-Wheat	%Cont
Treatment oz/A Yield		Yeft
bu//		
Propanil E 24 17.0		90
Propanil-F 24 18.6		69
Propanil E+MCPA EST 18+4 16.3		97
Propanil-F+MCPA DMA 18+4 19.6	5 0	83
Pendimethalin 16 14.8	З О	21
Pendimethalin 24 13.2	2 0	38
Pendimethalin+DPX-4189 16+0.25 17.9) 0	89
Pendimethalin+DPX-4189 16+0.5 18.6	5 1	90
Pendimethalin+DPX-4189 24+0.25 20.1	+ 0	87
Pendimethalin+Propanil 16+16 20.0		99
Pendimethalin+Propanil 16+20 18.7		86
Pendimethalin+Propanil 24+16 20.6	5 3	97
MSMA 32 18.1	ł Ő	78
MSMA+DPX-4189 32+0.25 20.0		95
Diclofop 12 16.4		64
Diclofop+MSMA 8+32 17.5		80
Diclofop+DPX-4189 8+0.25 23.1		88
Diclofop+Bromoxynil 12+4 17.1		72
CGA-82725 2 16.4		18
CGA-82725 4 18.2		87
CGA-82725+DPX-4189 2+0.25 21.2		86
DPX-4189+WK 0.125+.25% 19.5		85
DPX-4189+WK 0.25+.25% 19.8		91
DPX-4189+WK 0.5+.25% 18.9		92
DPX-4189+Bromoxynil+WK 0.25+4+.25% 17.8		96
DPX-4189+Propanil 0.25+18 18.9		98
Control 11.5		0
		0
Mean 18.2	1	77
High mean 23.1		99
Low mean 11.5		0
Coeff. of variation 12.8		13
LSD(1 Percent) 4.3		19
LSD(5 Percent) 3.3		14
No. of reps 4.0		
	4	4

Summary

Yellow foxtail control exceeded 70% with all treatments except propanil-F, pendimethalin alone, diclofop at 12 oz/A, and CGA-82725 at 2 oz/A. None of the treatments caused any wheat stand reduction and injury was only slight with some treatments. Wheat yield generally related to weed control.

11

Propanil plus broadleaf herbicides for weed control in wheat, Casselton 19-81. Era HRS wheat, Rugby durum wheat, and Park barley were seeded on May 26. Herbicides were applied to 4leaf wheat and barley, 3 to 4 leaf foxtail, and 2 to 3 in. common lambsquarter and kochia on June 20 with 68F, 80% R.H. and a 5 mph wind.

	Rate	Barley	Durum	Hrsw	Pe	rcent	contr		
Treatment	oz/A	%ir	%ir	%ir	Fxtl	Wimu	Kocz	Colq	
Propanil	24	23	15	12	91	95	95	100	
Propanil	20	17	12	8	87	82	83	100	
Propanil	18	17	8	7	75	53	60	90	
Bromoxynil	4	0	0	0	8	100	100	100	
Propanil+MCPA ester	18+4	18	13	8	87	100	100	100	
Prnl+Bromoxynil+MCPA	18+4+4	25	15	13	91	100	100	100	
Propanil+Bromoxynil	18+4	23	17	12	93	100	100	100	
Propanil+Bromoxynil	18+2	22	15	12	93	100	100	100	
Propanil+Bromoxynil	20+4	27	18	13	94	100	100	100	
Propanil+Bromoxynil	20+2	20	15	7	89	100	100	100	
Propanil+MCPA ester	20+4	23	20	13	89	100	100	100	
Prnl+Bromoxynil+MCPA	20+4+4	30	20	18	94	100	100	100	
					1. 2. 9 See				
Mean		20	14	10	83	94	95	99	
High mean		30	20	18	94	100	100	100	
Low mean		0	0	0	8	53	60	90	
Coeff. of variation		. 13	20	23	6	.3	6	0	
LSD(1 Percent)		6	7	5	11	6	14	0	
LSD(5 Percent)		5	5	4	8	4	10	0	
No. of reps		3	3	3	3	3	3	-3	
HO. OI LOPD					PARA				

Summary

Propanil at 18 oz/A with MCPA gave higher foxtail control than propanil alone. Bromoxynil with propanil tended to increase foxtail control more than MCPA. Broadleaf weed control was complete with all mixtures and bromoxynil alone. Injury from propanil or propanil mixtures to barley was generally more than to HRS or durum wheat. Weed control in HRWW, Williston 1981. ND-7481 was seeded on fallow at 60 lb/A, September 10, 1980. Herbicides were all applied when tansy mustard was 2 to 3 in. tall and pepperweed was in rosette to 2 in. tall with 60 F, 40% R.H. and a dry soil surface. Weed control and wheat injury evaluation was on June 12. Harvest was 88 sq. ft area of wheat on July 29.

Rate DZ/AYield bu/ATwt lb/bu-% firControl TamuBromoxynil+MCPA+Metolachlor Bromoxynil+MCPA+Alachlor bu/A6+6+4837.458.913979Bromoxynil+MCPA+Alachlor bu/A6+6+4035.158.933999Bromoxynil+MCPA+Metribuzin buzin bromoxynil+MCPA635.059.233999Bromoxynil+MCPA bromoxynil+MCPA635.059.233989Bromoxynil+MCPA bromoxynil+MCPA635.059.2339892,4-DEST+Alachlor bromoxynil+MCPA+Propachlor bromoxynil+MCPA+Propachlor bromoxynil+MCPA+Pend bro			Wir	nter whe	at		
Treatmentoz/Abu/Alb/bu%irTamuGfpBromoxynil+MCPA+Metolachlor6+6+4837.458.913979Bromoxynil+MCPA+Alachlor6+6+4035.158.933999Bromoxynil+MCPA+Metribuzin6+6+4433.458.925809Bromoxynil+MCPA635.059.233999Bromoxynil+MCPA635.059.2339892,4-DEST+Alachlor8+3033.359.20100102,4-DEST+Pendimethalin8+2435.459.32010010Bromoxynil+MCPA+Pend6+6+4834.959.1339692,4-DEST+Propachlor8+4834.459.10100102,4-DEST+Propachlor8+4834.559.10100102,4-DEST834.559.30100102,4-DEST834.559.10100102,4-DEST834.559.116899High mean37.459.33310010Low mean29.658.9000Coeff. of variation7.50.1813		Rate				-% Co	ntrol-
Bromoxynil+MCPA+Alachlor6+6+4035.158.933999Bromoxynil+MCPA+Metribuzin6+6+433.458.925809Bromoxynil+MCPA635.059.233999Bromoxynil+MCPA+Propachlor6+6+4836.559.2339892,4-DEST+Alachlor8+3033.359.20100102,4-DEST+Pendimethalin8+2435.459.32010010Bromoxynil+MCPA+Pend6+6+4834.959.1339692,4-DEST+Propachlor8+4834.459.10100102,4-DEST+Propachlor8+4834.559.10100102,4-DEST834.559.30100102,4-DEST834.559.30100102,4-DEST834.559.30100102,4-DEST834.559.116899High mean37.459.33310010Low mean29.658.9000Coeff. of variation7.50.1813	Treatment				%ir		Gfpw
Bromoxynil+MCPA+Alachlor6+6+4035.158.933999Bromoxynil+MCPA+Metribuzin6+6+433.458.925809Bromoxynil+MCPA635.059.233999Bromoxynil+MCPA+Propachlor6+6+4836.559.2339892,4-DEST+Alachlor8+3033.359.20100102,4-DEST+Pendimethalin8+2435.459.32010010Bromoxynil+MCPA+Pend6+6+4834.959.1339692,4-DEST+Propachlor8+4834.459.10100102,4-DEST+Propachlor8+4834.559.10100102,4-DEST834.559.30100102,4-DEST834.559.30100102,4-DEST834.559.30100102,4-DEST834.559.116899High mean37.459.33310010Low mean29.658.9000Coeff. of variation7.50.1813	Bromoxynil+MCP4+Metolachlon	6+6+48	27 /1	58 0	12	07	00
Bromoxynil+MCPA+Metribuzin6+6+433.458.925809Bromoxynil+MCPA635.059.233999Bromoxynil+MCPA+Propachlor6+6+4836.559.2339892,4-DEST+Alachlor8+3033.359.20100102,4-DEST+Pendimethalin8+2435.459.32010010Bromoxynil+MCPA+Pend6+6+4834.959.1339692,4-DEST+Propachlor8+4834.459.10100102,4-DEST+Propachlor8+4834.559.10100102,4-DEST+Metolachlor8+4834.559.10100102,4-DEST834.559.30100102,4-DEST834.559.30100102,4-DEST834.559.30100102,4-DEST834.559.116899High mean37.459.33310010Low mean29.658.9000Coeff. of variation7.50.1813							
Bromoxynil+MCPA635.059.233999Bromoxynil+MCPA+Propachlor6+6+4836.559.2339892,4-DEST+Alachlor8+3033.359.20100102,4-DEST+Pendimethalin8+2435.459.32010010Bromoxynil+MCPA+Pend6+6+4834.959.1339692,4-DEST+Propachlor8+4834.459.10100102,4-DEST+Metolachlor8+4834.559.10100102,4-DEST834.559.30100102,4-DEST834.559.116899High mean34.559.1168999High mean29.658.9000Low mean29.658.9000Coeff. of variation7.50.1813							-
Bromoxynil+MCPA+Propachlor6+6+4836.559.2339892,4-DEST+Alachlor8+3033.359.20100102,4-DEST+Pendimethalin8+2435.459.32010010Bromoxynil+MCPA+Pend6+6+4834.959.1339692,4-DEST+Propachlor8+4834.459.10100102,4-DEST+Propachlor8+4834.559.10100102,4-DEST+Metolachlor8+4834.559.10100102,4-DEST834.559.30100102,4-DEST834.559.116899Mean34.559.1168999High mean37.459.33310010Low mean29.658.9000Coeff. of variation7.50.1813							98
2,4-D EST+Alachlor 8+30 33.3 59.2 0 100 10 2,4-D EST+Pendimethalin 8+24 35.4 59.3 20 100 10 Bromoxynil+MCPA+Pend 6+6+48 34.9 59.1 33 96 9 2,4-D EST+Propachlor 8+48 34.4 59.1 0 100 10 2,4-D EST+Propachlor 8+48 34.5 59.1 0 100 10 2,4-D EST+Metolachlor 8+48 34.5 59.1 0 100 10 2,4-D EST 8 34.5 59.3 0 100 10 2,4-D EST 8 34.5 59.3 0 100 10 2,4-D EST 8 34.5 59.3 0 100 10 Control 29.6 59.0 0 0 0 0 10 Mean 37.4 59.3 33 100 10 10 10 Low mean 29.6 58.9 0 0 0 0 0 Coeff. of variation							98
2,4-D EST+Pendimethalin 8+24 35.4 59.3 20 100 10 Bromoxynil+MCPA+Pend 6+6+48 34.9 59.1 33 96 9 2,4-D EST+Propachlor 8+48 34.4 59.1 0 100 10 2,4-D EST+Propachlor 8+48 34.5 59.1 0 100 10 2,4-D EST+Metolachlor 8+48 34.5 59.1 0 100 10 2,4-D EST 8 34.5 59.3 0 100 10 2,4-D EST 8 34.5 59.3 0 100 10 2,4-D EST 8 34.5 59.0 0 0 10 Control 29.6 59.0 0 0 0 0 10 Mean 37.4 59.3 33 100 10 10 Low mean 29.6 58.9 0 0 0 0 Coeff. of variation 7.5 0. 181 3 3						-	98
Bromoxynil+MCPA+Pend 6+6+48 34.9 59.1 33 96 9 2,4-D EST+Propachlor 8+48 34.4 59.1 0 100 10 2,4-D EST+Propachlor 8+48 34.5 59.1 0 100 10 2,4-D EST+Metolachlor 8+48 34.5 59.1 0 100 10 2,4-D EST 8 34.5 59.3 0 100 10 2,4-D EST 8 34.5 59.3 0 100 10 2,4-D EST 8 34.5 59.3 0 100 10 Control 29.6 59.0 0 0 0 0 Mean 34.5 59.1 16 89 9 High mean 37.4 59.3 33 100 10 Low mean 29.6 58.9 0 0 0 Coeff. of variation 7.5 0. 181 3				59.2	0	100	100
2,4-D EST+Propachlor 8+48 34.4 59.1 0 100 10 2,4-D EST+Metolachlor 8+48 34.5 59.1 0 100 10 2,4-D EST 8 34.5 59.1 0 100 10 2,4-D EST 8 34.5 59.3 0 100 10 Control 29.6 59.0 0 0 0 Mean 34.5 59.1 16 89 9 High mean 37.4 59.3 33 100 10 Low mean 29.6 58.9 0 0 0 Coeff. of variation 7.5 0. 181 3	2,4-D EST+Pendimethalin	8+24	35.4	59.3	20	100	100
2,4-D EST+Metolachlor 8+48 34.5 59.1 0 100 10 2,4-D EST 8 34.5 59.3 0 100 10 Control 29.6 59.0 0 0 0 Mean 34.5 59.1 16 89 9 High mean 37.4 59.3 33 100 10 Low mean 29.6 58.9 0 0 0 Coeff. of variation 7.5 0. 181 3		6+6+48	34.9	59.1	33	96	96
2,4-D EST+Metolachlor 8+48 34.5 59.1 0 100 10 2,4-D EST 8 34.5 59.3 0 100 10 Control 29.6 59.0 0 0 0 Mean 34.5 59.1 16 89 9 High mean 37.4 59.3 33 100 10 Low mean 29.6 58.9 0 0 0 Coeff. of variation 7.5 0. 181 3	2,4-D EST+Propachlor	8+48	34.4	59.1	0	100	100
2,4-D EST834.559.3010010Control29.659.0000Mean34.559.116899High mean37.459.33310010Low mean29.658.9000Coeff. of variation7.50.1813	2,4-D EST+Metolachlor	8+48	34.5	59.1	0	100	100
Control29.659.000Mean34.559.116899High mean37.459.33310010Low mean29.658.9000Coeff. of variation7.50.1813	2,4-D EST	8	34.5		0		100
Mean34.559.116899High mean37.459.33310010Low mean29.658.900Coeff. of variation7.50.1813			-				0
High mean37.459.33310010Low mean29.658.900Coeff. of variation7.50.1813			2,00	55.0	Ŭ	Ŭ	Ū
High mean37.459.33310010Low mean29.658.900Coeff. of variation7.50.1813	Mean		34.5	59.1	16	89	91
Low mean29.658.900Coeff. of variation7.50.1813	High mean		37.4		33		100
Coeff. of variation 7.5 0. 181 3							0
					181		2
							4
LSD(5 Percent) 3.7 0. 40 4							3
							5
	no. or reps		4.0	1.0	4	4	4

Summary

Foxtail was controlled by all treatments containing a combination of metolachlor, alachlor, metribuzin, propachlor, or pendimethalin with 2,4-D or bromoxynil plus MCPA (data not presented). The combinations of the above grass control herbicides were applied with the postemergence broadleaf control herbicides, but the foxtail had not emerged at treatment. Tansy mustard and greenfloweringpepperweed control was also good with all treatments. Russian thistle control in durum wheat, Williston 1981. Vic durum wheat was seeded into chemical fallow, April 16. Treatments were applied to 3.5 leaf wheat and 4 to 6 leaf Russian thistle on May15, except for 2,4-D which was applied to 4.5 to 5 leaf wheat and 6 to 10 leaf Russian thistle on May 22. Environmental conditions were 62 F and 15 mph wind on May 15 and 63 F, 43% R.H. and 10 mph wind on May 22. Harvest was 80 sq. ft on August 14. One nozzle of the four was plugged for all treatments except 2,4-D.

			Wheat			
	Rate	Yield	Twt	Height	% (control
Treatment	oz/A	bu/A	lb/bu	(cm)	Grft	Ruth
2,4-D	6	40.5	61.2	92	0	88
Bromoxynil	6	40.3	60.8	88	Ō	54
Bromoxynil+MCPA	4+4	40.6	61.0	92	43	66
Bromoxynil+MCPA	6+6	40.4	61.2	92	10	66
Diclofop+Bromoxynil	16+6	39.3	61.1	84	69	65
Chlorsulfuron	.25	35.6	61.0	85	10	8
Dicamba+MCPA	1.5+4	39.6	61.2	89	25	53
Control		35.3	60.8	89	0	0
Mean		39.0	61.0	89	20	50
High mean		40.6	61.2	92	69	88
Low mean		35.3	60.8	84	0	0
Coeff. of variation		10'.6	0.	3	93	26
LSD(1 Percent)		8.3	0.	11	36	26
LSD(5 Percent)		6.1	0.	7	27	19
No. of reps	,	4.0	1.0	2	4	4

Summary

Chlorsulfuron at 0.25 oz/A did not give adequate Russian thistle and green foxtail control. Diclofop with bromxynil gave approximately 65% control of both Russian thistle and green foxtail. 2,4-D gave better Russian thistle control than bromoxynil or bromoxynil with MCPA. However, the 2,4-D was applied at a later date when possibly more of the Russian thistle had emerged.

Foxtail control in barley, NW-22 Fargo 1981. 'Beacon ' barley was seeded in 6 inch rows and preemergence incorporated (PEI) treatments applied and harrowed twice on May 15. Postemergence (P) treatments were applied to 3-leaf barley and 2-leaf yellow foxtail on June 4. PEI treatments were applied in 17 gpa and P treatments in 8.6 gpa both at 35 psi. The soil surface was dry 2 inches deep at PEI treatment and 3.3 inches of rain occurred between May22 to 24. Soil Moisture was adequate after P treatments and 0.12 in of rain occurred on June 5 and 0.04 in June 7 and 0.06 on June 10. Wheat injury (%ir) and weed control evaluations were on June 17.

	Rate	Whea	t	-% co:	ntrol-
Treatment	oz/A	Yield	%ir	Yeft	Kocz
		bu/A			
	20.00				n constant
Trifluralin PEI	8	57.9	1	95	93
Trifluralin PEI	12	60.0	0	98	98
Trifluralin+Triallate PEI	12+16	58.5	0	100	96
Fluchloralin PEI	10	60.0	1	90	88
Fluchloralin PEI	12	58.8	0	94	90
Fluchloralin+Triallate PEI	12+16	60.9	0	96	92
Pendimethalin PEI	8	60.8	0	90	83
Pendimethalin PEI	12	57.7	1	92	80
Pendimethalin PEI	16	60.5	0	95	. 88
Pendimethalin+Triallate PEI	16+16	58.7	0	98	94
Propanil E P	18	55.4	5	84	96
Propanil E+MCPA EST P	18+4	50.2	10	89	99
Pendimethalin P	16	59.2	0	63	70
Pendimethalin+Propanil E P	16+18	56.2	9	95	100
Diclofop+Bromoxynil P	12+4	54.4	5	78	97
Control		57.6	0	0	0
Mean		57.9	2	85	85
High mean		60.9	10	100	100
Low mean		50.2	0	0	0
Coeff. of variation		7.4	171	10	7
LSD(1 Percent)		8.0	7	16	12
LSD(5 Percent)		6.0	5	12	9
No. of reps		4.0	4	4	4

Summary

None of the treatments reduced barley stand. Treatments with propanil and the diclofop plus bromoxynil treatments caused slight visual injury to the barley and tended to reduce yields compared to that of the control. Foxtail control exceeded 80% for all treatments except with postemergence pendimethalin applied alone. Depth of flax seeding and herbicide incorporation depth, Casselton 1981. Herbicides were applied in 17gpa and field cultivator plus harrow incorporated to 2 (SINC) or 4 (DINC) in. twice, surface packed and Culbert flax seeded .5 to 1 or 1 to 2 in. deep, May 7. Soil surface was dry to 3 in. MCPA at 4 oz /A was applied to all plots and BAS-9052 at 4 oz/A plus 1 qt/A emulsifiable petroleum oil concentrate to control plots when the flax was 2 to 4 in. tall and weeds less than 4 in., June 10. Flax was not harvested because of an infestation of Canada thistle. Weed control and flax injury were evaluated on June 25.

				p seed		Shall		eeded
		Rate		X 9		Fla		%Cont
Treatment	Incorporatio	n lb/A	%ir	%sr	Fxtl	%ir	%sr	Fxtl
		2.0.25	1	5	89	0	0	89
EPTC-G+MCPA PPI+P	(SINC)	3+0.25	0	9	91	0	0	86
EPTC-G+MCPA PPI+P	(DINC)	3+0.25	0	11	87	0	0	81
EPTC+MCPA PPI+P	(SINC)	3+0.25			84	0	0	81
EPTC+MCPA PPI+P	(DINC)	3+0.25	0	9 14	90	1	4	92
EPTC+MCPA PPI+P	(SINC)	6+0.25	4			1	4 5	92
EPTC+MCPA PPI+P	(DINC)	6+0.25	3	19	93	1	5	-
EPTC&EXT+MCPA PPI+		3+0.25	1	8	95	•	11	97 98
EPTC&EXT+MCPA PPI+		3+0.25	1	21	96	3		
Trifluralin+MCPA P		0.75+0.25	0	30	91	3	53	92
Trifluralin+MCPA P		0.75+0.25	0	49	95	0	31	95
Trifluralin+MCPA P		1.5+0.25	14	59	97	4	74	95
Trifluralin+MCPA P		1.5+0.25	11	61	97	5	63	96
Metolachlor+MCPA P		2+0.25	0	7	93	0	2	89
Metolachlor+MCPA P		2+0.25	0	12	90	. 0	0	91
Metolachlor+MCPA P		3+0.25	0	7	95	0	1	96
Metolachlor+MCPA P		3+0.25	0	7	96	0	0	96
Metolachlor+MCPA P		4+0.25	6	16	96	1	4	96
Metolachlor+MCPA P		4+0.25	5	16	96	3	4	95
Meto+Dial+MCPA PPI		3+1.5+.25	4	20	98	6	21	98
Meto+Dial+MCPA PPI	+P (DINC)	3+1.5+.25	5	15	96	0	10	96
Mean			3	20	93	1	14	92
High mean			14	61	98	6	74	98
Low mean			0	5	84	0	0	81
Coeff. of variatio	n		230	51	7	210	51	6
LSD(1 Percent)			12	19	11	5	14	11
LSD(5 Percent)			9	14	9	4	10	8
No. of reps			4	4	4	4	4	4

Summary

Shallow flax seeding reduced EPTC and metolachlor injury or stand loss of flax regardless of herbicide depth. Shallow flax seeding only reduced the loss of flax stand at the shallow seeded deep incorporated 0.75 lb/A trifluralin treatment. Green and yellow foxtail was similar with all treatments, but control was higher with EPTC with R-33865 (EXT.) than EPTC alone. Response of flax varieties to asulam, Fargo 1981. The flax varieties were seeded to a Fargo clay soil with 6% organic matter and 7.2 pH on April 30. Asulam at 1 and 1.5 lb/A with 0.2% surfactant from Rhodia was applied across the flax varieties which were 4 to 5 inches tall on June 1. A 0.16 in. rain occurred within 1.5 h after treatment. Thus, the asulam at same rates as above was applied again to 5 to 6 in. flax on June 10. The flax was relatively weed free. Injury evaluations were taken on June 24. The individual plots were 8 by 10 ft. Harvest was on Sept. 8.

		Asulam rate	
Cultivar	0	1	2
		Yield, bu/A (% of contr	rol)
Culbert	12.8	12.2(95)	8.7(68)
Linott	15.1	12.3(81)	7.7(51)
Dufferin	15.0	18.7(125)	16.4(109)
Wishek	12.0	14.2(118)	9.4(78)
Culbert 79	17.2	17.6(102)	8.9(52)
Flor	16.0	10.9(68)	10.0(62)
	ISD 59 W-	riety x treatment=3.5	
	א %ך תני	triety x treatment=3.5	
	Ľ	loight on (% of contract	1)
Culbert	58	leight, cm (% of contro 52(90)	
Linott	60		50(86)
Dufferin	68	52(87)	49(82)
Wishek	66	65(96)	59(87)
Culbert 79		56(85)	49(74)
	64	54(84) ·	53(83)
Flor	71	54(76)	49(69)
	LSD 5% Va	riety x treatment=4	
		Inj. rating	
Culbert	0	5 -	10
Linott	0	12	22
Dufferin	0	3	8
Wishek	0	9	25
Culbert 79	0	3	7
Flor	0	18	35
	ISD 59 Vo	rioty w trootmont-5	
	אר תפיד אין	riety x treatment=5	

Asulam rate: 0=untreated, 1 and 2 were asulam applied at 1 and 1.5 lb/A, on June 1 and again on June 10.

Summary

Seed yield of Flor flax was reduced by asulam at rate 1. Asulam at rate 2 reduced flax seed yield for all varieties except Dufferin and Wishek. Dufferin was most tolerant and Flor was most susceptible to asulam of the varieties based upon yield, height, and injury rating data.

17

Flax variety response to asulam, Langdon 1981. The various flax cultivars were seeded on June 8. Asulam was applied to flax 4 to 6 in. tall in 8 by 6 ft plots replicated four times. Flax was relatively weed free. Visual evaluation was on July 24.

Cultivar	- U	Intreated	Flax yield, Asulam 16	Bu/A Mean
Linott Culbert Culbert 79 Dufferin Wisek Flor		9.6 8.9 10.9 11.0 10.2 11.4	7.6 9.1 9.8 10.3 9.0 8.0	9.0 10.4 10.6 9.6
	Mean LSD (0.05)	10.3 Trt =	9.0 1.0 Cult = 1.8	

Summary

The yield of Flor was reduced and Linott tended to be reduced by asulam at 16 oz/A compared to the untreated flax. None of the cultivars were injured more than 10% according to visual evaluations (data not presented). Flax response to applications of asulam with various volumes, NW-22 Fargo 1981. Culbert flax was seeded to a silty clay with 7.5 pH and 5.5% organic matter, May 2. Treatments were applied to 4 in flax and two to five leaf wild oats, June 6. The 4.7 gpa volume was with 80005 nozzles at 45 psi and 8.6 with 8001 and 17.0 with 8002 nozzles at 35 psi. Evaluations for wild oats control and flax injury were on July 20.

Rate	Volume		Flax		% Control
Treatment oz/A	gpa	Yield bu/A	%ir	%sr	Wioa
Asulam20Asulam20Asulam20Asulam+S.2%Asulam+S.2%Asulam+S.2%Control	4.7 8.6 17.0 4.7 8.6 17.0	7.8 11.3 9.2 14.1 15.3 14.7 3.8	1 0 0 1 0 0	0 0 0 0 0 0 0	32 53 46 92 96 90 0
Mean High mean Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent) No. of reps		10.9 15.3 3.8 19.4 4.3 3.1 4.0	0 1 0 342 2 2 4	0 0 0 0 0 0 4	58 96 0 19 23 17 4

Summary

Flax was not injured by asulam regardless of spray volume. Asulam with surfactant applied with all spray volumes increased wild oat control compared to without surfactant. Wild oats control tended to be lower when asulam was applied in 4.7gpa than higher volumes without surfactant. Flax response to time of application of Asulam, NW-22 Fargo 1981. Culbert flax was seeded to a silty clay with 7.5 pH and 5.5% organic matter, May 2. Treatments were applied to 4 in flax and two to five leaf wild oat on June 6. The AM treatment was at 8:00 AM with a slight dew, 55F and 80%RH; Noon treatments were at 1:00 PM with 78F and clear sky; 6:00 PM treatments were with 75F and clouds and the PM treatment was followed by a rain within 2 hours. Evaluations were on July 20.

			Flax-		% Cont
Time of		Viold	%ir	%sr	Wioa
Treatment application	1b/A	Yield	/	1001	with a
		bu/A			
	0.75	4 11 11	0	0	80
Asulam+S .2% AM		14.4		A Subscription of the second state of the seco	76
Asulam+S .2% Noon		14.4	0	0	
Asulam+S .2% PM	0.75	11.6	0	0	. 50
Asulam+S .2% AM	1.5	15.8	3	0	96
Asulam+S .2% Noon	1.5	14.8	0	0	98
Asulam+S .2% PM	1.5	17.4	1	0	96
Control		4.9	0	0	0
CONCION					
Maan		13.3	1	0	71
Mean		17.4	3	0	98
High mean		4.9	Ő	0	0
Low mean			256	0	9
Coeff. of variation		13.9			13
LSD(1 Percent)		3.8	. 3	0	
LSD(5 Percent)		2.8	2	0	9
No. of reps		4.0	4	4	4

Summary

Time of day when asulam was applied did not influence wild oats control or flax yield, except for the asulam at 0.75 lb/A applied in the PM. However, the reduced wild oat control with the PM treatment may have been from a loss of the asulam by the rain which occurred after treatment. Wild oats control with asulam at 1.6 lb/A was not influenced by time of application or the rain which occurred after the PM treatment. Weed control in flax, Casselton 1981. 'Culbert' flax was seeded to a Fargo silty clay soil with a 7.7 pH and 5.0% organic matter and preemergence (PE) treatments applied in 17 gpa at 35 psi on, May 7. The soil surface 2 inches was dry and the first rain of 2.2 inches occurred on May 22-23. Postemergence (P) treatments were applied in 8.5 gpa at 35 psi to 4 to 8 inch flax, kochia, and wild mustard and 4 to 5 leaf green and yellow foxtail (Fxtl) on June16. Soil moisture was adequate, temperature 75F and relative humidity 40% at treatment and 0.05 inch rain occurred in 1 day and 0.38 inches on the 5th day after treatment. The experiment was a randomized complete block with four replications and treatments were a 7 ft strip the length of 10 by 24 ft plots. Percent flax injury (%ir) and stand reduction (%sr) and weed control evaluations were on July 13.

		Rate	F	lax	Perce	nt Co	ntrol
Treatment		lb/A	%ir	%sr	Fxtl	Wimu	Colq
Drene chi en MODA DE D		1	72.4.5			a Marino	o Lancia
Propachlor+MCPA PE+P		4+.25	0	0	67	96	100
Metolachlor+MCPA PE+P Asulam+S Rhodia P		3+0.25	2	0	87	93	97
Asulam+MCPA+S P	•	1+.2%	1	0	93	58	0
Bas-9052+MCPA+OC P		75+.25+.2%	2	0	92	100	100
Bas-9052+MCPA+OC P Bas-9052+2,4-D+OC P		2+.25+.25G	1	0	100	94	96
Bas-9052+2,4-D+0C P Bas-9052+DPX-4189+0C P		2+.25+.25G	6	0	95	100	100
Bas-9052+DPX-4189+0C P		+.016+.25G	12	0	100	100	100
Bas-9052+DPX-4109+00 P Bas-9052+2,4-D P	0.2	+.008+.25G	8	0	98	99	100
Dalapon+MCPA P		0.2+.25	3	0	88	98	98
Dalapon+2,4-D P		0.75+0.25		0	63	96	100
Dalapon+MCPA+Picloram P	0 7	0.75+0.25	6	3	53	95	94
Dalapon P	0.1:	5+.25+.016	3 0	0 0	52	97	97
Dalapon+DPX-4189 P		0.75 0.75+0.016	1	0	76 88	0	0
DPX=4189+SP		0.008+.25%	1	0	00 81	98	100
DPX-4189+S P		0.016+.25%	12	3	89	99 100	98
Bromoxynil P		0.25	8	5 0	09 19		100 98
Bromoxynil+MCPA P		0.25+0.25	5	0	0	97 100	100
Diclofop+Bromoxynil P		1+0.25	4	0	80	90	88
Bas-9052 OC P		0.2	0	0	100	90	0
CGA-82725 OC P		0.2	0	0	99	0.	0
RO-13-8895 OC P		0.2	Ö	Ő	100	0	0
CGA-82725+DPX-4189 OC P		0.2+0.008	5	õ	98	100	100
RO-13-8895+DPX-4189 OC P		0.2+0.008	6	0	99	100	100
Control			0	0	0	0	0
Mean			4	0	76	76	75
High mean			12	3	100	100	100
Low mean			0	0	0	0	0
Coeff. of variation			106	603	15	3	5
LSD(1 Percent)			7	3	21	5	6
LSD(5 Percent)			5	2	16	4	5
No. of reps			4	4	4	4	4

Summary

All weed densities were high. BAS-9052 alone or with MCPA, 2,4-D or chlorsulfuron plus petroleum oil additive gave 95% or more green and yellow foxtail control. However, foxtail control tended to be reduced by the addition of 2,4-D to BAS-9052. Chlorsulfuron in combination with BAS-9052, CGA-88725, or RO-13-8895 gave good broadspectrum weed control with only slight flax injury. Asulam plus MCPA gave good broadspectrum weed control, but asulam without MCPA did not adequately control common lambsquarters or wild mustard. The addition of an oil to BAS9052 plus 2.4-D did not increase flax injury. Weed control in flax, Carrington 1981. Preplant treatments were applied and rototiller incorporated on May 26. Wishek flax was seeded on May27 and preemergence herbicides applied on May 29. Flax injury and weed control evaluation was on August 3.

							the summer of the local data of the local data
	Rate	Fla	Flax		Percent control		
Treatment	oz/A	%ir	%sr	Fxtl	Colq	Wibw	Rrpw
			a Bassie			integri di	
EPTC+MCPA PPI+P	2+0.25	5	3	94	90	13	70
Trifluralin+MCPA PPI+P	0.5+0.25	0	0	78	82	64	95
Profluralin+MCPA PPI+P	0.5+0.25	0	0	73	92	56	70
Metolachlor+MCPA PPI+P	2+0.25	3	0	78	78	25	0
Propachlor+MCPA PE+P	4+0.25	0	0	53	75	0	0
Metolachlor+MCPA PE+P	2+0.25	0	0	89	68	20	0
Bromoxynil+MCPA P	0.25+0.25	0	0	0	99	78	100
Bromoxynil P	0.25	0	0	10	83	93	100
Diclofop+Bromoxynil P	1+0.25	0	0	58	99	91	95
BAS-9052+MCPA P	0.2+0.25	0	0	78	95	0	0
BAS-9052 P	0.2	0	0	100	0	0	0
MCPA+Dalapon P	0.25+0.75	0	0	53	87	0	0
Asulam P	1	0	0	72	65	0	40
Asulam+MCPA P	0.75+0.25	0	0	67	98	60	80
2 49 29 28							
Mean		1	0	64	79	36	46
High mean		5	3	100	99	93	100
Low mean		0	0	0	0	0	0
Coeff. of variation		389	432	26	15	60	0
LSD(1 Percent)		4	1	32	22	41	0
LSD(5 Percent)		3	1	24	16	31	0
No. of reps		4	4	4	4	4	1
Hot of topo							

Summary

Bromoxynil alone or with MCPA or diclofop gave the highest control of broadleaf weeds of all treatments. Flax was not injured of importance by any treatments.

the off . Doesting t the second
Weed control in flax, Williston 1981. Preplant incorporated (PPI) treatments applied and incorporated first with a cultivator with harrow and second with a Triple K implement, Linnot flax seeded at 42 lb/A, and preemergence (PE) herbicides applied on May 5 with 60 F, 35% R.H., and a 15 mph east wind (spray boom shielded). Postemergence herbicides (P) were applied to 3 to 4 in. flax, 3.5 to 4.5 leaf wild oat, 3 in. Russian thistle, and other weeds $\frac{1}{4}$ -1 in. on June 5. The experiment was on fallow which was broadcast fertilized with 70 lb/A N. Harvest was from an 84 sq. ft area on August 20.

		F	lax			P. S.			1995	
	Yield	Twt	Hght]	Percer	nt co	ontrol	L
Treatment oz/A	bu/A	lb/bu	(cm)	%sr	%ir	Tymu	Ruth			
EPTC+MCPA PPI+P 2+0.25	12.1	54.9	51	19	36	100	38	99	98	96
Trifluralin+MCPA PPI+P .5+0.25	10.2	55.1	56	5	3	100	78	96	40	75
Profluralin+MCPA PPI+P .5+0.25		55.4	49	8	8	98	53	96	33	51
Metolachlor+MCPA PPI+P 2+0.25	7.0	54.9	54	1	4	100	35	94	73	30
Propachlor+MCPA PE+P 4+0.25		55.6	53	0	0	100	29	33	0	0
Metolachlor+MCPA PE+P 2+0.25	7.3	55.2	54	3	4	100	39	86	18	21
Bromoxynil+MCPA P 0.25+0.25	5.8	55.8	51	0	2	100	98	0	0	0
Bromoxynil P 0.25	6.1	55.6	50	0	0	100	100	0	0	0
Diclofop+Bromoxynil P 1+0.25	12.4	55.1	54	0	0	98	99	74	0	99
Bas-9052+MCPA P 0.2+0.25	13.4	54.9	53	0	2	100	56	84	99	98
Bas-9052+DPX-4189 P 0.2+0.016	12.8	55.4	52	0	6	100	100	99	99	96
MCPA+Dalapon P 0.25+0.75	5.9	55.0	54	0	0	100	43	86	93	65
Asulam P 1	9.5	54.1	47	0	5	90	5	79	97	97
Asulam+MCPA P 0.75+0.25	9.0	54.8	46	0	13	100	18	54	55	63
Control	6.3	55.1	55	0	1	0	0	0	0	0
Mean	8.8	55.1	52	2	6	92	52	65	47	53
High mean	13.4	55.8	56	19	36	100	100	99	99	99
Low mean	5.8	54.1	46	0	0	0	0	0	0	0
Coeff. of variation	12.2	0.	6	166	125	4	29	27	28	25
LSD(1 Percent)	2.0	0.	10	7	13	7	29	33	24	24
LSD(5 Percent)	1.5	0.	7	6	10	5	22	25	18	18
No. of reps	4.0	1.0	2	4	4	4	4	4	4	4

Summary

Important injury to flax only occurred from EPTC and asulam with MCPA. However, the EPTC treated flax, still approached having the highest yield of all the treatments. The overall highest control of all weed was with BAS-9052 with chlorsulfuron. Bromoxynil and chlorsulfuron were the only herbicides to effectively control Russian thistle. Diclofop and BAS-9052 in combination with various broadleaf herbicides appeared promising for broadspectrum weed control in flax. Preplant weed control in sunflower, Casselton 1981. Preplant (PPI) herbicides were applied and twice incorporated with field cultivator plus harrow in a silty clay soil, dry to about 3 inches, and with 7.4 pH and 5.5% organic matter, May 11. Hybrid 894 sunflower was seeded in 30 inch rows and preemergence (PE) treatment appled on May 11. Herbicides were applied in 17 gpa at 35 psi to a 7ft strip the lenght of 10 by 30 foot plots. The first rain after treatment was 2.2 inches on May 22 - 23 Sunflowers were not harvested because of a midge infestation which damaged the heads. Sunflower injury and weed control evaluations were on June 11

	Rate	-Sunf	lower-	Perc	ent con	trol
Treatment a	lb/A	%ir	%sr	Fxtl	Wimu	Kocz
000 00 00 000 000	a att it	288 199	68.85.0	13. 9.19	a Marken	Elimer Pr
EPTC PPI	2	0	0	86	30	20
EPTC PPI	3	1	0	96	29	36
EPTC&R-33865 PPI	2	0	0	85	29	0
EPTC&R-33865 PPI	3	3	0	94	44	23
EPTC+Chloramben PPI	3+1.5	6	3	96	86	91
EPTC+Chloramben PPI	3+3	13	3	98	94	95
EPTC+R-40244 PPI	3+0.5	1	0	97	93	97
EPTC+R-40244 PPI	3+0.25	3	0	93	88	84
R-40244 PPI	0.5	0	0	14	100	89
Trifluralin PPI	1	0	0	91	10	85
Trifluralin-G PPI	1	1	0	73	0	56
Trifluralin+Metr-W PPI+P	E 1+.125	4	0	90	68	93
Trifluralin+Metr-W PPI+P	E 1+.187	19	13	92	91	93
Trifluralin+Metr-W PPI+P	E 1+0.25	14	15	94	96	97
Trifluralin+Metr-W PPI	1+.125	16	18	92	96	93
Trifluralin+Metr-W PPI	1+.187	23	46	92	96	92
Trifluralin+Metr-W PPI	1+0.25	28	54	94	100	93
Trifluralin PPI	0.75	0	0	91	0	90
Trifluralin+Bifenox PPI	0.75+2	3	0	92	29	89
Trifluralin+Chloramben P	PI1+1.5	0	0	97	78	94
Trifluralin+Chloramben P	PI 1+2	1	3	96	71	94
Trifluralin+R-40244 PPI	1+0.5	0	1	96	96	97
Trifluralin+Linuron PPI	1+1.5	3	3	98	85	96
Fluchloralin PPI	0.94	0	0	93	10	92
EL-5219 PPI 1INC	0.94	3	0	91	20	93
Profluralin PPI	1	0	0	91	0	93
Profluralin+Prometryn PP		10	0	93	85	97
Chloramben PPI	2	0	0	76	74	84
Pendimethalin PPI	1	0	0	90	10	88
Pendimethalin PPI	1.5	0	0	96	40	83
Pendimethalin-DF PPI	1.5	0	3	91	14	88
Pend+Metribuzin-W PPI	1.5+.125	31	25	93	90	94
Pendimethalin+Clam PPI	1.5+2	0	0	92	83	90
UBI-S734 PPI	1.5	0	0	86	0	0
UBI-S734-F PPI	1.5	0	0	85	10	8
UBI-S734+Chloramben PPI	1.5+1.5	4	3	86	. 71	91

Table continued next page.

Table . Continued

	Rate	-Sunflower-		Perc	ent con	trol
Treatment a	lb/A	%ir	%sr	Fxtl	Wimu	Kocz
			R ST P	2	1.01 M 10	N. K.S.
Metolachlor+Prometryn PPI	2+1.6	5	10	94	84	89
Chloramben PE	2	0	0	54	78	90
Alachlor PPI	2.5	0	0	90	36	49
MON-097 PPI	1.75	8	6	98	80	78
Mean		5	5	89	57	77
High mean		31	54	98	100	97
Low mean		0	0	14	0	0
Coeff. of variation		107	124	7	33	14
LSD(1 Percent)		10	12	11	35	20
LSD(5 Percent)		7	9	8	27	15
No. of reps		4	4	4	.4	4

Summary

Chloramben, R-40244, linuron, and prometryn when included in the treatment gave more than 70% wild mustard control without important sun flower injury. Chloramben incorporated at 1.5 or 2 lb/A or surface applied at 2 lb/A all gave similar wild mustard control. Metribuzin was injurious to sunflower. Trifluralin granuales gave less weed control than the liquid formulation. Green and yellow foxtail control was 70% or more with all treatments except chloramben preemergence and R-40244 a Metr-W = wettable powder formulation of metribuzin

Preemergence weed control in sunflower, Casselton 1981. 894 hybrid sun flower was seeded and preemergence treatments applied to a Fargo silty clay soil with 7.4 pH and 5.5% organic matter, May 11. The soil surface 3 inches was dry and 3.3 inch rain occurred on May 22-23. Herbicides were applied in 17 gpa at 35 psi to a 7ft strip length of 10 by 30ft plots. Sunflower injury and stand reduction and weed control evaluations were on June 11. Sunflower was not harvested because of a midge infestation.

	Rate	-Sunfl	ower-	Perce	ent con	trol
Treatment	lb/A	%ir	%sr	Fxtl	Wimu	Kocz
						STR. LE
Acetachlor PE	1.75	0	0	84	45	70
Acetachlor PE	2.25	6	0	78	76	81
Acetachlor+Chloramben PE		4	0	89	86	88
Alachlor+Bifenox PE	2+1.5	3 3	Ó	81	64	60
Alachlor+Oxyfluorfen PE	2+.375		0	61	88	68
Alachlor+Oxyfluorfen PE	2+0.5	3	0	74	86	78
R-40244 PE	0.5	0	0	26	75	89
R-40244 PE	0.1	3	0	34	95	96
RH-9861 PE	1.5	3	0	34	48	48
RH-9861 PE	2	8	0	35	13	34
RH-9861+Alachlor PE	1.5+2	6	0	71	76	80
Propachlor+R-40244 PE	5+0.5	5	0	78	83	89
Propachlor+Linuron PE	5+1.5	6	0	78	79	85
Metolachlor+Prometryn PE	2+1.6	8	0	75	80	91
Prometryn PE	1.6	5	0	46	76	86
Alachlor PE	2.0	3	0	60	43	63
Metolachlor PE	. 2.0	0.	0	71	13	34
Alachlor PE	2.5	1	0	73	36	78
Metolachlor PE	2.5	0	0	78	46	34
Mean		3 8	0	64	63	71
High mean			0	89	95	96
Low mean		0	0	26	13	34
Coeff. of variation		165	0	17	24	29
LSD(1 Percent)		10	0	20	29	39
LSD(5 Percent)		8	0	15	22	29
No. of reps		4	4	4	4	4

Summary

None of the herbicide treatments caused important injury to sunflower and none caused any stand reduction. Wild mustard control exceeded 75% with R-40244, oxyfluorfen, chloramben, linuron, or promtryn as a component of the herbicide treatment. Acetachlor plus chloramben, propachlor, plus R-40244 or linuron, and metolachlor plus promtryn all gave 75% or more control of green and yellow foxtail, wild mustard, kochia. The highest wild mustard and kochia control was with R-40244 a 1 lb/A. Observatins indicated that weed control with all herbicides was better in furrows than on the ridges left from seedbed preparation. The herbicides may have been blown off the ridges with the dry soil prior to the first rain accounting for the lower weed control on the ridges. Postemergence weed control in sunflower, Casselton 1981. 894 hybrid sunflower was seeded to a silty clay soil with 7.5 pH and 5.5% organic matter, May 11. Treatment 1 through 4 were applied on June19 before a light rain interrupted treatment application. Treatments 5 through 12 were applied on June 20 when the sunflower had 6 to 8 leaves, wild mustard was 4 to 6 inches tall, and green and yellow foxtail had 2 to 4 leaves and the temperature was 65F and relative humidity 80%. Treatments were applied in 8.5 gpa at 35 psi to a 7ft strip the length of 10 by 30ft plots. Soil moisture was adequate and 0.4 inches of r rain occurred on June 21. Sunflower injury and weed control evaluations were on July 13. Sunflowers were not harvested because of a midge infest.

	Rate	Sunf	lower	Pe	rcent	contr	01
Treatment	oz/A	 %ir	%sr	Fxtl	Wimu	Colq	Kocz
212 2250							
BAS-9052	3	0	0	100	0	0	0
BAS-9052+0C	-	0	0	100	0	0	0
BAS-9052+R-40244	3+2	25	0	96	100	80	89
BAS-9052+R-40244	3+4	21	0	95	100	86	96
BAS-9052+MC-10978	3+4	50	0	95	100	84	68
BAS-9052+Desmedipham	3+20	15	0	89	89	75	33
Diclofop	16	0	0	93	0	0	0
Diclofop+MC-10978	16+4	40	0	21	100	. 79	85
Diclofop+R-40244	16+4	39	0	83	100	80	93
MC-10978	2	25	0	9	98	68	38
MC-10978	4	39	Ő	18	100	80	55
Acifluorfen	4	50	0	8	100	84	81
ACTITUOLICH	т	50	0	0	100	04	01
Mean		25	0	67	74	60	53
High mean		50	õ	100	100	86	96
Low mean		0	0	8	0	0	90
					-		
Coeff. of variation		25	0	9	5	11	19
LSD(1 Percent)		12	0	11	. 8	13	19
LSD(5 Percent)		9	0	8	6	10	14
No. of reps		4	4	4	4	4	4

Summary

Sunflowers were injured by all herbicide treatments which were for broadleaf weed control. However none of the herbicide caused any sunflower stand reduction. Desmedipham was the least injurious of the herbicides for broadleaf control. R-40244 controlled wild mustard and kochia, and MC-10978 wild mustard, but all caused moderate injury to sunflower. Acifluorfen (Rohm and Haas) injured sunflower and controlled kochia more than MC-10978 (acifluorfen from mobil). Foxtail control with diclofop applied with MC-10978 was reduced compared to control with diclofop alone. However, diclofop applied with MC-10978 did not influence sunflower injury. Desmedipham applied in combination with BAS-9052 reduced foxtail control compared with BAS-9052 alone. The rain which occurred immediately after application of the first four treatments did not influence weed control. Weed control in sunflower, Absaraka 1981. Preplant field cultivator plus harrow twice incorporated herbicides (PPI) were applied, 894 sun flower seeded, and preemergence herbicides (PE) applied to a sandy loam soil with 7.3 pH and 4% organic matter, May 4. Soil surface 3 inches was dry and the first rain was 2.2 inches on May 22-23. Weed control and sunflower injury evaluations were on June 11. Herbicides were applied in 17 gpa at 35 psi to a 7ft width of 10 by 30 ft plots.

	Rate	Sunf	Lower	Perce	nt co	ntrol
Treatment	lb/A	%ir	%sr	Colq	Fxtl	Wimu
			•	0.4	0.1	0
EPTC PPI	3	0	8	81	91	0
EPTC+R-40244 PPI	3+0.5	0	0	97	96	95
Trifluralin PPI	0.75	0	0	82	88	20
Trifluralin+Metribuzin-W PPI	0.75+0.25	14	40	88	83	98
Trifluralin+Metr-W PPI+PE	0.75+0.25	16	16	88	85	50
Trifluralin+Prometryn PPI	0.75+1.5	2	0	80	88	0
Trifluralin+Prometryn PPI+PE	0.75+1.5	1	0	84	88	58
Trifluralin+Linuron PPI	0.75+1.5	1	0	74	85	0
Trifluralin+Linuron PPI+PE	0.75+1.5	0	0	78	85	65
Trifluralin+R-40244 PPI	0.75+0.5	1	0	78	81	100
Trifluralin+R-40244 PPI+PE	0.75+0.5	0	0	95	94	85
Mean		3	6	84	87	52
High mean		16	40	97	96	100
Low mean		0	0	74	81	0
Coeff. of variation		.98	170	10	6	0
LSD(1 Percent)		6	19	16	11	0
LSD(1 Percent)		5	14	12	8	0
		4	4	4	4	1
No. of reps		- 1	т	T		-

Summary

The objective of the research was to determine sunflower tolerance and wild mustard control with various herbicides on coarse texture soil. The wild mustard only occurred in one replication and was too variable for precise control evaluations. Sunflower was tolerant to R-40244 at 0.5 lb/A, but injured by metribuzin at 0.25 lb/A. Metribuzin reduced sunflower stand more when applied preplant incorporatd than preemergence.

1

Weed control in sunflower, Carrington 1981. Preplant (PPI) treatments were applied and rototiller incorporated on June 9. Cargill 204 sunflower was seeded on June 10 and preemergence (PE) treatments applied on June 16. Weed control and sunflower injury evaluation was on August 3.

	Rate	-Sunf]	Lower-	Perc	ent con	trol
Treatment	lb/A	%ir	%sr	Fxtl	Rrpw	Colq
EPTC PPI	2.5	0	0	89	65	85
EPTC+R=40244 PPI	2.5+0.5	0	0	82	88	93
Trifluralin PPI	0.75	0	0	95	96	88
Profluralin PPI	0.75	0	0	85	90	78
Pendimethalin PPI	1	2	0	88	93	94
Trifluralin+Linuron PPI	0.75+1.5	2	0	94	99	97
Trifluralin+Prometryn PPI	0.75+1.5	3	0	93	97	96
Trifluralin+Chloramben PPI		7	0	96	98	90
Trifluralin+Chloramben PPI		3	3	99	100	100
Chloramben PE	2	Ő	Ő	43	70	50
Alachlor PE	2.5	0	0	76	73	53
Metolachlor PE	2.5	0	0	65	80	42
Pendimethalin PE	1	0	0	45	57	63
Propachlor PE	5	2	0	55	50	53
Propachlor+R-40244 PE	3+0.5	0	0	81	93	97
Propachlor+Linuron PE	3+1.5	0	0	87	98	96
Propachlor+Prometryn PE	3+1.5	7	0	97	100	100
Control Weedfree		Ö	0	70	92	88
Control Weedy		0	0	0	0	0
Mean		1	0	76	81	77
High mean		7	3	99	100	100
Low mean		Ó	Ō	0	0	0
Coeff. of variation		271	755	14	25	32
LSD(1 Percent)		8	3	24	44	54
LSD(5 Percent)		6	2	18	33	41
No. of reps		3	3	3	3	3

Summary

All preplant soil incorporated treatments and propachlor with R-40244, linuron, or prometryn preemergence gave commercially acceptable control of all weeds without important sunflower injury.

Weed control in sunflower, Langdon 1981. Preplant (PPI) herbicides applied and field cultivator incorporated twice, Cargill 205 sunflower seeded and preemergence (PE) herbicide treatments applied on June 8. Postemergence (P) treatments were applied to cotyledon to 2 leaf sunflower, 1.5 to 2leaf wild oat and 0.5 to 1 in. foxtail on June 24 with 65F, partly cloudy sky, and 10 to 20 mph north wind.

	Rate	Sunfl	ower		-Perce	nt co	ntrol-	
Treatment	lb/A	%ir	%sr	Fxtl	Rrpw	Prpw	Colq	Vwht
EPTC PPI	2.5	3	0	93	64	35	76	84
EPTC+R-40244 PPI	2.5+0.5	0	0	94	88	78	84	79
Trifluralin PPI	0.75	0	1	96	98	98	96	54
Profluralin PPI	0.75	0	0	95	92	90	92	41
Pendimethalin PPI	1	0	0	89	93	91	88	34
Trifluralin+Linuron PPI	0.75+1.5	0	0	97	100	99	100	69
Trifluralin+Prometryn PPI	0.75+1.5	1	0	84	98	96	96	48
Trifluralin+Chloramben PPI	0.75+1.5	1	0	98	100	100	99	66
Trifluralin+Chloramben PPI	0.75+2	4	3	99	99	100	99	65
Chloramben PPI	2	0	0	86	93	88	94	36
Chloramben PE	2	3	1	93	96	95	95	30
Alachlor PE	2.5	0	0	86	81	78	76	20
Metolachlor PE	2.5	0	0	90	81	84	85	10
Pendimethalin PE	1	0	0	56	81	88	91	0
Propachlor PE	5	0	0	78	29	21	48	0
Propachlor+R-40244 PE	3+0.5	0	0	73	85	70	88	0
Propachlor+Linuron PE	3+1.5	0	0	89	96	91	92	39
Propachlor+Prometryn PE	3+1.5	1	0	83	97	98	94	48
Propachlor+Desmedipham PE+		9	1	79	96	93	94	5
Bas-9052 P	0.2	0	0	71	0	0	0	94
Bas-9052+R-40244 P	0.2+0.2	5 3	0	79	80	85	84	94
Diclofop P	1	3	0	33	0	0	0	0
Mean		1	0	84	79	76	80	42
High mean		9	3	99	100	100	100	94
Low mean		Ó	Ő	33	0	0	0	0
Coeff. of variation		247	506	16	12	14	13	31
LSD(1 Percent)		6	3	25	18	20	19	24
LSD(5 Percent)		5	2	19	13	15	14	18
No. of reps		4	4	4	4	4	4	4

Summary

Volunteer wheat was only controlled by EPTC and BAS-9052 treatments. Propachlor preemergence alone only controlled foxtail, but broadleaf weeds and foxtail were controlled when applied with R=40244, linuron, or prometryn. Desmedipham and R=40244 postemergence gave 80% or more control of broadleaf weeds but caused slight injury to sunflower.

30

Weed control in sunflower, Williston 1981. Interstate 894 hybrid sunflower was over seeded and thinned to 18,000 plants/A. The experimental area was fallowed in 1980. Preplant treatments (PPI) were applied and incorporated twice with a Triple K implement on May 8 with 48 F, 80% R.H., northeast wind at 10 mph, and moist soil surface conditions. Preemergence treatments (PE) were applied at 8.6 gpa (normally 17) on May 11 with 40 F, 49% R.H., north wind at 4 mph, and dry surface soil. Postemergence (P) treatments were applied to four leaf sunflower, five leaf wild oat, 2 to 3 in. Russian thistle and other weeds less than 2in. on June 11 with 64 F, 72% R.H. and no wind. Harvest was from a 40 sq. ft area on September 23.

				Sunflow	ver							
		Rate	Yield	Twt				Per	cent	contr	·ol	
Treatment		lb/A	lb/A	lb/bu	%sr	%ir	Tymu	Rrpw	Ruth	Grft	Vwht	Wioa
EPTC	PPI	2.5	558	32.6	2	0	82	28	10	97	90	88
EPTC+R-40244	PPI	2.5+0.5	543	31.8	0	3	99	87	30	93	79	83
Trifluralin	PPI	•75	1048	32.5	0	0	0	95	87	98	53	83
Profluralin	PPI	•75	658	32.1	0	0	0	93	57	93	62	65
Pendimethalin	PPI	1.0	557	32.8	0	0	10	93	55	97	70	80
Trif+Linuron	PPI	.75+1.5	825	32.4	0	0	90	95	85	96	85	88
Trif+Prometryn	PPI	.75+1.5	855	33.0	2	2	47	95	82	96	75	83
Trif+Chloramben	PPI	.75+1.5	854	32.8	0	0	60	93	90	98	83	88
Trif+Chloramben	PPI	.75+2.0	1010	32.8	0	0	88	95	95	99	65	92
Chloramben	PPI	2.0	746	32.7	0	2	80	78	87	87	20	47
Chloramben	PE	2.0	872	32.6	0	2	10	90	87	88	0	52
Alachlor	PE	2.5	403	33.1	0	2	40	95	13	95	17	53
Metolachlor	PE	2.5	659	31.9	0	0	53	32	25	87	30	23
Pendimethalin	PE	1.0	547	32.5	0	0	0	37	37	70	7	25
Propachlor	PE	5.0	395	33.2	0	0	0	0	0	55	ò	0
Prcl+Prometryn	PE	3.0+1.5	464	33.0	0	2	83	90	52	82	0	10
Prcl+Desmedipham	PE+P	3.0+1.5	470	32.3	2	20	92	88	80	93	47	45
BAS-9052	Р	.2	497	32.7	0	10	0	0	0	95	95	95
BAS-9052+R-40244	Р	.2+0.2	805	32.5	0	30	100	97	83	98	99	98
Diclofop	Р	1.0	568	32.2	0	3	0	0	0	97	0	95
Control weedfree			1203	33.4	0	0	100	100	100	99	87	100
Control weedy			495	32.7	0	0	0	0	0	0	0	0
Mean			683	32.6	0	3	47	67	52	87	48	63
High mean			1203	33.4	2	30	100	100	100	99	99	100
Low mean			395	31.8	0	0	0	0	0	0	0	0
Coeff. of variati	on		22	0.	446	132	40	22	33	8	36	21
LSD(1 Percent)			327	0.	2	10	40	32	37	16	38	29
LSD(5 Percent)			246	0.	2	7	30	24	28	12	28	22
No. of reps			3	1.0	3	3	3	3	3	3	3	3

Summary

The EPTC+R-40244 treatment solution appeared cloudy and rust colored indicating a possible reaction during storage of the mixed herbicide formulation prior to the addition of water. Linuron was more effective than prometryn for tame yellow mustard and chloramben at 2 lb/A also more effective than at 1.51b/A incorporated. R-40244 preplant incorporated or postemergence, controlled yellow mustard. R-40244 postemergence injured sunflower, but the yield was similar as with other treatments. Sunflower yield was reduced 707 lb/A when weeds were not controlled from 1202 lb/A for weedfree sunflower. Weed control in irrigated sunflowers, Karlsruhe 1981. Preplant (PPI) treatments were applied and incorporated with a rototiller, Sakota 5000 Hybrid sunflowers seeded and preemergence (PE) treatments applied May 20. Diclofop was applied postemergence (P) to 1 inch foxtail and sunflowers on June 10. Following application of the PE treatments 0.5 inch of irrigation water was applied. Herbicides were applied with a bicycle wheel plot sprayer delivering 17 gpa for PE and 8.5 gpa at 35 psi for post treatments. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were heavy.

	Sunflower									
	Rate	Yield	Twt	Plt/A	%	contr	01			
Treatment	lb/A	lb/A	lb/bu	1000X	Grft	Colq	Ruth			
	1. S. NB.S.						Catego B W			
Trifluralin PPI	0.75	2304	31.5	19.8	98	97	97			
Profluralin PPI	0.75	2352	31.0	15.5	91	85	86			
EPTC PPI	3	1746	32.0	16.9	70	50	0			
Chloramben PPI	2.5	1476	32.0	14.9	43	60	45			
Alachlor PPI	2.5	1614	30.5	16.4	33	38	13			
Propachlor PE	4	1248	31.0	18.5	48	25	0			
Trifluralin+Diclofop PPI+P	0.75+1	1734	32.0	16.9	99	0	0			
Control Handweed		1908	31.0	15.5	99	99	99			
Control Weedy		894	30.5	14.5	0	0	0			
		8. SS	1		C 1.					
Mean		1697	31.3	16.6	64	50	38			
High mean		2352	32.0	19.8	99	99	99			
Low mean		894	30.5	14.5	0	0	0			
Coeff. of variation		21	0.	17.3	21	38	46			
LSD(1 Percent)		704	0.	5.7	27	37	34			
LSD(5 Percent)		519	0.	4.2	20	28	25			
No. of reps		4	1.0	4.0	4	4	4			

Summary

Grass and broadleaf weed control was good with profluralin or trifluralin and foxtail control good with diclofop. All treatments except propachlor significantly increased sunflower yields compared to the non-treated control. Weed control in corn, Casselton 1981. An experiment was conducted to evaluate various herbicides for weed control in corn. Preplant treatments were applied and field cultivator plus harrow incorporated twice (PPI), 'Agsco 2XA1' corn was seeded and preemergence treatments (PE) applied on May 12. The experiment was a randomized complete block with four replications and was extablished on a Fargo silty clay with 7.5 pH and 5.0% organic matter. Spike post treatments to 3 to 4 leaf corn and 2 leaf yellow foxtail on June 10. PPI treatments were applied in 17 gpa and post in 8.5 gpa at 35 psi to a 7 ft strip the length of 10 by 25 ft plots. The first rain after PPI applications was 2.2 inch on May 22-24, after spike 0.5 inch on May 27-31, and after post 0.6 inch on June 13. Weed control and corn injury (%ir) were evaluated on June 30.

	Rate	Co	rn		Percent	control	
Treatment	lb/A	%ir	%sr	Fxtl	Wimu	Kocz	Rrpw
						Sec. act	18216
EPTC&R PPI	4	0	0	80	50	38	46
EPTC&R PPI	6	0	0	95	66	49	60
Butylate&R+Cyan-L PPI	3+2	0	0	73	84	86	86
Vernolate&R PPI	4	0	0	74	46	30	46
Cyanazine-L PPI	2	0	0	34	79	80	31
Alachlor+Cyanazine-L PPI	2.5+2	0	0	65	75	78	71
Metolachlor+Cyanazine-L PP	I 2.5+2	0	0	76	74	73	75
Cyanazine-L PE	2	3	0	35	60	69	43
Propachlor PE	5	0	0	79	56	65	59
Alachlor PE	. 3	0	0	73	38	25	35
Metolachlor PE	3	0	0	80	28	24	39
Alachlor+Atrazine-L PE	2.5+2.0	0	0	66	93	88	91
Metolachlor+Atrazine-L PE	2.5+2.0	0	0	73	88	88	77
Alachlor+Cyanazine-L PE	2.5+2.0	0	0	75	86	86	76
Metolachlor+Cyanazine-L	2.5+2.0	0	0	61	79	70	60
Alachlor+Dicamba PE	2.5+0.5	5	0	55	69	84	81
Acetochlor PE	1.75	0	0	84	63	60	66
Pendimethalin 4E PE	2.0	0	0	35	45	66	75
Pendimethalin-DF PE	2.0	0	0	26	40	60	70
Pend 4E+Cyanazine-W PE	1.5+2.4	5	0	46	60	74	73
Pend-DF+Cyanazine-W PE	1.5+2.4	5	0	43	79	91	78
Atrazine-L+LOTM post	1.5+.25G	0	0	90	99	97	99
Cyanazine-W+LOTM post	1.5+.25G	18	0	83	97	98	98
Pendimethalin 4E spike pos		0	0	43	93	96	94
Pendimethalin-DF spike pos	t 2.0	0	0	53	95	95	96
Pend 4E+Cyan-W spike post	1.5+2.4	3	0	65	93	96	96
Pend-DF+Cyan-W spike post	1.5+2.4	3	0	70	94	97	96
Dicamba spike post	0.37	0	0	3	85	96	96
Dicamba post	0.37	10	0	0	98	97	98
Control		0	0	0	0	0	0
Mean		2	0	58	70	72	70
High mean		18	0	95	99	98	99
Low mean		0	0	0	0	0	0
Coeff. of variation		199	0	21	15	15	15
LSD(1 Percent)		6	0	23	19	20	19
LSD(5 Percent)		5 4	0	17	14	15	14
No. of reps		4	4	4	4	4	4

Summary

None of the treatments caused any corn stand reduction. Postemergence herbicides generally gave better broadleaf weed control than PPI or PE applied herbicides. Acetochlor at 1.75 lb/A gave better weed control than alachlor or metolachlor at 3 lb/A.

Weed control in corn, Richland County 1981. The experiment was conducted on a sandy loam, C.Hendrickson farm Colfax, ND. Thor-o bred 280 hybrid corn was planted on May 2 and preemergence (PE) treatments applied, May 4. The spike treatments were applied to 1-leaf corn and weeds less than 1.5 in May 18, and post treatments to 4 to 5-leaf corn, 2 to 4-leaf foxtail and broadleaf weeds less than 3 in, June 10. Corn injury and weed control were evaluated on July 2.

and the second and there is a	Rate		orn	Perc	ent con	trol
Treatment	lb/A	%ir	%sr	Fxtl	Colq	Rrpw
Cyanazine-L PE	2	8	4	79	84	88
Propachlor PE	5	0	0	65	45	58
Alachlor PE	3	0	0	86	38	60
Metolachlor PE	3	3	0	80	73	75
Alachlor+Atrazine-L PE	2.5+2.0	0	0	95	97	96
Metolachlor+Atrazine-L		3	0	91	95	95
Alachlor+Cyanazine-L PE	2.5+2.0	3 3	0	82	77	86
Metolachlor+Cyanazine-L		3	0	81	90	92
Alachlor+Dicamba PE	2.5+0.5	8	0	84	92	92
Acetochlor PE	1.75	0	0	61	56	56
Pendimethalin 4E PE	2.0	0	0	66	75	81
Pendimethalin-DF PE	2.0	5	0	74	84	81
Pend 4E+Cyanazine-W PE	1.5+2.4	15	0	82	94	94
Pend-DF+Cyanazine-W PE	1.5+2.4	18	0	82	89	91
Atrazine-L+LOTM post	1.5+.25G	15	0	76	87	88
Cyanazine-W+LOTM post	1.5+.25G	19	0	92	94	95
Pendimethalin 4E spike		3	0	71	85	86
Pendimethalin-DF spike		10	. 0	78	90	86
Pend 4E+Cyan-W spike po		25	15	86	93	93
Pend-DF+Cyan-W spike po		13	0	90	94	93
Dicamba spike post	0.37	0	0	18	58	65
Dicamba post	0.37	8	0	25	85	91
Control		0	0	0	0	0
				THE VILLEY	Character D-	2.0
Mean		7	1	71	77	80
High mean		25	15	95	97	96
Low mean		0	0	0	0	0
Coeff. of variation		110	782	16	16	13
LSD(1 Percent)		14	12	21	23	20
LSD(5 Percent)		10	9	16	17	15
No. of reps		4	4	4	4	4

Summary

Corn was moderately injuryed by treatments with cyanazine at 2.4 lb/A PE and by all spike and post treatments other than dicamba or pendimethalin 4E. Redroot pigweed control was good with all treatments except propachlor, alachlor, metolachlor, and acetachlor applied alone. Common lambsquarters control was generally lower in treatments with alachlor than with metolachlor. Foxtail control generally exceeded 75% except for with propachlor, Acetachlor, certain pendimethalin treatments; and dicamba.

34

Weed control in irrigated corn, Karlsruhe 1981. Preplant (PPI) treatments were applied and incorporated with a rototiller, NK 111 hybrid corn seeded and preemergence (PE) treatments applied May 20. Following herbicide application 0.5 inch of irrigation water was applied. Herbicides were applied with a bicycle wheel sprayer delivering 17 gpa at 35 psi. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were heavy.

		Corn-						
Rate	Yield	Twt	Plt/A]	Percer	nt co	ontrol	
Treatment 1b/A	Bu/A	lb/bu	1000X	Grft	Wibw	Colq	Ruth	Wisu
EPTC+R-25788 PPI 3	102.3	51.0	12.3	75	35	55	0	0
Pendimethalin PE 1.5	118.4	51.0	12.4	71	55	94	35	0
Alachlor+Linuron PE 1.5+0.75	124.3	50.5	13.8	92	60	73	35	0
Alachlor+Dicamba PE 2+0.25	109.2	50.0	13.1	81	30	53	53	18
Alachlor+Cyanazine-W PE 1+2	125.0	51.0	13.5	89	96	99	99	98
Propachlor PE 5	110.4	50.0	14.7	90	0	18	0	0
Alachlor+Propachlor PE 1.5+2	104.4	51.0	13.7	94	23	60	5	5
Control Handweeded	101.6	50.0	13.8	99	99	99	99	99
Control Weedy	88.8	50.0	13.6	0	0	0	0	0
Mean	109.4	50.5	13.4	77	44	61	36	24
High mean	125.0	51.0	14.7	99	99	99	99	99
Low mean	88.8	50.0	12.3	0	0	0	0	0
Coeff. of variation	25.6	0.	15.1	18	39	29	56	48
LSD(1 Percent)	55.4	0.	4.0	28	34	35	40	23
LSD(5 Percent)	40.9	0.	3.0	21	25	26	- 29	17
No. of reps	4.0	1.0	4.0	4	4	4	4	4
							200	

Summary

Alachlor plus cyanazine provided excellent control of all weed species. Corn populations were variable and not related to injury. Weed control in soybean, NW-22 Fargo 1981. Preplant treatments (PPI) were applied and twice incorporated with a field cultivator plus harrow to silty clay soil with a 7.4 pH and 6% organic matter and dry to 3 inches May 19. 'Evans' soybean was seeded and preemergence (PE) treatments were applied also on May 19. Postemergence (P) herbicides were applied during 73F and 70% relative humidity to second trifoliate soybean, three to four leaf wild oat and two to four leaf green and yellow foxtail, 0 to 4 inch redroot pigweed, 1 to 6 inch wild mustard, and 4 inch kochia with excellent conditions for growth, June 22. PPI and PE treatments were in 17 gpa and P in 8.5 gpa both were at 35 psi to a 7 ft strip the lenght of 10 by 25 ft plots. Rainfall was 3.3 in within 5 days after preemergence treatment and 0.5 in within 1 day after postemergence treatment. Soybean injury and weed control evaluation was on July 13.

	Rate	So	ybean]	Percer	nt co	ontrol	L
Treatment	oz/A	%ir					Kocz	Rrpw
				-				
Trifluralin+Metribuzin-W PPI	16+2	6		87	95	96	88	93
Trifluralin+Metribuzin-W PPI	16+4	7		85	92	92	86	89
Pendimethalin+Metribuzin-W PPI	16+2	2		88	93	90	86	87
Pendimethalin+Metribuzin-W PPI		0	-	89	92	98	94	98
Trifluralin+DNBP PPI+P	16+24	3		87	93	83	94	88
Trifluralin+Napt&DNBP PPI+P	16+48	2		87	95	87	92	93
Trifluralin+Bentazon PPI+P	16+12	7		92	94	94	91	89
Trifluralin+MC-10978 PPI+P	16+8	3		94	97	98	91	99
Trifluralin+Acifluorfen PPI+P	16+8	8		91	96	97	98	98
Trif +MC-10978+Bentazon PPI+P		11		89	94	98	87	96
	+0.25G	0		99	99	0	0	0
BAS-9052+Acifluorfen P	3+8	9		97	87	99	88	88
BAS-9052+MC-10978 P	3+8	7		95	88	68	73	73
BAS-9052 P	3	0		98	96	0	0	0
Control		0	0	• 0	0	: 0	0	0
		Ц	4	85	87	73	71	73
Mean				-				99
High mean		11		99	99 0	99 0	90	99
Low mean		107		06	4	19	10	9
Coeff. of variation		127	-				10	15
LSD(1 Percent)		12		12	9 6	31		15
LSD(5 Percent)		9	3	9 3	3	23 3	3	3
No. of reps		3	5	3	3	3	C	2

Summary

Wild oat and foxtail control exceeded 85% with all treatments. Acifluorfen or MC-10978 in combination with BAS-9052 reduced wioa and foxtail control compared to BAS9052 alone. The oil additive did not enhance grass weed control with BAS-9052. Wild mustard control was good with all broadleaf herbicides for broadleaf weeds. Metribuzin PPI at 2 oz/A controlled wild mustard. MC-10978 the acifluorfen formulation by mobil was less effective in controlling broadleaf weeds than acifluorfen by Rhom Haas. Observation in part of the experiment indicated than marshelder wasn't controlled by trifluralin and that dinoseb + napthalam gave 70% marshelder control, but marshelder was not controlled with dinoseb alone. Preemergence weed control in pinto bean, NW-22 Fargo 1981. Preplant treatments (PPI) were applied to a silty clay soil dry to 3 inches and with 7.5% pH and 6% organic matter, and field cultivator plus harrow incorporated twice, May 19. 'VI 111' pinto bean was seeded and preemergence (PE) treatments applied, May 20. Herbicides were applied in 17 gpa at 35 psi to a 7ft strip the lenght of 10 by 30ft plots. The first after treatment rains of 3.3 inchs occurred on May 22 to 24. Pinto bean injury and weed control were evaluated on July 16.

Treatment lb/A %ir %sr Wioa Fxtl Kocz Wimu EPTC PPI 2.2 0 0 93 96 13 21 EPTC PPI 3.3 3 0 96 98 29 26 EPTC+Fluchloralin PPI 2.2+1 1 0 94 99 94 25 EPTC+Vernolate PPI 2+2 0 0 94 97 10 23 Fluchloralin PPI 1 0 3 83 97 90 0 Profluralin PPI 1 0 3 83 97 90 0 Trif+EPTC+Chloramben PPI 1 0 3 78 93 75 0 Trif+EPTC+Chloramben PPI 3 0 0 91 96 41 Alachlor PE 3 0 0 24 75 15 5 Alachlor PE 4 0 0 35 74 26 0 Metolachlor	Treatment	Rate lb/A	Pinto b %ir					
EPTC PPI 3.3 3 0 96 98 29 26 EPTC+Fluchloralin PPI 2.2+1 1 0 94 99 94 25 EPTC+Vernolate PPI 2+2 0 0 94 97 10 23 Fluchloralin PPI 1 3 0 71 93 83 8 Trifluralin PPI 1 0 3 83 97 90 0 Profluralin PPI 1 0 3 78 93 75 0 Trif+EPTC+Chloramben PPI 1+2.6+3 16 6 98 99 94 81 Vernolate PPI 3 0 0 91 96 0 41 Alachlor PE 3 0 0 24 75 15 5 Alachlor PE 4 0 0 35 74 26 0 Metolachlor PE 3 0 0 11 64 0 0 Acetachlor 2.25 4 4 61 89 60<			11.01	1001	WIUd	FAUL	KUCZ	WILIU
EPTC PPI 3.3 3 0 96 98 29 26 EPTC+Fluchloralin PPI 2.2+1 1 0 94 99 94 25 EPTC+Vernolate PPI 2+2 0 0 94 97 10 23 Fluchloralin PPI 1 3 0 71 93 83 8 Trifluralin PPI 1 0 3 83 97 90 0 Profluralin PPI 1 0 3 83 97 90 0 Trif+EPTC+Chloramben PPI 1+2.6+3 16 6 98 99 94 81 Vernolate PPI 3 0 0 91 96 0 41 Alachlor PE 3 0 0 14 64 0 0 Metolachlor PE 3 0 0 11 64 0 0 Metolachlor PE 3 0 0 33 76 78 35 Metribuzin-W PE 0.25 0 4 25 <t< td=""><td>EPTC PPI</td><td>2.2</td><td>0</td><td>0</td><td>93</td><td>96</td><td>13</td><td>21</td></t<>	EPTC PPI	2.2	0	0	93	96	13	21
EPTC+Fluchloralin PPI $2.2+1$ 1094999425EPTC+Vernolate PPI $2+2$ 0094971023Fluchloralin PPI1307193838Trifluralin PPI1038397900Profluralin PPI1037893750Trif+EPTC+Chloramben PPI1+2.6+316698999481Vernolate PPI3009196041Alachlor PE3002475155Alachlor PE4003574260Metolachlor PE300116400Metolachlor PE40033767835Metolachlor PE30033767835Metribuzin-W PE0.250425715166Metribuzin-W PE0.5365875818384Control0000000Mean3462824526High mean365898999484Low mean0000000Coeff. of variation1068626103671LSD(1 Percent)55<	EPTC PPI						-	
EPTC+Vernolate PPI2+20094971023Fluchloralin PPI1307193838Trifluralin PPI1038397900Profluralin PPI1037893750Trif+EPTC+Chloramben PPI 1+2.6+316698999481Vernolate PPI3009196041Alachlor PE3002475155Alachlor PE4003574260Metolachlor PE300116400Metolachlor PE40033767835Metribuzin-W PE0.250425715166Metribuzin-W PE0.5365875818384Control0000000Mean3462824526High mean365898999484Low mean000000Coeff. of variation1068626103671LSD(1 Percent)7730153035LSD(5 Percent)5523112226	EPTC+Fluchloralin PPI							
Fluchloralin PPI 1 3 0 71 93 83 8 Trifluralin PPI 1 0 3 83 97 90 0 Profluralin PPI 1 0 3 78 93 75 0 Trif+EPTC+Chloramben PPI 1+2.6+3 16 6 98 99 94 81 Vernolate PPI 3 0 0 91 96 0 41 Alachlor PE 3 0 0 24 75 15 5 Alachlor PE 4 0 0 35 74 26 0 Metolachlor PE 3 0 0 11 64 0 0 Metolachlor PE 3 0 0 33 76 78 35 Metribuzin-W PE 0.25 0 4 25 71 51 66 Metribuzin-W PE 0.5 36 58 75 81 83 84 Control 0 0 0 0 0 0 <t< td=""><td>EPTC+Vernolate PPI</td><td>2+2</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td></t<>	EPTC+Vernolate PPI	2+2	0	0				
Trifluralin PPI 1 0 3 83 97 90 0 Profluralin PPI 1 0 3 78 93 75 0 Trif+EPTC+Chloramben PPI 1+2.6+3 16 6 98 99 94 81 Vernolate PPI 3 0 0 91 96 0 41 Alachlor PE 3 0 0 24 75 15 5 Alachlor PE 4 0 0 35 74 26 0 Metolachlor PE 4 0 0 35 74 26 0 Metolachlor PE 3 0 0 11 64 0 0 Metolachlor PE 3 0 0 33 76 78 35 Metribuzin-W PE 0.25 0 4 25 71 51 66 Metribuzin-W PE 0.5 36 58 75 81 83 84 Control 0 0 0 0 0 0	Fluchloralin PPI	1	3	0				
Profluralin PPI 1 0 3 78 93 75 0 Trif+EPTC+Chloramben PPI 1+2.6+3 16 6 98 99 94 81 Vernolate PPI 3 0 0 91 96 0 41 Alachlor PE 3 0 0 24 75 15 5 Alachlor PE 4 0 0 35 74 26 0 Metolachlor PE 4 0 0 35 74 26 0 Metolachlor PE 3 0 0 11 64 0 0 Metolachlor PE 3 0 0 33 76 78 35 Metribuzin-W PE 0.25 0 4 25 71 51 66 Metribuzin-W PE 0.5 36 58 75 81 83 84 Control 0 0 0 0 0 0 0 0 Mean 3 4 62 82 45 26	Trifluralin PPI	1		3				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Profluralin PPI	1	0	3	78	93	75	0
Vernolate PPI 3 0 0 91 96 0 41 Alachlor PE 3 0 0 24 75 15 5 Alachlor PE 4 0 0 35 74 26 0 Metolachlor PE 4 0 0 35 74 26 0 Metolachlor PE 4 0 0 49 81 5 10 Acetachlor PE 4 0 0 49 81 5 10 Acetachlor PE 2.25 4 4 61 89 60 43 Chloramben PE 3 0 0 33 76 78 35 Metribuzin-W PE 0.25 0 4 25 71 51 66 Metribuzin-W PE 0.5 36 58 75 81 83 84 Control 0 0 0 0 0 0 0 Mean 3 4 62 82 45 26	Trif+EPTC+Chloramben PPI 1	1+2.6+3	16		98			81
Alachlor PE 4 0 0 35 74 26 0 Metolachlor PE 3 0 0 11 64 0 0 Metolachlor PE 4 0 0 49 81 5 10 Acetachlor 2.25 4 4 61 89 60 43 Chloramben PE 3 0 0 33 76 78 35 Metribuzin-W PE 0.25 0 4 25 71 51 66 Metribuzin-W PE 0.5 36 58 75 81 83 84 Control 0 0 0 0 0 0 0 Mean 3 4 62 82 45 26 High mean 36 58 98 99 94 84 Low mean 0 0 0 0 0 0 0 Coeff. of variation 106 86 26 10 36 71 LSD(5 Percent) <t< td=""><td>Vernolate PPI</td><td>3</td><td>0</td><td>0</td><td>91</td><td>96</td><td></td><td>41</td></t<>	Vernolate PPI	3	0	0	91	96		41
Alachlor PE 4 0 0 35 74 26 0 Metolachlor PE 3 0 0 11 64 0 0 Metolachlor PE 4 0 0 49 81 5 10 Acetachlor 2.25 4 4 61 89 60 43 Chloramben PE 3 0 0 33 76 78 35 Metribuzin-W PE 0.25 0 4 25 71 51 66 Metribuzin-W PE 0.5 36 58 75 81 83 84 Control 0 0 0 0 0 0 0 Mean 3 4 62 82 45 26 High mean 36 58 98 99 94 84 Low mean 0 0 0 0 0 0 0 Coeff. of variation 106 86 26 10 36 71 LSD(5 Percent) <t< td=""><td>Alachlor PE</td><td>3</td><td>0</td><td>0</td><td>24</td><td>75</td><td>15</td><td>5</td></t<>	Alachlor PE	3	0	0	24	75	15	5
Metolachlor PE 4 0 0 49 81 5 10 Acetachlor 2.25 4 4 61 89 60 43 Chloramben PE 3 0 0 33 76 78 35 Metribuzin-W PE 0.25 0 4 25 71 51 66 Metribuzin-W PE 0.5 36 58 75 81 83 84 Control 0 0 0 0 0 0 0 Mean 3 4 62 82 45 26 High mean 36 58 98 99 94 84 Low mean 0 0 0 0 0 0 Coeff. of variation 106 86 26 10 36 71 LSD(1 Percent) 7 7 30 15 30 35 LSD(5 Percent) 5 5 23 11 22 26	Alachlor PE	4	0	0	35	74	26	
Acetachlor 2.25 4 4 61 89 60 43 Chloramben PE 3 0 0 33 76 78 35 Metribuzin-W PE 0.25 0 4 25 71 51 66 Metribuzin-W PE 0.5 36 58 75 81 83 84 Control 0 0 0 0 0 0 0 0 Mean 3 4 62 82 45 26 High mean 36 58 98 99 94 84 Low mean 0 0 0 0 0 0 0 Coeff. of variation 106 86 26 10 36 71 LSD(1 Percent) 7 7 30 15 30 35 LSD(5 Percent) 5 5 23 11 22 26	Metolachlor PE	3	0	0	11	64	0	0
Chloramben PE 3 0 0 33 76 78 35 Metribuzin-W PE 0.25 0 4 25 71 51 66 Metribuzin-W PE 0.5 36 58 75 81 83 84 Control 0 0 0 0 0 0 0 0 Mean 3 4 62 82 45 26 High mean 36 58 98 99 94 84 Low mean 0 0 0 0 0 0 0 Coeff. of variation 106 86 26 10 36 71 LSD(1 Percent) 7 7 30 15 30 35 LSD(5 Percent) 5 5 23 11 22 26	Metolachlor PE				-		5	10
Metribuzin-W PE 0.25 0 4 25 71 51 66 Metribuzin-W PE 0.5 36 58 75 81 83 84 Control 0 0 0 0 0 0 0 0 Mean 3 4 62 82 45 26 High mean 36 58 98 99 94 84 Low mean 0 0 0 0 0 0 Coeff. of variation 106 86 26 10 36 71 LSD(1 Percent) 7 7 30 15 30 35 LSD(5 Percent) 5 5 23 11 22 26								43
Metribuzin-W PE 0.5 36 58 75 81 83 84 Control 0 1 1								
Control 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Mean 3 4 62 82 45 26 High mean 36 58 98 99 94 84 Low mean 0 0 0 0 0 0 Coeff. of variation 106 86 26 10 36 71 LSD(1 Percent) 7 7 30 15 30 35 LSD(5 Percent) 5 5 23 11 22 26		0.5						
High mean365898999484Low mean000000Coeff. of variation1068626103671LSD(1 Percent)7730153035LSD(5 Percent)5523112226	Control		0	0	0	0	0	0
High mean365898999484Low mean000000Coeff. of variation1068626103671LSD(1 Percent)7730153035LSD(5 Percent)5523112226	Mean		3	4	62	82	45	26
Low mean000000Coeff. of variation1068626103671LSD(1 Percent)7730153035LSD(5 Percent)5523112226	High mean			58	98	99		
LSD(1 Percent)7730153035LSD(5 Percent)5523112226				0	0	0	0	0
LSD(5 Percent) 5 5 23 11 22 26	Coeff. of variation		106	86	26	10	36	71
	LSD(1 Percent)		7	7	30	15	30	35
No. of reps 4 4 4 4 4 4	LSD(5 Percent)			5	23	11	22	26
	No. of reps		4	4	4	4	4	4

Summary

Metribuzin at 0.5 lb/A caused severe injury and stand reduction in pinto bean, but 0.25 lb/A only tended to reduce stand. Wild mustard control only exceeded 80% with metribuzin at 0.5 lb/A and chloramben at 3 lb/A incorporated with trifluralin and EPTC. Chloramben at 3 lb/A surface applied only gave 35% wild mustard control. Wild oats control exceeded 90% with all treatments which contained EPTC or vernolate. Kochia control exceeded 80% for all treatments with trifluralin or fluchloralin.

-

Postemergence weed control in pinto bean, NW-22 Fargo 1981. 'VI 111' pinto bean was seeded to silty clay soil with 7.5 pH and 6% organic matter on May 20. Herbicides were applied in 8.5 gpa at 35 psi to 2nd trifoliolate pinto bean, 6 inch wild mustard and kochia, three to four leaf wild oat and 3 to 6 in yellow foxtail on June 25. Soil moisture was excellent for plant growth and conditions during treatment were 73F and 50% relative humidity. Treatments were to a 7ft strip the length of 10 by 30ft plots. Two days after treatment 0.3 inches of rain occurred. Pinto bean injury and weed control evaluations were on July 16.

	Rate	Pi	nto	bean	Per	cent	conti	rol
Treatment	oz/A		%ir	%sr	Wioa	Yeft	Kocz	Wimu
Bentazon+Acifluorfen	12+4		11	0	23	23	88	100
Bentazon+Acifluorfen	12+2		4	0	0	15	85	100
Bentazon+MC-10978	12+2		1	0	0	0	66	100
Bentazon+MC-10978	8+2		4	0	0	0	53	100
Bentazon+MC-10978	4+4		6	0	4	8	44	100
Bentazon+MC-10978	4+8		13	0	15	16	65	100
Bentazon	12		0	0	0	0	78	100
Acifluorfen	4		5	0	5	5	43	100
Acifluorfen	8		13	0	41	13	60	100
MC-10978	4		0	0	0	0	4	98
MC-10978	6		3	0	11	0	11	100
MC-10978	8		5	0	13	6	44	99
MO-70077 (2.0E)	16		23	15	15	25	53	94
MO-70077-0.78E	16		26	13	14	21	45	93
	-0.25G		0	0	99	100	0	0
	-0.25G		0	0	100	100	0	0
	-0.25G		0	0	100	100	0	0
BAS-9052+Bent+OC 3.2+12+			4	1	50	69	90	99
BAS-9052+MC-10978	3.2+6		0	0	80	83	38	99
	3.2+16		25	8	93	93	39	99 100
	3.2+48		15	0	71	33	39 5	98
Napt&Dinoseb	48		11	0	0	0	5 10	100
Dinoseb	24		0	0	0	0	10	100
Maan			7	2	32	31	42	86
Mean Uigh maan			26	15	100	100	90	100
High mean			0	0	0	0		0
Low mean Coeff. of variation			133	513	45	65		
LSD(1 Percent)			18	15	27	37		4
LSD(7 Percent)			14	11	20	28		3
No. of reps			4	4	4	4		4
No. of Tops			Parti.	110-25	1			

Summary

MO-70077 injured pinto bean. Wild mustard was controlled effectively by all herbicides except BAS-9052 applied alone. BAS-9052 at 1.6 to 4.8 oz/A controlled wild oat and foxtail. However, foxtail and wild oat control with BAS-9052 was or tended to be reduced when applied with a herbicide for broadleaf control. Reduction in gras weed control was greater when BAS-9052 was mixed with bentazon and napthalam+dinoseb than with MC-10978 or MO-70077. Bentazon tended to give higher kochia control than acifluorfen at the rate used. Weed control in safflower, Williston 1981. Preplant incorporated (PPI) herbicides were applied and incorporated first with cultivator with harrow and second with a Triple K, and Hartman safflower seeded at 25 lb/A on May 5 with 56 F, 30% R.H., and a 16 mph east wind. Preemergence (PE) herbicides were applied on May 8 with 49 F, 80% R.H., and a 3 mph northeast wind. Postemergence (P) herbicides were applied to 4 to 6 leaf safflower, 3 to 4.5 leaf wild oat, 1 to 3 leaf green foxtail, and 1 to 2 in. Russian thistle on June 6 with 64 F, 60% R.H., and a 3 mph southeast wind. The experiment was on fallow which was broadcast fertilized with 75 lb/A N. Harvest was from 84 sq. ft area on Sept. 14. Weed infestation sparse with wild oat and Russian thistle the major weeds.

	RateSafflower Percent control											
Treatment		lb/A	Yield	%sr	%ir	Tymu	Rrpw	Fipc	Ruth	Grft	Vwht	Wioa
			lb/A									
				20.2								
Trifluralin	PPI	•75	682	0	1	0	96	0	76	95	75	78
Trifluralin	PPI	1.0	780	0	0	0	96	0	79	97	66	89
Trif+Bifenox	PPI+PE	.75+.5	777	8	1	68	98	13	97	98	65	79
Trif+Alachlor	PPI+PE	.75+2	743	4	0	13	96	21	80	98	49	88
Bifenox+Alachl		1.5+2	606	4	3	94	96	24	97	93	13	30
Ethalfluralin	PPI	1.0	811	0	0	8	96	48	89	97	76	85
Trif+Triallate		.75+1.0	686	0	0	0	95	18	69	96	55	85
Trif+Dinoseb	PPI+P	.75+2	312	81	95	100	99	24	81	96	66	53
Trif+2,4-DB	PPI+P	.75+.375	791	1	6	66	89	48	80	95	61	83
Trifluralin+EP	TC PPI	.75+2	756	3	0	43	90	18	73	99	96	90
EPTC	PPI	3.0	745	4	0	55	81	46	11	98	99	95
Profluralin	PPI	•75	497	0	0	0	83	23	60	90	59	50
Pendimethalin	PPI	1.0	599	0	0	13	95	24	55	94	64	71
Metolachlor	PPI	3.0	517	0	0	28	84	0	20	93	71	18
Pendimethalin	PE	1.25	513	0	0	25	55	0	15	70	15	10
Trif+Linuron	PPI	.75+1.5	692	0	0	66	95	41	75	96	69	70
Pend+Linuron	PE	1+1.5	482	0	1	86	95	13	46	89	6	25
BAS-9052+0C	Р	.2+.25G	546	0	0	0	0	0	0	91	85	85
BAS-9052+0C	Р	.4+.25G	683	0	1	0	0	Ő	Ő	93	91	90
Pend+Oxyfluorf	en PE	1+1	410	30	97	100	98	25	95	99	93	89
Trif+Acifluorf	en PPI+H		594	1	54	94	91	18	83	95	55	78
Pend+BAS9+2,4-			683	6	20	80	81	0	68	86	70	70
Pend+Diclofop	PE+P	1+1	682	0	0	8	54	8	25	94	0	97
R-40244+Pend	PE	.25+1	364	0	0	93	92	0	51	68	10	8
Control			276	0	0	0	0	Ő	0	0	0	0
Mean			609	6	11	41	78	16	57	89	56	64
High mean			811	81	97	100	99	48	97	99	99	97
Low mean			276	0	0	0	0	0	0	0	0	0
Coeff. of varia	ation		22	92	26	37	17	179	21	7	34	24
LSD(1 Percent)			253	10	5	29	24	54	22	11	36	28
LSD(5 Percent)			191	7	4	22	18	41	17	9	27	22
No. of reps			4	4	4	4	4	4	4	4	4	4

Summary

Dinoseb, oxyfluorfen, and acifluorfen caused important safflower stand and height reductions. Safflower height was generally reduced for treatment which caused a stand reduction or injury. R-40244 controlled tame yellow mustard, but not Russian thistle. Bifenox, linuron, 2,4-DB, and R-40244 were the only herbicides with potential for mustard control without severe safflower injury. Safflower response to BAS-9052 and asulam, Williston 1981. Hartman safflower was seeded at 20 lb/A into soil treated with EPTC at 2 lb/A and Trifluralin at 1 lb/A, April 20. BAS-9052 and asulam were applied with an emusilfiable oil a 1% v/v. Treatments were applied to 8 to 10 leaf safflower (immediately post rosette) on May 22 with 61 F, 67% R.H. and northeast wind at 12 mph. A rain of 0.02 in. occurred in 2 hours after treatment. Asulam was also applied to 14 leaf safflower on June 6. Harvest was a 200 sq. ft safflower area on September 10.

			Safflower	
	Rate	Yield	Twt	Height
Treatment	oz/A	lb/A	lb/bu	(cm)
BAS-9052	.2	1228	40.0	66
BAS-9052	.4	1183	40.1	74
BAS-9052	.8	1082	40.2	67
BAS-9052+2,4-DB	.2+.75	1241	38.4	54
Control		1118	40.6	74
Mean		1171	39.9	67
High mean		1241	40.6	74
Low mean		1082	38.4	54
Coeff. of variati	on	11	0.	6
LSD(1 Percent)		362	0.	19
LSD(5 Percent)		249	0.	12
No. of reps		3 .	1.0	2

Summary

Asulam at 0.75, 1.0, or 1.5 lb/A caused severe injury burn to safflower which recovered somewhat, but no seed was produced so the data was not included in the table. BAS-9052 with 2,4-DB reduced safflower seed test weight and plant height, but not seed yield.

Safflower response to 2,4-DB and chlorsulfuron, Williston 1981. Hartman safflower was seeded at 20 lb/A to a 1980 fallow area, April 20. The area prior to seeding was treated with trifluralin at 1 and EPTC at 2 lb/A for weed control. The treatments were applied to 2 to 4 leaf (rosette) safflower on May 15 with 62 F and 15 mph east wind, and to 8 in. (range 4 to 12 in.) tall saffower with 18 to 20 leaves on June 6 with 58 F, 67% R.H., and no wind. Harvest was 84 sq. ft area of safflower on September 11.

	Safflower												
Rate	Yield	Twt	Height	Early	Late	4.16.19							
Treatment oz/A	lb/A	lb/bu	(cm)	%ir	%ir	%sr							
2,4-DB rosette 8 2,4-DB rosette 12 2,4-DB rosette 12 2,4-DB rosette 16 Chlorsulfuron rosette .25 Chlorsulfuron rosette .5 Control rosette 2,4-DB 8-in. 8 2,4-DB 8-in. 12 2,4-DB 8-in. 16 Chlorsulfuron 8-in25 Chlorsulfuron 8-in5 Control 8-in.	1005 872 984 734 1069 712 709 492 348 823 826 781	39.7 40.0 40.5 40.7 40.6 39.7 39.4 39.2 38.6 40.4 40.4	65 60 65 70 75 70 77 75 80 72 80 80 80	15 18 16 3 0 69 88 95 14 14	9 15 15 5 1 0 43 55 74 4 3	3 6 9 0 3 0 14 29 43 0 0							
Mean High mean Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent) No. of reps	780 1069 348 18 269 201 4	39.9 40.7 38.6 0. 0. 0. 1.0	72 80 60 0 0 1	0 28 95 0 24 13 9 4	0 74 0 35 13 9 4	0 9 43 0 86 14 11 4							

Summary

Bromoxynil at 3 oz/A plus MCPA at 3 oz/A and bromoxynil at 6 oz/A gave 100% safflower kill so the data was not included in the table. 2,4-DB was more injurious than chlorsulfuron to safflower and injury from both 2,4-DB and chlorsulfuron was higher with treatment of 8in. than rosette safflower. Weed control in lentils, Minot 1981. Preplant (PPI) treatments were applied and incorporated with a rototiller, Chilean type lentils seeded and preemergence (PE) treatments applied May 22. Postemergence (P) treatments were applied to 1 inch lentils on June 12. Rainfall for a one week period following PE or P applications totalled 0.7 and 0.9 inch; respectively. Herbicides were applied with a bicycle wheel plot sprayer delivering 17 gpa for PE and 8.5 gpa at 35 psi for post treatments. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed control and crop injury were on July 22.

			Lent	ils		na radio na presidente de la defensa de		
	Rate	Yield	Twt			Perce		ntrol
Treatment	lb/A	1b/A	lb/bu	%ir	%sr	Grft	Colq	Ruth
			disc street.			Sec subset	ets rearing	
Trifluralin PPI	0.75	853	57.5	21	30	98	100	89
Profluralin PPI	0.75	1138	58.0	4	15	95	95	68
Fluchloralin PPI	1	1153	58.2	5	18	97	98	88
Pendimethalin PPI	1	1035	57.8	5	16	95	98	40
EPTC PPI	3	677	57.5	0	1	43	20	0
Propachlor PE	5	1217	58.1	0	3	93	81	46
Alachlor PE	2.5	741	57.5	0	8	93	90	0
Pendimethalin PE	1.5	1166	58.1	4	13	94	89	71
Metribuzin-W PE	0.5	448	57.5	14	68	98	100	88
Propachlor+Metribuzin-W PE	3+0.5	486	57.5	19	69	99	100	86
Propachlor+R-40244 PE	3+0.5	1234	57.9	4	8	94	99	59
Propachlor+Oxyfluorfen PE	3+0.25	1101	57.9	14	21	99	100	99
Diclofop P	1.25	1228	58.0	3	0	95	0	0
Bas-9052+0C P 0.	25+.25G	1209	57.5	0	0	100	0	0
Metribuzin-W P	0.25	1305	57.8	5	16	86	100	38
Control		1125	58.1	0	3	0	0	0
								11.0
Mean		1007	57.8	6	18	86	73	48
High mean								
Low mean						-	-	
Coeff. of variation								
LSD(1 Percent)		-						
LSD(5 Percent)								
No. of reps		4	1.0	4	4	4	4	4
Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent)		1305 448 26 489 367 4		21 0 85 10 7 4	69 0 61 21 15 4	100 0 15 24 18 4	100 0 14 20 15 4	99 0 38 35 26 4

Summary

Weed densities were light and variable. Lentils were injured over 30% by PPI applications of trifluralin or PE applications of metribuzin alone or in combination with propachlor.

Weed control in lentils, Williston 1981. Preplant incorporated (PPI) applied and incorporated first with a field cultivator with harrow and second with a Triple K rotovator on May 11 with 43 F, 45% R.H., and a 5 mph north wind. Chilian lentils were seeded at 60 lb/A and preemergence (PE) herbicides applied on May 14 with 50 F, 42% R.H., a 3 mph northeast wind, and a dry surface soil condition. Postemergence (P) herbicides were applied to 2 to 3 in. lentils, 3 in. Russian thistle, 4.5 leaf wild oat, and other weeds $\frac{1}{4}$ 1 in. tall on June 11 with 60 F, 72% R.H. and no wind. The experiment was on fallow which was broadcast fertilized with 70 lb/A N. Harvest was a 60 sq. ft area of lentils on August 27. Yield included some wild oat seed with the lentils, because complete separation was not possible.

Lentils												
		Rate	Yield	Hght				Per	rcent	conti	col	
Treatment		lb/A	lb/A	(cm)	%sr	%ir	Tymu	Ruth	Rrpw	Grft	Vwht	Wioa
Trifluralin	PPI	.75	451	28	9	6	0	66	93	96	36	90
Profluralin	PPI	•75	499	26	3	4	5	59	93	97	38	76
Pend+Metribuzin		1+0.5	6	14	96	98	100	94	91	81	96	95
Pendimethalin	PPI	1	427	28	8	10	33	50	91	97	49	81
EPTC	PPI	3	237	24	9	35	44	5	65	73	73	74
Propachlor	PE	5	106	28	1	0	0	10	23	48	0	13
Alachlor	PE	2.5	160	27	38	40	60	29	91	94	73	76
Pendimethalin	PE	1.5	217	25	3	2	8	35	74	68	8	43
Metribuzin-WP	PE	0.5	273	16	97	99	98	79	80	55	89	95
Propachlor+Metr		3+.5	1	9	100	100	100	96	91	77	98	97
Propachlor+R402		3+.5	154	24	8	6	100	74	94	76	18	40
Prcl+Oxyfluorfe		3+.25	152	17	23	53	97	94	97	85	23	54
Diclofop	P	1.25	315	18	0	3	0	0	0	96	0	96
BAS-9052+0C	P.2	5+.25	422	26	0	0	0	0	0	72	98	99
Metribuzin-WP	Р	0.25	175	26	3	14	88	65	81	71	0	30
Control			106	29	0	0	0	0	0	0	0	0
Mean			231	23	25	29	46	47	66	74	44	66
High mean			499	29	100	100	100	96	97	97	98	99
Low mean			1	9	0	0	0	0	0	0	0	0
Coeff. of varia	ation		68	16	38	45	34	35	26	29	46	25
LSD(1 Percent)			294	10	18	25	29	31	32	40	38	31
LSD(5 Percent)			221	8	13	18	22	24	24	30	28	24
No. of reps			4	2	4	4	4	4	4	4	4	4

Summary

Metribuzin at 0.5 lb/A caused nearly complete kill of lentils, but only slight stand reduction at 0.25 lb/A. Lentils were not injured or only slightly by the dinitoanalin herbicides, R=40244, propachlor, diclofop, or BAS=9052.

43

Postemergence grass and broadleaf herbicide antagonism, Fargo 1981. 'Bush manford' sugarbeet, 'Hodgson' soybean, 'Olaf' wheat, 'Culbert' flax, and '894' sunflower were seeded in strips 6 to 10 ft wide in silty clay soil with 7.2 pH and 6% organic matter June 5. Herbicides were applied during 74F in 8.5 gpa at 35 psi across the strips of crops to 4 to 5leaf sugarbeet and wheat, 3 to 6 in flax, first trifoliate soybean, 4 to 8 leaf sunflower and 2 to 5 leaf foxtail and redroot pigweed, June 29. Growing conditions were excellent and rainfall was 0.57 in on July 2 and 0.01 in on July 3. Plots were 8 by 45 ft and the experiment was a split plot with the grass control herbicides as the main plots. Percent injury evaluation was on July 15 and foxtail also on September 15.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Rate						ontrol			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Treatment	oz/A	Sube	Wht	Flax	Sobe	Sufl	Rrpw	Wimu	Fxtl	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	and a sum and along	t dian mesti y					-Output and a start of the			a dama Director and	Sept
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•		•	0	0	0	0	82	78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-		-							-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-		-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-		-						-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•			-						-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-	-				-			-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-						-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-		-	-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-	_					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-				-	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-	-				-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
CGA-82725+0C 4.8+0.25G 0 10 0 0 0 0 97 90 CGA-82725+Desm+0C 1.2+16+.25G 10 48 35 15 33 80 100 71 27 CGA-82725+Desm+0C 2.4+16+.25G 13 57 48 27 38 91 98 78 47 CGA-82725+Desm+0C 4.8+16+.25G 27 52 38 18 22 87 100 89 77 CGA-82725+Desm+0C 4.8+16+.25G 27 52 38 18 22 87 100 89 77 CGA-82725+Bent+0C 1.2+12+.25G 100 13 0 10 96 92 100 74 25 CGA-82725+Bent+0C 2.4+12+.25G 100 10 0 20 98 93 100 88 58 CGA-82725+Bent+0C 4.8+12+.25G 100 17 0 17 96 91 100 95 74 CGA-82725+Acif+0C 1.2+6+.25G 87 47 100 <											
CGA-82725+Desm+OC 1.2+16+.25G 10 48 35 15 33 80 100 71 27 CGA-82725+Desm+OC 2.4+16+.25G 13 57 48 27 38 91 98 78 47 CGA-82725+Desm+OC 2.4+16+.25G 27 52 38 18 22 87 100 89 77 CGA-82725+Desm+OC 4.8+16+.25G 27 52 38 18 22 87 100 89 77 CGA-82725+Bent+OC 1.2+12+.25G 100 13 0 10 96 92 100 74 25 CGA-82725+Bent+OC 2.4+12+.25G 100 10 0 20 98 93 100 88 58 CGA-82725+Bent+OC 4.8+12+.25G 100 17 0 17 96 91 100 95 74 CGA-82725+Acif+OC 1.2+6+.25G 87 47 100 23 80 96 100 73 13 CGA-82725+Acif+OC 2.4+6+.25G 93 48<				-				-			-
CGA-82725+Desm+0C 1.2+10+.25G 13 57 48 27 38 91 98 78 47 CGA-82725+Desm+0C 2.4+16+.25G 13 57 48 27 38 91 98 78 47 CGA-82725+Desm+0C 4.8+16+.25G 27 52 38 18 22 87 100 89 71 CGA-82725+Bent+0C 1.2+12+.25G 100 13 0 10 96 92 100 74 25 CGA-82725+Bent+0C 2.4+12+.25G 100 10 0 20 98 93 100 88 58 CGA-82725+Bent+0C 4.8+12+.25G 100 17 0 17 96 91 100 95 74 CGA-82725+Bent+0C 1.2+6+.25G 87 47 100 23 80 96 100 78 13 CGA-82725+Acif+0C 2.4+6+.25G 93 48 100 32 75 98 100 73 13						-			-		-
CGA-02725+Desm+0C 2.4+10+.25G 13 15 14 22 87 100 89 77 CGA-82725+Desm+0C 4.8+16+.25G 27 52 38 18 22 87 100 89 77 CGA-82725+Bent+0C 1.2+12+.25G 100 13 0 10 96 92 100 74 25 CGA-82725+Bent+0C 2.4+12+.25G 100 10 0 20 98 93 100 88 58 CGA-82725+Bent+0C 4.8+12+.25G 100 17 0 17 96 91 100 95 74 CGA-82725+Bent+0C 1.2+6+.25G 87 47 100 23 80 96 100 78 13 CGA-82725+Acif+0C 2.4+6+.25G 93 48 100 32 75 98 100 73 17						-					
CGA-82725+Bent+0C 1.2+12+.25G 100 13 0 10 96 92 100 74 25 CGA-82725+Bent+0C 2.4+12+.25G 100 10 0 20 98 93 100 88 58 CGA-82725+Bent+0C 2.4+12+.25G 100 10 0 20 98 93 100 88 58 CGA-82725+Bent+0C 4.8+12+.25G 100 17 0 17 96 91 100 95 74 CGA-82725+Acif+0C 1.2+6+.25G 87 47 100 23 80 96 100 78 13 CGA-82725+Acif+0C 2.4+6+.25G 93 48 100 32 75 98 100 73 17									-		
CGA-82725+Bent+0C 2.4+12+.25G 100 10 0 20 98 93 100 88 58 CGA-82725+Bent+0C 2.4+12+.25G 100 10 0 20 98 93 100 88 58 CGA-82725+Bent+0C 4.8+12+.25G 100 17 0 17 96 91 100 95 74 CGA-82725+Acif+0C 1.2+6+.25G 87 47 100 23 80 96 100 78 13 CGA-82725+Acif+0C 2.4+6+.25G 93 48 100 32 75 98 100 73 17				-	-						
CGA-82725+Bent+OC 4.8+12+.25G 100 17 0 17 96 91 100 95 74 CGA-82725+Bent+OC 4.8+12+.25G 100 17 0 17 96 91 100 95 74 CGA-82725+Acif+OC 1.2+6+.25G 87 47 100 23 80 96 100 78 13 CGA-82725+Acif+OC 2.4+6+.25G 93 48 100 32 75 98 100 73 17	CGA-82725+Bent+OC			-						-	
CGA-82725+Acif+OC 1.2+6+.25G 87 47 100 23 80 96 100 78 13 CGA-82725+Acif+OC 2.4+6+.25G 93 48 100 32 75 98 100 73 17							-				
CGA-82725+Acif+OC 2.4+6+.25G 93 48 100 32 75 98 100 73 1					-		-				
								-		-	
CGA-82725+Acif+OC 4.8+6+.25G 93 50 100 28 80 96 100 93 4	CGA-82725+Acif+OC					-		-			
	CGA-82725+Acif+OC	4.8+6+.25G	93	50	100	28	80	96	100	93	45

Table continued next page.

Table . Continued

- series and and a series	Rate				-Perce	ent co	ontro	1		
Treatment	oz/A	Sube	Wht	Flax	Sobe	Sufl	Rrpw	Wimu	Fxtl	Fxtl Sept
RO-13-8895	3	0	68	0	5	0	10	0	72	77
R0-13-8895	6	0	98	0	0	0	0	0	95	87
R0-13-8895+0C	1.5+0.25G	0	95	0	0	0	0	0	92	95
R0-13-8895+0C	3+0.25G	0	100	0	0	0	0	0	97	97
R0-13-8895+0C	6+0.25G	0	100	3	0	0	0	0	99	96
R0-13-8895+Desm+OC		3	43	28	13	33	70	100	57	15
R0-13-8895+Desm+OC	3+16+.25G	23	76	42	20	42	48	100	82	75
R0-13-8895+Desm+OC	6+16+.25G	3	92	43	17	40	60	50	84	79
R0-13-8895+Bent+0C		100	48	10	0	90	93	100	50	Ó
R0-13-8895+Bent+OC	3+12+.25G	100	95	0	5	96	93	100	75	33
R0-13-8895+Bent+0C	6+12+.25G	100	100	0	13	93	96	100	95	84
RO-13-8895+Acif+OC	1.5+6+.25G	98	62	100	8	63	97	100	60	8
R0-13-8895+Acif+OC	3+6+.25G	91	94	100	28	77	95	100	83	27
R0-13-8895+Acif+OC	6+6+.25G	87	99	98	25	83	97	100	95	50
						•5	51		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	50
Mean		42	64	28	11	42	55	60	84	65
High mean		100	100	100	37	98	99	100	100	100
Low mean		0	0	0	0	0	0	0	13	0
Coeff. of variation	a	21	24	41	82	27	19	18	10	24
LSD(1 Percent)	TANK SECON	18	32	25	19	25	22	28	18	33
LSD(5 Percent)		14	25	19	15	19	16	21	14	25
No. of reps		3	3	3	3	3	3	2	3	3
			5		5	5	-		5	5

Summary

Desmedipham, bentazon, and acifluorfen all when applied with CGA-82725 or RO-13-8895 and bentazon with BAS-9052 reduced yellow foxtail control. Desmedipham and acifluorfen injury to sunflower and soybean increased or tended to increase as the BAS-9052 rate in the treatment increased. Wheat injury from CGA-82725 increased when desmedipham or acifluorfen were included in the treatment. The difference in foxtail control with the various treatments was excentuated with the September evaluation. Chlorsulfuron soil residual from 1979, Fargo NW-22 1981. The plot area received chlorsulfuron at 1 to 4oz/A applied at 10 weekly intervals from June 4 to August 6, 1979. Soybeans and sugarbeets were seeded on May 15, 1981 and evaluated for percent stand reduction early in August. The 1979 experiment was a split plot with the rate as the main effect and time of application as the sub units. The area was moldboard plowed in the fall of 1979 and 80. Evaluations were over the main plot and recording the highest and lowest stand reduction for the subplots within the main plot area.

Chlorsulfuron	July % stand r			August 1981 % stand reduction					
(oz/A)	Soybean	Sugarbeet	Soybean	Sugarbeet					
1 2 4	40 - 63 82 - 87 95 -100	75 - 89 92 - 96 97 -100	50 - 60 75 - 80 92 - 95	98 - 100 98 - 100 98 - 100					

Summary

Chlorsulfuron residual in the soil the second year after application caused similar soybean and tended to cause greater sugarbeet stand losses than one year after application. Soil moisture after the crops were seeded was high in 1981 and the summers of 1979 and 80 were quite dry. The moldboard plowing may have returned the chlorsulfuron back to the surface in 1981. Soil movement by tillage and wind may have caused some cross contamination among plots. Individual rate blocks were 65 by 25 ft.

Forage Production in Pasture and Rangeland Following Two Years of Leafy Lym, Rodney G. and Calvin G. Messersmith. An experiment to Spurge Control. evaluate long term leafy spurge management with resulting forage production was established at four sites in North Dakota in 1980. The sites included a ; bluegrass pasture near Sheldon, an exclosure area on the Shevenne National Grasslands near McLoud, and two sites on a state game management area near Valley City. The main population of grasses was bluegrass (Poa spp.) with occasional crested wheatgrass, smooth brome, big bluestem or other native grasses. All sites were established in early June except one site at Valley City which was established in September 1980. The herbicides applied in 1980 (Year 1) included 2,4-D, dicamba, picloram liquid (2S), picloram granule (2%G), and picloram applied using the roller and wick applicators. The conventional broadcast treatments were applied using a tractor mounted sprayer delivering 8 gpa water at 35 psi. A granular applicator was used to apply the picloram 2%G treatments. The roller and wick applicator height was adjusted to treat the top one-half of the taller leafy spurge stems. The additive in the roller and wick treatments was a 5% (v:v) oil concentrate (83% paraffin based petroleum oil + 15% emulsifier). The plots were 15 by 150 ft and replicated twice at each site in a randomized complete block design. In 1981 (Year 2), each plot was divided into six 7.5 by 50 ft subplots for retreatments of 2,4-D, picloram 2S, dicamba or no retreatment. In July 1981, a 3 by 25 ft section of each plot was havested with a flail mower. Sub-samples were taken by hand along each harvested strip so that leafy spurge and forage weight could be separated. The samples were oven dried. All data are shown in the table and each mean is an average of eight plots, i.e. four sites with two replications per site.

Picloram 2S at 2 lb/A provided the best leafy spurge control after two years averaging 84% without a retreatment and up to 91% with a retreatment of picloram 2S at 0.25 lb/A. Picloram 2%G at 2 lb/A was the only other original treatment that provided fair control by August 1981 without a retreatment. The best retreatments for leafy spurge control were picloram at 0.25 lb/A alone or in combination with 2,4-D at 1.0 lb/A which provided 60 and 63% control, respectively. Retreatment with dicamba at 2.0 lb/A averaged 46% control, but dicamba at 1.0 lb/A and 2,4-D at 1.0 lb/A did not improve control compared to no retreatment.

Forage yield increased for 50 of the 59 treatments compared to the control, and the yield increased over 250% for five treatments. The five highest yielding treatments (Year 1 + Year 2) were: control + (picloram + 2,4-D at 0.25 + 1.0 lb/A), 2,4-D at 2 lb/A + picloram at 0.25 lb/A, control + picloram at 0.25 lb/A, picloram 2S at 1 lb/A + (picloram + 2,4-D at 0.25 + 1.0 lb/A), and picloram 2%G at 2 lb/A + dicamba at 1.0 lb/A. The treatment with the best overall leafy spurge control at 91% was picloram 2S at 2.0 lb/A but the forage yield was intermediate at 1354 lb/A. The highest yielding treatment at 1870 lb/A was picloram + 2,4-D at 0.25 1.0 lb/A in Year 2 without a Year 1 treatment and had 52% leafy spurge control. The latter treatment is more economical, and yearly applications can be expected to reach leafy spurge control of 80 to 90% after three to four years. If the terrain makes yearly treatments unfeasible, the picloram at 2.0 lb/A treatment can be expected to give good leafy spurge control for two to three years.

1

		1.4.4	5 10 FT		Year two	o treatmen	nt/rate (1b/A)	<u></u>	
Year one	Rate	Soln ^a	2,4-D	Dicamba	Dicamba	Picloram	2,4-D+Picloran	Control	Mean
treatment	(1b/A)	conc	1	·1	2	0.25	1+0.25	0	
101.15					(]	Percent co	ontro1)		
2,4-D	2	1000	13	25	19	48	56	9	28
Picloram	2%G	1	11	23	38	38	56	15	31
Picloram	2%G	2	71	78	75	90	89	79	80
Picloram	2S	1	51	45	61	68	69	53	59
	2S	2	90	85	89	91	86	84	88
Picloram	20	1:7	28	40	40	51	55	40	42
Roller		1:7	44	46	51	62	63	33	50
Roller+oil co	me	1:3	31	13	24	46	50	31	33
Wick		1:3	30	35	42	62	57	27	42
Wick+oil cond		1.5	5	12	18	41	52	0	21
Control			,	12	10	41	-		
Mean			38	41	46	60	63	37	
LSD(0.05)=yr	1=7; yr	: 2=6;	yr 1	x yr 2=1	8				
						(Yield/	1b/A)		
			hal shi	hosting			1000	1360	
2,4-D		2	1409	1142	1293	1712	1233	1360	
Picloram	2%G	1	1343	1112	1195	1164	1124	1284	
Picloram	2%G	2	1464	1554	1247	1313	1264		
Picloram	2S	1	936	1223	1293	1101	1569	1315	
Picloram	2S	2	1159	1080	1013	1354	1159	1114	
Roller			1423	1230	1301	1387	1150	1233	
Roller+oil co	onc		1360	1344	1093	1338	1018	1250	
Wick			1278	1373	1146	1141	1223	915	
Wick+oil con	c	1:3	1181	1157	1039	886	907	881	
Control			1082	1178	881	1681	1870	623	
)= 421								
LSD (0.05	741				and the second			and a set of the second se	

The second spruce stars the best

Table. Leafy spurge control with resulting forage production after two years (Lym and Messersmith).

a Herbicide:water (v:v).

*

Long term management of leafy spurge in pasture and rangeland - year one. Messersmith, Calvin G. and Rodney G. Lym. Seven experiments were established around North Dakota in 1980 to evaluate long term leafy spurge management alternatives on pasture and rangeland. All experiments were established in late June and early July 1980 except the fall Valley City experiment which was established in Sept. 1980. The herbicides in the study included 2,4-D, dicamba, picloram liquid (2S) and granular (2%G), and picloram applied using the roller and wick applicators. The conventional broadcast treatments were applied using a tractor mounted sprayer delivering 8 gpa water at 35 psi. A granular applicator was used to apply the picloram 2%G treatments. The roller and wick were adjusted to treat the top one-half of the taller leafy spurge stems. The wick was made of two 0.75 inch PVC pipes, with small holes covered with poly-foam and a 50% cotton:50% polyester canvas material. The additive in the roller and wick treatments was a 5% (v:v) oil concentrate (83% paraffin based petroleum oil + 15% emulsifier). The plots at each site were 15 by 150 ft and replicated twice in a randomized complete block. Visual evaluations were based on percent stand reduction as compared to the control and were taken in the spring and fall of 1981. Also, stand counts of leafy spurge were taken in each plot in the spring of 1981. The number of stems in six 1 yd samples was counted in each plot. Data from the Dickinson site are limited, due to extreme drought in 1980 and early 1981. All data are shown in the table.

ANOVA showed significant treatment by site interaction, so treatments will be discussed by sites. The 2,4-D at 2 1b/A treatment did not provide long term leafy spurge control. Control in spring 1981 ranged from 47% at the spring Valley City site to 3% at Minot. The stand counts at four sites for the 2,4-D treated plots and the control were similar, and there was a significant increase at Minot in the number of stems/yd² compared to the control when treated with 2,4-D at 2 1b/A.

Picloram 2%G at 1 and 2 lb/A at four sites provided excellent leafy spurge control when evaluated after 12 months, except 1 lb/A at Sheldon. Leafy spurge control with picloram 2%G at 1 lb/A was good after 12 months but poor after 15 months at all sites. Stand counts revealed that picloram 2%G at 1 and 2 lb/A significantly reduced the number of stems/yd² at all sites except with picloram 2%G at 1 lb/A at Sheldon.

Picloram 2S at 2 lb/A provided the best leafy spurge control regardless of site. Spring evaluation showed that the treatment provided 99 or 100% control at all sites and stem counts ranged from 0 at Sheyenne to 18 at Minot after 1 year. Picloram 2S at 1 lb/A was less successful, especially at Tolna and Minot where control was rated at 65 and 80%, respectively. Fall evaluation revealed that the longevity of control ranged from 100% at Tolna to 63% at Sheldon.

The roller application of picloram at 1:7 (v:v) provided 90 and 97% leafy spurge control at Sheyenne and Valley City (fall applied), respectively, when evaluated in spring 1981. The picloram plus oil concentrate treatment provided slightly better control than picloram alone when fall applied at Valley City but leafy spurge control decreased when the oil concentrate was added at the other sites. The picloram plus oil concentrate treatment provided 91% control at Valley City when evaluated in the fall one year after roller application, but

3

other roller applied treatments did not provide satisfactory control. The leafy spurge stand was reduced with the roller treatments at all sites except Tolna and Minot. The leafy spurge was very short at application at Minot and Tolna which greatly reduced the number of stems contacted by the roller and probably accounts for the reduced control.

4

Leafy spurge control with picloram at 1:3 (v:v) applied with the wick applicator ranged from 79% when spring applied at Valley City to 54% at Minot. As with the roller treatments, the oil concentrate decreased control at all sites except when fall applied at Valley City. The wick treatment did not provide satisfactory control when evaluated in the fall of 1981. Most wick treatments reduced the leafy spurge stand counts compared to the control.

Dicamba at 4 and 8 lb/A was applied at three sites. Dicamba at 4 lb/A did not provide good leafy spurge control. Dicamba at 8 lb/A reduced stand counts and control ranged from 75% at Tolna to 13% at Dickinson in fall 1981.

In summary, 2,4-D at 2 lb/A did not control leafy spurge after one year and the number of stems increased at several sites. Picloram 2%G and 2S at 2 lb/A gave excellent leafy spurge control after 1 year, but control decreased rapidly at several sites after 15 months. The roller and wick application of picloram provided significantly poorer control than broadcast application. The poor results from these applicator treatments may be due to the generally poor growing conditions in 1980. The leafy spurge was rather short and not growing vigorously so the short stems may not have been treated and herbicide translocation may have been poor in treated stems. Dicamba at 8 lb/A did reduce the stand count but gave only fair leafy spurge control. (Dep. of Agron., published with the approval of the Ag. Exp. Stn., North Dakota State University, Fargo.)

ter a la la construir a la construir de la con

Sector States The sector sector

Table. Long term management of leafy spurge. (Messersmith and Lym).

	Location									
Eval- H	erb	icide	0.0.000		e when t				Dick	-
uation Treat- Ra	te	Sol'na	Shey-	Shel-	- Valley	City	Tol-	Mi-	in-	
date ment; (1b	/A)	conc	enne	don	(Spring)	(Fall)	na	not	son	Avg.
	1	10122.189	e el	erant	Provide States				144-1-14	
Spring 1981		To bas			(perce	ent con	trol).			
2,4-D (LVE)	2	1:15	19	18	47	14	8	3	-	18
Picloram 2%G	1		96	24	87	93				76
Picloram 2%G	2		98	98	99	96	-			98
Picloram 2S	1	1:15	94	95	99	100	65	80		88
Picloram 2S	2	1:7	100	100	99	99	99	99		99
Roller	-	1:7	90	78	71	97	6	53		65
Roller+oil conc.	-	1:7	65	53	61	100	8	36		54
Wick	-	1:3	59	69	79	71	64	54		66
Wick+oil conc.	-	1:3	44	71	75	94	73	45		67
Dicamba 4S	4	1:7					26	31		29
Dicamba 4S	8	1:3					60	80		29
LSD (0.05)			33	32	39	9	42	22		
Fall 1981		i Conde-			(perce	ent con	trol).			
		1192.14		16 Kape	B472					
2,4-D (LVE)	2	1:15	23	0	1	11	0	5	0	6
Picloram 2%G	1		41	3	8	0				13
Picloram 2%G	2		89	76	86	69				80
Picloram 2S	1	1:15	43	21	51	97	55	0	87	50
Picloram 2S	2	1:7	99	63	77	97	100	80	96	87
Roller	-	1:7	78	5	5	74	10	10	0	26
Roller+oil conc.		1:7	30	11	1	91	5	20	28	27
Wick	-	1:3	.35	21	39	28	40	15	0	25
Wick+oil conc	-	1:3	0	4	50	55	0	25	30	23
Dicamba 4S	4	1:7 1:3					75 75	20 13	51 35	48 41
Dicamba 4S LSD (0.05)	0	1:5	75	36	47	7	65	51	38	41
			15	20	41	1	05	51	30	
Spring 1981		-			(st	ems/yd	²)			
(מזנז (ה (כ	2	1.15	279	701	EEE	272	1276	2025		
2,4-D (LVE) Picloram 2%G	2	1:15	378 29	721 451	555 132	373 178	1376	2925		
	2		29 5	451	152	122				
Picloram 2%G	1	1:15	44	14	2	0	284	519		
Picloram 2S Picloram 2S	2	1:15	0	1	2	1	5	18		
Roller	2	1:7	26	151	308		1460	1148		
Roller+oil conc.	-	1:7	71	197	264		1241	947		
Wick	-	1:3	279	207	325	98	292	548		
Wick+oil conc.	-	1:3	291	159	200	82	591	774		
Dicamba 4S	4	1:7					811	2165		
Dicamba 4S	8	1:3					274	297		
Control			557	538	872		1308	1469		
LSD (0.05)			138	246	502		781	791		
				and the second s					and the state of the	

a Herbicide:water (v:v).

17 e

Roller and wick application of picloram for leafy spurge control. Lym, Rodney G. and Calvin G. Messersmith. Experiments were established to evaluate roller and wick application of picloram as an economical alternative for leafy spurge control in pastureland. Leafy spurge control and the picloram soil residue after treatment were compared for conventional broadcast, roller and wick applications. Also, variable picloram concentrations and an additive with picloram were evaluated. The wick applicator is similar to the rope-wick applicator but uses a poly-foam backed canvas instead of the rope and delivers more volume of solution per acre for improved coverage in dense leafy spurge stands.

All experiments were a randomized complete block design with four replications, except the second experiment had five replications. The broadcast treatments were applied at 35 psi, and at 8.5 gpa for the first two experiments and 8 gpa for the last two experiments. The picloram concentrations with the roller and wick applicators varied from 1:1 to 1:15 picloram (Tordon 22K):water (v:v). The 1:7 concentration was comparable to picloram at 2 lb/A broadcast at 8 gpa (1 gal Tordon 22K:7 gal water). The roller and wick applicators were adjusted to treat the top half of the tallest leafy spurge. Evaluations were based on reduction of plant density as compared to the control.

The first experiment was established on September 22, 1978 near Valley City, ND with broadcast treatments of picloram compared to roller applications with and without a foam additive. The second experiment was established on October 3, 1979 near Walcott, ND with a similar objective as the first experiment except an additive with picloram was not used. The leafy spurge was 20 to 25 inches tall with senescent lower leaves but new fall growth on the stem tips for both experiments.

Picloram applied broadcast at 2 lb/A or with the roller applicator using the foam additive at either 1 or 3 mph gave similar results throughout the three years of observations (Table 1). Control was in the upper 90% range for these treatments in the May 1979 evaluations and then began a steady decline as the remaining plants reestablished in the plot area. In June 1981, 33 months after the treatments were applied, control ranged from 61 to 72%. The treatment applied at 3 mph without a foam additive consistently had the lowest control throughout the evaluation period. These data suggest that leafy spurge control by picloram may be due primarily to absorption and translocation within the plant soon after application and not the long soil residual of picloram.

For the second experiment, picloram broadcast at 2 lb/A provided 100% control in the year following treatment, and control had decreased slightly to 96% by the end of the second year (Table 2). The roller applied treatments and picloram at 1 lb/A broadcast provided similar leafy spurge control for one year, but the roller applied treatments were better 2 years after application. Leafy spurge control for the roller applied treatments was lower than comparable observations for the previous experiment. These treatments were applied when the leafy spurge had lost most of its leaves, the temperature was in the low 40's F and a killing frost occurred within 6 days. These treatment conditions suggest that picloram absorption and translocation was reduced by low weed vigor and cold conditions resulting in reduced control.

6

· · · · · · · · ·

Table 1. Leafy spurge control with picloram using the roller applicator near Valley City, ND for treatments applied September 22, 1978. (Lym and Messersmith).

7

		996 399		C	ontrol		
Type of	ion Hot child	Ratea	May 31,	Aug. 29,	May 30,	Aug. 27,	June 23,
application	Additive	(1b/A)	1979	1979	1980	1980	1981
(C. e. Canto and an		ł			-(%)		
Broadcast	None	1	88	82	74	65	36
Broadcast	None	2	98	91	88	72	61
Roller - 1 mph	None	2	91	87	82	66	53
Roller - 3 mph	None	2	94	69	52	36	20
Roller - 1 mph	Foam	2	97	94	94	77	72
Roller - 3 mph	Foam	- 2	97	88	83	73	62
Control		-	0	0	Ō	0	0
LSD (0.05)			9	10	17	23	30

^a Solution concentration on the roller was the same as 2 lb/A at 8.5 gpa broadcast.

Table 2. Leafy spurge control with picloram using the roller applicator near Walcott, ND for treatments applied October 3, 1979. (Lym and Messersmith).

		Control						
Type of Application	Rate ^a (1b/A)	May 8, 1980	June 24, 1980	May 22, 1981	Aug. 19, 1981			
				(%)				
Broadcast	1	99	79	59	19			
Broadcast	2	100	100	98	96			
Roller - 1 mph	2	99	80	61	43			
Roller - 2 mph	2	94	. 77	70	53			
LSD (0.05)	to dealers	6	13	19	32			

^a Solution concentration on the roller was the same as 2 lb/A at 8.5 gpa broadcast.

The third experiment evaluated the most efficient picloram concentration for use with the roller and wick applicators. Solution concentrations ranged from 1:1 to 1:15 picloram (Tordon 22K):water (v:v). An experiment was established in the spring on June 16, 1980 near Sheldon, ND and in the fall near Valley City, ND on September 2, 1980. The lowest solution concentration that gave adequate leafy spurge control was considered the most efficient because it used less picloram per acre than a more concentrated solution. A 1:3 solution concentration seemed to be the most efficient for both applicators (Table 3). In general the fall treatment had better leafy spurge control than spring applications, but the experiments were not at the same site and there has been nearly two full growing seasons after the spring treatments.

		Location/Evaluation date					
		Sheldo	n	Valley	City		
Applicator	Picloram concentration ^a	May 26, 1981	Aug. 20, 1981	June 17, 1981	Sept. 2, 1981		
Applicator			% cc	ntrol			
Roller	1:1	90	58	96	93 81		
Roller Roller	1:3	93 75	48 15	97 91	50		
Roller	1:11 1:15	70 69	9 12	67 35	15 3		
Roller Wick	1:1	88	38 18	96 93	92 78		
Wick	1:3 1:7	80 41	2	79	28		
Wick Wick	1:11 1:15	49 62	8 5	68 15	5 0		
		14	21	17	22		
LSD (0.05)			<u> </u>				

Table 3. Leafy spurge control with variable picloram concentrations using the roller and wick applicators with treatments applied on June 16, 1980 at Sheldon and September 2, 1980 at Valley City. (Lym and Messersmith).

a Picloram (Tordon 22K):water (v:v).

A fourth experiment to evaluate the usefulness of additives with picloram when using the roller and wick applicators was established on June 12 and 16, 1980 near Sheldon. A surfactant and a petroleum based oil at 5% (v:v) were added to various picloram concentrations. Neither additive at any picloram concentration improved leafy spurge control over the same rate without an additive, and there was a trend for the additives to decrease control (Table 4).

Table 4	Ta	ble	4
---------	----	-----	---

Leafy spurge control with picloram plus additives using roller and wick applicators with treatments applied on June 12 and 16, 1980. (Lym and Messersmith).

	Picloram		Add	itive		
Method	concentrationa	None	Surfelb	Oilc	Mean	
			% cont	rol	r	
Roller	1:7 1:11 1:15	74 48 46	67 45 53	56 37 51	66 43 43	
Mean LSD (0.	05)=conc=16;add=16;c	56 concxadd=2	55 27	48		
Wick ·	1:3 1:7 1:11	76 38 45	77 44 50	81 68 57	78 50 51	
Mean LSD (0.0	05)=conc=17;add=17;c	53 conexadd=2	57 29	67		

a Picloram (Tordon 22K):water (v:v).

b 5% surfactant (v:v).

^c 5% oil(v:v) (83% paraffin base petroleum oil + 15% emulsifier).

Leafy spurge control for the third and fourth experiments that were established in 1980 generally was less than for the first and second experiments established in 1978 and 1979. Leafy spurge control in other experiments at the same locations as the 1980 experiments generally had lower weed control than other sites with comparable treatments, which suggests that location differences may have affected control. Also, 1980 was a dry year so many of the leafy spurge stems were shorter than normal. Perhaps the procedure of adjusting the rollemand wick applicator height to treat the upper half of the tallest leafy spurge stems resulted in insufficient contact with the short weed stems to provide control comparable to the results of previous years.

A soil bioassay was conducted to determine the picloram residue from broadcast, roller, and wick applications. Plots from two adjacent experiments were sampled to obtain the full range of treatments shown in Table 5. Six soil samples to an 8 inch depth were taken from each plot in October which was 19 weeks after treatment. Sunflower height, and fresh and dry weight in a greenhouse bioassay were used to determine the picloram residual. The experimental design was completely random with three replications.

Application	Rate (1b/A)/ solution conc.(v:v)	Picloram residue (ppm)	
method	DOLUCION		*
	1	0.03	
Broadcast	2	0.17	
Broadcast	2		
		0.07	
Roller	1:1		
Roller	1:3	0.06	
	1:7	0.03	
Roller	1:7 + 5% crop oil	0	
Roller	1:11	0	
Roller		0.05	
Roller	. 1:15		
		0.19	
Wick	1:1		
Wick	1:3	0.04	
	1:3 + 5% crop oil	0.06	
Wick	1:7	0	
Wick	1:11	0	
Wick		0.01	
Wick	1:15		
		0	
Control		0	
LSD (0.05)=0.0	Ш		_

Table 5. Estimates of the picloram residue in soil 19 weeks after application for treatments applied near Sheldon, ND in 1980 by a sunflower bioassay. (Lym and Messersmith)

Picloram at 2 1b/A broadcast had a residual of 0.17 ppm and the wick application at 1:1 (v:v) was very similar with 0.19 ppm picloram residual (Table 5). Picloram at 1 1b/A broadcast had a residual of 0.03 ppm, and the residual was similar for 4 of 6 roller-applied treatments and 2 of 6 wick-applied treatments. Picloram from the roller and wick applied treatments could be reaching the soil through several methods including washing from treated plants, release through decomposition of treated stems and roots, and exudation from the roots of treated plants directly into the soil. (Dep. of Agron., published with the approval of the Agric. Exp. Stn., North Dakota State Univ., Fargo.) Leafy spurge control by glyphosate using three application techniques. Lym, Rodney G. and Calvin G. Messersmith. An experiment to evaluate leafy spurge control by glyphosate applied by three techniques was established near Walcott, ND on August 1, 1980. The leafy spurge was 18 to 20 inches tall and had begun new fall growth. The temperature was 83 F, 66% relative humidity, the sky was overcast, and the soil temperature at 1 inch was 81 F. Glyphosate was applied with a tractor mounted sprayer that delivered 8.5 gpa, at 35 psi, a controlled droplet applicator (CDA) which delivered approximately 0.85 gpa, and with a pipe wick applicator which delivered approximately 2.25 gpa depending upon stand density. The plots were 10 by 30 ft in a randomized complete block design with three replications. Evaluations were based on stand reduction as compared to the control.

		tion	Control			
Method	Ratio ^a	1b/A	May 22, 1981	Aug. 19, 1981		
The select revenue of the further selection			(%)			
Broadcast	1:11	(2.0)	98	88		
Broadcast	1:23	(1.0)	98	83		
Broadcast	1:31	(0.75)	95	78		
CDA	1:11	(0.2)	78	55		
CDA	1:23	(0.1)	31	28		
CDA	1:31	(0.075)	56	25		
Wick	1:11	(0.5)	85	79		
Wick	1:23	(0.25)	80	40		
Wick	1:31	(0.125)	69	8		
LSD (0.05)			33	38		

a Glyphosate (Roundup):water (v:v)

Glyphosate at 0.75, 1.0 and 2.0 lb/A broadcast applied provided 95, 98, and 98%, leafy spurge control, respectively when evaluated on May 22, 1981. The perennial plants in these plots had been killed and a thick mat of leafy spurge seedlings had germinated. Most of the seedlings died by August 19, but enough seedlings survived so that the overall control declined 10 to 17%.

Glyphosate provided better leafy spurge control when broadcast than CDA or wick applied. However, the grass in these plots was not severely damaged and provided competition for emerging seedlings. Although the glyphosate rate actually applied had been reduced approximately 90 and 25% with the CDA and wick applicators, respectively, leafy spurge control was not decreased by a similar magnitude. A follow-up treatment is needed to control leafy spurge seedlings regardless of the glyphosate application technique. (Dep. of Agron., published with the approval of the Agric. Exp. Stn., North Dakota State University, Fargo.)

11

Picloram formulations and application equipment for leafy spurge control. Lym, Rodney G. and Calvin G. Messersmith. Several experiments were established to evaluate four picloram formulations for leafy spurge control. Formulations evaluated included picloram 2S (Tordon 22K), M-4505, M-4506 and picloram plus 2,4-D at 1 plus 2 lb/gal (Tordon 212). Formulations were evaluated using broadcast, roller, controlled droplet applicator (CDA), and two types of pipe: wick applicators (one covered with polyfoam and canvas, and the other with Nylafoam, a polyfoam with bristles attached to one side used for painting). The broadcast treatments were applied with a tractor mounted sprayer that delivered 8.5 gpa at 35 psi, the CDA delivered approximately 0.85 gpa with the pipe-wick applicator approximately 2.25 gpa and the roller applicator approximately 4.5 gpa. All plots were 10 by 30 ft and replicated four times in a randomized complete block. The broadcast experiment was established on 24 June 1980 near Walcott, ND with a tractor sprayer while all other experiments were established on 21 and 22 July 1980 near Sheldon, ND. All experiments were evaluated on 22 May 1981 and the broadcast experiment was reevaluated on 19 August 1981. All evaluations were based on stand reduction as compared to the control.

		No. of Concession, Supported in Support		Applica	tion/met	hod		
	a a thinga	and processing and which the set		s Nylaf		E	Broadca	ist
Picloram	Solution ^a	Deller	wick	wick	CDA	May	Aug.	Mean ^b
formulation	Ratio/1b/A	Roller	WICK		control)	A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PRO		
				(p	CONDI 017			
			27	70	22	91	85	44
Picloram 2S	1:7 (1.0)	0	37	70 68	29	98	69	50
M-4505	1:7 (1.0)	5	52		19	93	43	39
M-4505	1:11 (0.5)	5	28	48		96	66	45
M-4506	1:7 (1.0)	0	51	52	25		18	47
M-4506	1:11 (0.5)	0	44	52	43	95	44	41
Picloram+2,4-D ^c	1:7 (1.0+2.0)	5	38	53	18	93		
Ficioram+2, 4-D	1:11(0.5+1.0)	5	24	53	9	85	7	35
Picloram+2,4-D ^c	1.11(00)1100/		17	24	27	10		
LSD (0.05)		3	39	57	55	93	33	
Mean	plication method	1-10. Pi	lonam		tion=12			Distant.
LSD (0.05) Ap	plication metho		-11	reant br	poadcast	sprav	which	was

a Solution was herbicide: water (v:v) in all except broadcast spray which was calculated in 1b/A.

b Mean does not include the conventional broadcast treatment data of 19 August 1981.

C Tordon 212 (picloram at 1 lb/gal+2,4-D at 2 lb/gal).

The roller applied treatments did not control leafy spurge regardless of picloram formulation. M-4505 and M-4506 at 1:7 (v:v) tended to provide better control than picloram 2S when applied with the canvas wick, but these differences were not observed with the Nylafoam wick or CDA. All broadcast treatments except the picloram plus 2,4-D at 0.5 plus 1.0 lb/A provided over 90% control when evaluated on 22 May 1980, but only picloram 2S with 85% control provided satisfactory results on 19 August 1981. The best leafy spurge control with all picloram formulations occurred with the broadcast application. Picloram applied by Nylafoam wick and CDA provided fair control but a higher herbicide rate would be needed to give satisfactory control. Leafy spurge control was not improved with picloram formulations other than the present commercial picloram 2S (Tordon 22K) formulation. (Dep. of Agron., published with the approval of the Agric. Exp. Stn., North Dakota State University, Fargo.)
Leafy spurge control using the controlled droplet applicator with picloram plus additives. Lym, Rodney G. and Calvin G. Messersmith. Several experiments were established to evaluate leafy spurge control with picloram using the controlled droplet applicator (CDA). The CDA is designed to deliver herbicide in a precise spray pattern with a uniform droplet size of 200-microns. The CDA delivers much less herbicide per acre than the conventional broadcast sprayer. Thus the CDA would be a more economical method of application if control were comparable to conventional broadcast application.

The first experiment was established near Walcott, ND on 30 June 1980. The weather was dry and 72 F, 64% relative humidity, and 82 F soil temperature at one inch. The leafy spurge was 20 to 30 inches tall and the soil was moist. Picloram was applied to leafy spurge in picloram:water (v:v) solution concentrations ranging from 1:1 to 1:15. A surfactant (Surfel) and an oil (85% paraffin base petroleum oil plus 15% emulsifier) were added at a 5% concentration (v:v). The CDA was calibrated to deliver 60 ml/min for all solution concentrations. The spray width of the hand held CDA was 4 ft and the plot size was 5 by 30 ft replicated four times in a randomized complete block design. Evaluation was based on stand reduction as compared to the control.

The solution concentration of 1:1 delivered approximately 0.1 lb/A of picloram. The 1:1 treatment provided 79% control when averaged across all additives which was significantly higher than any other treatment when evaluated 11 months after application (Table 1). Leafy spurge control was not improved by including a surfactant or oil additive. By August 1981, leafy spurge control for the 1:1 treatments had decreased to 53%, and all other treatments showed similar decreases.

An experiment to evaluate leafy spurge control with picloram alone using the CDA was established at two sites. The first site was near Minot, ND and the experiment was established on 10 July 1980 with the leafy spurge 6 to 12 inches tall and under drought stress. The soil temperature at 1 inch was 82 F, 69% relative humidity, and 79 F at treatment and 102 F later in the day. The second site was near Dickinson, ND where the leafy spurge 10 to 12 inches tall and drought stressed. The experiment was established on 15 July 1980 with conditions of 65 F, 51% relative humidity, and 70 F soil temperature at 1 inch. The plots were 10 by 30 ft and replicated four times in a randomized complete block design.

Leafy spurge control varied at these sites (Table 2). Picloram at 1:1 and 1:3 concentrations gave 35 and 31% control, respectively, at Dickinson, and 90% and 0% control, respectively, at Minot. The results from Dickinson are similar to the August evaluations at Walcott. The large difference in the control between Minot and the other two sites may be due to an environmental effect. Both the Dickinson and Minot sites were under drought stress but the air was very hot and dry after treatment at Minot which may have reduced picloram absorption.

Leafy spurge control by picloram using the CDA applicator was fair at the highest solution concentration tested. The light weight and ease of operation of the CDA is an advantage of the equipment over the traditional hand held sprayer for use in special situations like shelterbelts and spot treatments. Further research is necessary to evaluate the effectiveness of the CDA. (Dep. of Agron., published with the approval of the Ag. Exp. Stn., North Dakota State University, Fargo.)

	Distant			Additive/c	ontrol	
Evaluation	Picloram concentrati	$on^{a}/(1h/A)$	None	Surfactant ^D	Oilc	Mean
date	concentrati	.011 / (10/11/		(%)		
22 May 1981	1:1 1:3 1:7 1:11 1:15	0.1 0.025 0.0125 0.008 0.00625	70 70 51 20 43	84 66 64 46 28	84 43 56 29 43	79 60 57 32 38
	LSD (0.05)=0	Conc=19; Add	=14; Conc	x Add=33		
19 Aug. 1981	1:1 1:3 1:7 1:11 1:15	0.1 0.025 0.0125 0.008 0.00625	34 29 3 0 0	70 19 4 0 0	56 11 13 1 0	53 19 7 0 0
NY BUILDING	LSD (0.05)=	Conc=13; Add	=10; Cond	e x Add=22		and the standard stands of the standard standard standard standard standard standard standard standard standard

Table 1. Leafy spurge control using the CDA applicator with picloram plus additives - Walcott, ND. (Lym and Messersmith).

a Picloram (Tordon 22K):water (v:v).

b 5% surfactant (Surfel) (v:v).

15

c 5% oil (v:v) (83% paraffin base petroleum oil + 15% emulsifier).

Table 2. Leafy spurge control with picloram using the controlled droplet applicator, Dickinson and Minot, ND. (Lym and Messersmith).

statistic and an arrest and are

Service spin this eligent the

and the second sec

		Control	
	Dickinson	M	linot
Solution concentration ^a (1b/A)	25 Aug. 1981	11 June 1981	15 Sept. 1981
1:1 (0.1) 1:3 (0.025)	35 31	97. 0	·90 0
1:7 (0.0125)	16 0	0 0	0 0
1:11 (0.008) 1:15 (0.006)	6	0	0
LSD (0.05)	16		

a Picloram (Tordon 22K):water (v:v).

Leafy spurge control with picloram and glyphosate under trees. Lym. Rodney G. and Calvin G. Messersmith. Leafy spurge control is a major problem in wooded areas, shelterbelts, and parks. Glyphosate can be safely used under trees with leafy spurge control generally ranging from 80 to 90% when the herbicide is fall applied. Two disadvantages of glyphosate are its nonselective nature and a retreatment with 2,4-D is required the following year to control seedlings. Picloram effectively controls leafy spurge, but it is toxic to deciduous trees, especially shallow rooted trees which are often found in draws and run-off areas. The controlled droplet applicator (CDA) is designed to deliver herbicides in precisely measured droplets, and generally delivers less herbicide per acre than conventional sprayers. The purpose of these experiments was to evaluate the CDA for safely applying picloram and glyphosate on leafy spurge growing under trees. Also picloram was applied using a two-foot wide hand-held pipe wick covered by polyfoam and canvas. Picloram (Tordon 22K):water and glyphosate (Roundup):water concentrations varied for 1:1 to 1:15 (v:v) with both applicators. The experiments were established in a tree grove, with many saplings and 2 to 3 inch diameter young trees, which had been infested with leafy spurge. Each plot was approximately 10 by 30 ft in a randomized complete block design. The treatments were applied on 28 July 1980 under a partly cloudy sky, 78 F, and 50% relative humidity. The data are reported in the table.

Leafy spurge control with picloram at 1:1, 1:3, and 1:7 (v:v) applied by the CDA was very good when evaluated on 22 May 1981, but dropped dramatically by 19 August 1981. Picloram at 1:1 and 1:3 (v:v) severely damaged the young saplings in several plots and killed several trees at 1:1 (v:v).

Glyphosate at 1:1 (v:v) provided 87% control of leafy spurge the following spring, which is similar to the control normally obtained with glyphosate at 1 lb/A broadcast. However, leafy spurge seedlings quickly reestablished in all plots because a follow-up treatment was not applied. The other glyphosate treatments did not provide satisfactory control.

Leafy spurge control was very good with picloram at 1:1, 1:3, and 1:7 (v:v) applied by the hand held wick when evaluated on 22 May 1981, but control decreased rapidly by 19 August 1981. It was expected that thest treatments would not harm the trees. However, picloram at 1:1, 1:3 and 1:7 (v:v) caused severe leaf damage to all the saplings and larger trees, and most of the saplings were killed by picloram at 1:1 (v:v) by the end of the summer. Since picloram was not applied to the soil, perhaps the herbicide was exudated by the leafy spurge roots or released as the weed roots decayed. Tree damage generally was greater following wick than CDA application.

The CDA may be useful in trees, because fair leafy spurge control was obtained and the equipment is lightweight and easy to operate. Further research is needed with the CDA to better assess the risk of damage to small and large trees. The hand held wick was judged unsatisfactory due to tree damage and difficult handling in wooded areas. (Dep. of Agron., published with the approval of the Agric. Exp. Stn., North Dakota State Univ., Fargo.) Table.

·;-

e. Leafy spurge control by picloram and glyphosate applied with the controlled droplet and wick applicators under trees - Walcott, ND (Lym and Messersmith).

		Herbicide		trol
Applicator	Herbicide	concentrationa	22 May 1981	19 Aug. 1981
Appileuooi	1			66**
CDA	Picloram	1:1	93*	
CDA	Picloram	1:3	92#	23*
	Picloram	1:7	96	23
	Picloram	1:11	76	2
		1:15	56	0
	Picloram			
	251		24	35
LSD (O	.05)	A SALESSEE STRAFT		
440 mg 1 285	an al anta	1:1	86	0
CDA	Glyphosate	1:3	23	0
	Glyphosate	1:7	54	0
	Glyphosate	1:11	36	0
	Glyphosate		16	0
	Glyphosate	1:15	10	
LSD (0.	.05)	nden, one vohich eidt .	37	
with the 3 Chick			85*	61**
Wick	Picloram	1:1	89*	34*
	Picloram	1:3	85*	5
	Picloram	1:7		õ
	Picloram	1:11	48	0
	Picloram	1:15	68	0
- Idal	a henterde er	Person Lendrop edd	33	36
LSD (O	.05)			

a Herbicide:water (v:v).

.

.

* Damaged trees, ** Trees killed in at least one of the four plots.

<u>Granular picloram and dicamba for leafy spurge control</u>. Lym, Rodney G. and Calvin G. Messersmith. Granular and liquid formulations of picloram and dicamba were compared for leafy spurge control in five experiments established on June 25 near Valley City, July 2 near Tolna, July 10 near Minot, and July 15, 1980 near Dickinson, ND and on September 3, 1980 near Valley City. An experiment to compare liquid and granular picloram in a sandy soil was established on June 11, 1980 in the Sheyenne National Grasslands near McLeod, ND. All experiments were in a randomized complete block design with four replications and 10 by 30 ft plots. The granules were applied uniformly by hand, while the liquid formulations were applied with a tractor mounted plot sprayer at 8 gpa. Evaluations were based on percent stand reduction compared to the control. The ANOVA test revealed that there was highly significant interaction between site and treatments. Therefore, experimental sites will be discussed individually.

At Valley City leafy spurge control from equal picloram rates gave similar leafy spurge control regardless of application date (Table 1). Picloram 2%G at 1 lb/A was less effective than higher rates for both application dates. Dicamba 4S and 5%G, spring and fall treatments provided similar control when evaluated one year after application. Dicamba 4S and 5%G at 8 lb/A gave between 91 and 100% control when evaluated one year after treatment. Leafy spurge control from spring applied dicamba declined rapidly during the summer of 1981. Fall applied dicamba 4S at 8 lb/A and dicamba 5%G at 6 and 8 lb/A gave very similar control to picloram at 2 lb/A one year later, but dicamba was less effective than picloram when spring applied.

Leafy spurge control at Valley City generally was better than at the other sites. At Tolna, picloram 2S at 2 lb/A and 2%G at 1.5 and 2 lb/A provided 95, 98 and 100% leafy spurge control, respectively, when evaluated 14 months after treatment (Table 1). Dicamba 4S at 8 lb/A gave 89% control, but the 5%G treatments did not provide comparable control. At Minot, picloram 2S and 2%G at 2 lb/A provided 85 and 81% control, respectively, when evaluated 14 months later, but the other treatments did not provide satisfactory control. At Dickinson, only picloram 2S at 2 lb/A provided satisfactory control at 91%.

Picloram 2S and 2%G at equal rates provided similar leafy spurge control when evaluated on the sandy soil of the Sheyenne National Grasslands (Table 2). Picloram 2S and 2%G at 2 lb/A provided 99 and 98% control, respectively, but the other treatment did not give satisfactory control when evaluated 14 months after treatment.

Dicamba and picloram granular and liquid formulations generally provided similar leafy spurge control when compared at equal application rates. The comparably poor leafy spurge control at Minot and Dickinson may be due to unfavorable environmental conditions. The entire state of North Dakota received below normal precipitation and above normal temperatures in both 1979 and 1980

				Locat	ion/Eva	luation da	ate		
		Valle	y City						Dickin-
Rate	Spr		and the second s	11	Т	olna	second		son
	The sub-later in the su	Contraction of the owner own	6-17-81	9-2-81	6-8-81	9-9-81	.6-11-81	9-15-81	8-25-81
(10/11)					(%)			
								0.0	56
1	97	80	95	86	79				
1.5	98	89	99	100	88	98	85		74
1.5			100	100	98	100	96	81	74
2						5	19	0	:4
							56	20	30
							-	27	39
8									91
2	100								42
8	94	74	99	99	88	89	01	2	42
	0	14	3	10	18	15	20	30	26
	2	$\begin{array}{c cccc} (1b/A) & \overline{6-17-81} \\ & & & \\ \hline & & & \\ 1.5 & 98 \\ 2 & 99 \\ 4 & 74 \\ 6 & 82 \\ 8 & 91 \\ 2 & 100 \\ \end{array}$	RateSpring(1b/A)6-17-819-2-81	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 1. Leafy spurge control using granular picloram and dicamba applied in 1980 at various locations in North Dakota. (Lym and Messersmith)

• • • •

(Table 3). Dickinson and Minot, where the lowest average control occurred had the highest above normal temperature during the growing season and the first and third greatest precipitation deficit for 1979 through July 30, 1980 of -9.59 and -5.33 inches respectively (Table 3). Valley City had a deficit of 9.06 inches of annual precipitation, but rain showers just before and after the treatment dates may have accounted for the improved control at this site. All sites received above normal precipitation beginning in August 1980, and the trend continued into June 1981 which provided favorable growing conditions for leafy spurge. The poor growing conditions during application followed by favorable conditions in 1981 probably account for the general trend of inadequate leafy spurge control. (Dep. of Agron., published with the approval of the Agric. Exp. Stn., North Dakota State University, Fargo.)

ungo control uning minilaren liguid and groupulag an a

lable 2.	really spurge control using pictoram ilduid and granutes on a
	sandy soil in the Sheyenne National Grasslands. (Lym and
	Messersmith)

Herbicide	Rate		
formulation	(1b/A)	May 27, 1981	Aug. 19, 1981
			(%)
Picloram 2S	0.5	73	13
Picloram 2S	1.0	98	73
Picloram 2S	2.0	100	99
Picloram 2%G	. 0.5	53	5
Picloram 2%G	1.0	97	72
Picloram 2%G	2.0	100	98
LSD (0.05)		25	12

Table 3. Average annual 1979 and 1980 precipitation and temperature departure from normal for various locations in North Dakota. (Lym and Messersmith).

	9. S. S. S. S. S.	rmal		
A STATE AND A STATE		-Precipitatio	0 n	Temperature
Location ^a	1979 J	an-July 1980	Aug-Dec 1980	1980 (April-July)
-		inch		Faaraa
Dickinson	-3.63	-5.96	+2.64	+6
Minot	-1.21	-4.12	+7.50	+6
Sheldon	-1.11	-1.04	+0.21	+4
Tolna	-2.85	-1.43	4.12	+5
Valley City	-4.05	-5.01	+2.54	+3

^a The climatological data is recorded from the nearest reporting station to the experimental site.

Plant growth regulators and herbicides for leafy spurge control. Lym, Rodney G. and Calvin G. Messersmith. An experiment was established near Walcott, ND to evaluate picloram plus chlorflurenol and bentazon plus mefluidide for leafy spurge control. The treatments were applied on 24 June 1981 and the leafy spurge was 12 to 15 inches tall and beginning seed set. The sky was overcast, 77 F, 70% relative humidity and the soil was 69 F at 1 and 2 inches. The herbicide and plant growth regulators (PGR) were applied as a tank mix using a tractor mounted sprayer that delivered 8.5 gpa at 35 psi. The plots were 10 by 35 ft, and treatments were replicated four times in a randomized complete block. Evaluations were based on percent stand reduction as compared to the control and results are shown in the table.

	Plant growth	Rate	Con	trol
Herbicide	regulator	(1b/A)	22 May 1981	19 Aug. 1981
				() ====================================
Picloram		0.375	77	14
Picloram		0.75 0.375 + 1.0	94 83	73 18
Picloram Picloram	chlorflurenol chlorflurenol	0.375 + 1.0	93	47
Bentazon		0.75	2 5	0
Bentazon Bentazon	mefluidide	1.5 0.75 + 0.375	14	0
Bentazon	mefluidide	1.5 + 0.75	15	0
LSD (0.0	15)		15	21

Picloram plus chlorflurenol controlled leafy spurge similar to picloram alone. Picloram at 0.375 lb/A alone and with chlorflurenol at 1.0 lb/A provided 77 and 83% control, respectively, when evaluated in May, but the control had decreased to 14 and 18%, respectively, by August. Picloram at 0.75 lb/A alone and in combination with chlorflurenol at 1.0 lb/A provided similar control of 94 and 93%, respectively, when evaluated in May 1981. However, by August 1981 the control ratings for picloram plus chlorflurenol had decreased to 47% which was significantly less than the 73% control with picloram alone. Neither bentazon alone nor in combination with mefluidide provided significant leafy spurge control. The herbicide plus PGR combinations did not improve the leafy spurge control over herbicides applied alone. The PGR's may have made the plants more responsive to herbicide treatment if they had been applied several days before the herbicide rather than as a tank mix. (Dep. of Agron., published with the approval of the Agric. Exp. Stn., North Dakota State University, Fargo.) Tebuthiuron applied spring and fall for leafy spurge control. Lym, Rodney G. and Calvin G. Messersmith. An experiment was established near Valley City, ND to evaluate tebuthiuron for leafy spurge control. Tebuthiuron as 10 or 20% pellets was applied by hand as spring or fall treatments. The fall treatments were applied on 25 Sept. 1980 when the leafy spurge had vigorous fall growth from previous fall rains. The summer had been very dry and the plants had been drought stressed for most of the growing season. The spring application was made on 18 May 1981 when the soil was very dry, the leafy spurge was 2 to 4 inches tall and emerged stems were sparse. The experimental plots were 10 by 20 ft and replicated twice in a randomized complete block design. The plots were evaluated on 2 Sept. 1981 and data are shown in the table.

.

Time of	Tebuthiuron		an elstropsen reals
	pellet	Rate	
application	formulation	(1b/A)	Control
	(%)	earren (C) nur	(%)
Fall	10	0.5	0
Fall	10	1.0	35
Fall	10	1.5	10
Fall	20	0.5	30
Fall	20	1.0	95
Fall	20	1.5	58
Spring	· 10	0.5	0
Spring	10	1.0	0
Spring	10	1.5	0
Spring	20	0.5	35
Spring	20	1.0	10
Spring	20	1.5	73
LSD (0.05)			56

Leafy spurge control with tebuthiuron varied widely within most treatments. The only treatment that provided good leafy spurge control consistently was tebuthiuron 20%G at 1 lb/A fall applied which gave 95% control. Other treatments did provide over 90% control in one replication, but nearly zero in the other. Tebuthiuron at 1 and 1.5 lb/A severely damaged the grasses regardless of formulation.

The large variation in leafy spurge control by tebuthiuron could be due to the dryness the year in which the experiment was established. However, the severe damage to the native grasses probably makes tebuthiuron unsuitable for leafy spurge control in most situations. (Dep. of Agron., published with the approval of the Agric. Exp. Stn., North Dakota State University, Fargo.) <u>A pipe-wick herbicide applicator for perennial weed control in pastures</u>. Messersmith, Calvin G. and Rodney G. Lym. A pipe-wick applicator was designed to provide a greater herbicide flow rate than rope-wick applicators for perennial weed control experiments in pastures. The pipe-wick was mounted on a frame so a tractor 3-point hitch could be used for height control (Figure 1). Two wick bars were spaced 1 ft apart for double coverage of the weeds. The pipe-wick consists of 0.75 inch PVC pipe with 0.12 inch holes drilled every 2 inches and covered with a wicking material (Figure 2). The wicking material was wrapped around about 75% of the pipe circumference and attached to the PVC pipe with contact cement. Liquid in the storage tank flows into the wick with flow rate dependent on weed density. A preliminary screening of 20 wick materials to cover the PVC pipe was conducted in the lab and greenhouse. Materials were evaluated according to ability to transfer (wick) herbicide onto plants, resistance to dripping, durability, and ease of obtaining material.

Four materials were chosen for the field study: canvas (50% cotton-50% polyester) over 1-inch wide by 0.5 inch thick polyfoam; Nylafoam, a polyfoam material covered with 0.25 inch bristles used to paint shake shingles (Padco Inc., Minneapolis, MN); dacron (G7 plain weave fabric #718 from Testfabrics, Inc., Middlesex, NJ) over 1-inch wide by 0.5 inch thick polyfoam; and a fabric belt, 1.5 inches wide. The field experiment was established on June 20, 1980 near Sheldon, ND when leafy spurge was fully flowered and 20 to 26 inches tall. Picloram (Tordon 22K):water solution concentrations of 1:7, 1:11, and 1:15 (v:v) were applied using 3 ft wide rectangular wicks. Plots were 5 by 30 ft and replicated four times in a randomized complete block design. Evaluations on May 29, 1980 were based on percent stand reduction as compared to the control.

	F	icloram co	oncentrat	ion
Wick	1:7	1:11	1:15	Mean
Material		(% con		
Canvas Nylafoam Dacron Fabric belt	13 63 6 0	12 38 5 0	5 17 4 2	10 39 5 0
Mean	21	13	7	

Nylafoam was the most effective material for wicking picloram onto leafy spurge. However, field observations revealed that Nylafoam was easily torn by woody stems and shrubs commonly found in pastures. The canvas with polyfoam backing was chosen for further evaluation, because it seemed durable and tended to provide better control than the dacron material. The fabric belt was unacceptable as a wicking material. (Dep. of Agron., published with the approval of the Agric. Exp. Stn., North Dakota State University, Fargo.)

Figure 1. Pipe-wick herbicide applicator and frame with (A) storage tank, (B) 3-point hitch assembly, (C) angle iron frame, (D)

(B) 3-point hitch assembly,
(C) angle iron frame, (D)
0.75-inch PVC pipe held to
frame by U-clamps, and (E)
skids for height control.

Figure 2. Bottom view of a section of the pipe-wick applicator showing: (A) 0.12 inch holes covered by

- (B) 0.5 inch polyfoam covered by
- (C) canvas.

Evaluation of various herbicides and application techniques for absinth

wormwood control. Lym, Rodney G. and Calvin G. Messersmith. Three experiments were established to compare various herbicides and application techniques for absinth wormwood control in pastureland. The first experiment was established near Valley City on June 25, 1980 when the absinth wormwood was 20 to 24 inches tall and growing vigorously. The weather was 87 F, 25% relative humidity, and the soil was dry and 104 F at 1 inch. Herbicides were applied broadcast with a tractor mounted sprayer using 8.5 gpa and 35 psi or with the roller or wick applicator at a 6 inch height to contact most absinth wormwood stems. The plots were 10 by 75 ft in a randomized complete block design with three replications. Evaluations were taken on June 10, 1981 with control based on percent stand reduction.

Picloram broadcast at 0.25 lb/A or more resulted in 100% control of absinth wormwood (Table 1). Dicamba at 1 and 2 lb/A, 2,4-D at 2 lb/A and the wick application of picloram at 1:11 (v:v) gave above 90% control. Only 2,4-D at 1 lb/A and roller application of picloram at 1:11 (v:v) resulted in control below 90%.

The second and third experiments were established on July 16, 1980 near Medina, ND. The absinth wormwood ranged in height from new shoots to 36 inches tall. The soil was dry and the pasture was under slight to moderate drought stress. The temperature was 85 F, 42% relative humidity and the soil temperature was 90 F at 1 inch. Picloram and 2,4-D treated plots were 10 by 50 ft in a randomized complete block design with four replications. The dicamba treatments were applied in 200 ft strips between the pasture and the road due to the 90 day grazing restriction of dicamba.

All broadcast treatments of picloram, 2,4-D at 2 lb/A and dicamba at 1 and 2 lb/A provided excellent absinth wormwood control one year following treatment (Table 2). Only 2,4-D at 1 lb/A and dicamba at 0.5 lb/A resulted in significantly less control of 74 and 75%, respectively. Absinth wormwood control with 2,4-D and dicamba improved significantly between the 1980 and 1981 evaluations, which indicates that there was adequate herbicide translocation to prevent new crown bud formation and growth, but the elongated main stem died slowly.

Picloram applied by the roller and wick applicators did not control absinth wormwood satisfactorily one year after treatment (Table 3). In addition, severe injury to smooth bromegrass stems occurred when picloram was applied with the roller and wick applicators. These experiments indicate that picloram is more effective broadcast than roller and wick applied for absinth wormwood control. Broadcast applications of picloram at 0.25 lb/A, dicamba at 1.0 lb/A and 2,4-D at 2 lb/A gave excellent control, and are economical for pastureland use. (Dep. of Agron., published with the approval of the Agric. Exp. Stn., North Dakota State Univ., Fargo.)

Table 1	•	Absinth wormwood control in 1981 with various herbicides applied
		either broadcast or with roller and wick applicators on June 25,
		1980 - Valley City, ND. (Lym and Messersmith).

1075	Rate	Control
Herbicide	(1b/ <u>A</u>)	June 10, 1981
	(Internet and the second s	(%)
2,4-D (LVE)	1.0	89
2,4-D (LVE)	2.0	96
Dicamba	1.0	97
Dicamba	2.0	99
Picloram	0.25	100
Picloram	0.5	100
Picloram + 2,4-D	0.25+0.5	100
Roller w. Picloram	1:11 ^a	83
Wick w. Picloram	1:11 ^a	93
LSD (0.05)		9

a Picloram (Tordon 22K):water (v:v).

.

Table 2.	Absinth wormwood control with broadcast applications of 2,4	↓ -D,
	dicamba and picloram applied on July 16, 1980 - Medina, ND.	
	(Lym and Messersmith).	

	Rate		Control	-
Herbicide	(1b/A)	Aug. 26, 198	0 June 10, 198	1 Aug. 27, 1981
	and the second second		(")	
2,4-D (LVE)	1.0	34	79	74
2,4-D (LVE)	2.0	68	97	97
Picloram	0.25	97	100	100
Picloram	0.5	100	100	100
Picloram	0.75	100	100	100
Picloram $+ 2, 4-D$	0.25+0.5	100	100	100
Picloram $+ 2, 4-D$	0.25+1.0	100	100	100
Picloram $+ 2, 4-D$	0.5+0.5	100	100	99
Control		0	0	0
	·			
LSD $(0.05)^{a}$		12	3	4
Dicamba	0.5	20	80	75
Dicamba	1.0	87	100	99
Dicamba	2.0	100	100	100

a Dicamba was applied separately in 200 ft strips and data was not subject to ANOVA.

	Picloram:water a		23.66	Cont			Contraction of the local division of the loc
Applicator	(V:V)	Aug. 26,	1980	June 10,	1981	Aug.	27, 1981
Applicator	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(%)			
Wick Wick Roller Roller Roller	1:7 1:11 1:15 1:7 1:11 1:15	97 76 88 75 38 81		75 49 69 37 53 41			55 34 44 14 18 23
LSD (0.05)	22		22			24

.

-

Table 3.	Roller and wick applications of picloram for absinth wormwood control, applied July 16, 1980 - Medina, ND. (Lym and
	control, applied July 10, 1900 - Medina, ND. (2)2 - Medina, Mosersmith).

a Picloram (Tordon 22K):water (v:v).

.

,

And I see the state of the

.

Absinth wormwood control with picloram plus various additives.

Messersmith, Calvin G. and Rodney G. Lym. Previous research at North Dakota State University has shown that picloram at 0.25 lb/A controls absinth wormwood, so experiments were established to evaluate the effectiveness of lower picloram rates alone and in combination with various additives and 2,4-D. Also picloram granular and liquid formulations were compared. Dowco 290 was applied and evaluated separately in 120 ft strips. The liquid herbicides were applied with a tractor sprayer delivering 8.5 gpa at 35 psi. The granules were applied by hand. All plots were 10 by 30 ft in a randomized complete block design with four replications. The experiments were established on 10 September 1980 near Medina, ND. The sky was clear and 76 F, 40% relative humidity and 74 F soil temperature at 1 inch. The absinth wormwood had been mowed early in the year and was 6 to 8 inch tall with vigorous regrowth. Evaluations were based on percent stand reduction as compared to the control.

All treatments with picloram at 0.25 and 0.5 1b/A provided 99 to 100% absinth wormwood control when evaluated one year after treatments (Tables 1, 2 and 3). Picloram at 0.5 1b/A caused slight smooth bromegrass injury in the spring but the effect was not seen in the August evaluations. Picloram at 0.125 1b/A and 2,4-D at 2 1b/A gave similar control of 82 and 83%, respectively (Table 1). The addition of 2,4-D at 0.125 and 0.25 1b/A to picloram at 0.125 1b/A did not increase the control over picloram alone. Picloram at 0.125 1b/A with an additive did not improve the control as compared to picloram at 0.125 1b/A alone (Table 2). In fact, absinth wormwood control decreased when the oil concentrate and linseed oil amine were used. The surfactant and linseed oil may have increased the effectiveness of picloram at 0.125 1b/A but these data are not significantly different when evaluated one year later. All other treatments including Dowco 290 at 0.5 and 1.0 1b/A provided 99 to 100% absinth wormwood control and an additive effect, if any, was not detected.

Picloram granular (G) and liquid formulations (S) did not provide similar absinth wormwood control when applied at the same rates (Table 3). Picloram at 0.25 lb/A provided 100% and 79% absinth wormwood control as liquid and granular formulations, respectively. Picloram 2% G at 0.5 and 0.75 lb/A resulted in nearly 100% control. Absinth wormwood is a simple perennial with a dominant taproot, so a high granular rate was required for adequate herbicide distribution near each root. (Dep. of Agron., published with the approval of Agric. Exp. Stn., North Dakota State Univ., Fargo.)

	Rate	Control		
Herbicide	(1b/A)	10 June 1981	27 August 1981	
MOI DIGIGO			(%)	
Picloram S	0.125	93	83	
Picloram S	0.25	100	99	
Picloram S	0.5	100	100	
2,4-D (LVE)	2.0	92	82	
Picloram $+ 2, 4-D$	0.125+0.125	96	78	
Picloram $+ 2, 4-D$	0.125+0.25	93	79	
Picloram + $2, 4-D$	0.25+0.25	100	100	
Picloram + $2, 4-D$	0.25+0.5	100	100	
Control				
CONCLOT				
LSD (0.05)		4	17	

Table	1.	Picloram and	2,4-D for absinth wormwood control, Medina, ND.	
		(Messersmith	and Lvm).	

-

Table 2. Picloram plus additives for absinth wormwood control, Medina, ND. (Messersmith and Lym).

Picloram			Со	ntrol
(1b/A)	Additive	Rate	10 June 1981	27 August 1981
(10/11)				(%)
0.125			94	89
0.25			100	100
0.5			100	100
0.125	Surfactant(Surfel)	1% (v:v)	96	98
0.125	Oil conc. (Pace) ^a	1 qt/A	73	59
0.125	Linseed oil	1 qt/A	98	98
0.125	Linseed oil amine	1 qt/A	86	62
0.25	Surfactant(Surfel)	1% (v:v)	99	100
0.25	Oil conc.(Pace) ^a	1 gt/A	99	99
0.25	Linseed oil	1 gt/A	100	100
0.25	Linseed oil amine	1 qt/A	100	99
LSD (0.05)			12	20
Dowco 290	0.5		100 ^b	100
Dowco 290	1.0		100	100

a 83% paraffin base petroleum oil + 15% emulsifier.

b Dowco 290 data was not subject to ANOVA.

	Rate	Control			
Herbicide	(1b/A)	10 June 1981 21	7 August 1981		
		(%)			
Picloram S	0.25	100	100		
Picloram S	0.5	100	100		
Picloram 2% G	0.25	83	79		
Picloram 2% G	0.5	98	98		
Picloram 2% G	0.75	98	99		
LSD (0.05)		4	7		

Table 3. Picloram liquid and granular formulations for absinth wormwood control, Medina, ND. (Messersmith and Lym).

to

.

.

Evaluation of chlorsulfuron and Dowco-290(M-3972) for Canada thistle and kochia control. Messersmith, Calvin G. and Rodney G. Lym. Chlorsulfuron and Dowco-290 were evaluated for Canada thistle control at Fargo, ND. The experiment was established on 17 June 1980 when the Canada thistle was 12 to 18 inches tall and in early to mid-bud growth stage, 74 F, 60% relative humidity, and the soil was dry. Plots were 8 by 20 ft in a randomized complete block design with four replications. The herbicides were applied with a backpack sprayer in 8.5 gpa water at 35 psi. Canada thistle and kochia control were based on percent stand reduction as compared to non-treated areas.

Chlorsulfuron provided very good control of Canada thistle for one year but the Canada thistle was becoming reestablished from surviving roots after 15 months (See Table). It was expected that chlorsulfuron would control Canada thistle for a longer time period, but the chlorsulfuron residual may have been reduced by the high organic matter content of the Fargo clay soil. Kochia control was low in chlorsulfuron treated plots in the year of treatment, but kochia did not grow the year following treatment. Dowco-290 at 0.75 lb/A gave excellent control of Canada thistle throughout the experiment but did not control kochia. The standard treatment of 2,4-D at 2 lb/A gave fair control of kochia in the year of treatment, but poor control of Canada thistle. (Dep. of Agron., published with the approval of the Agric. Exp. Stn., North Dakota State University, Fargo.)

	Contraction of the local division of the loc		a name in the second second second second second second	Control		and a state of the
		C	anada thi	Kochia		
Herbicide	Rate (1b/A)	22 Aug. 1980	21 July 1981	11 Sept. 1981	28 Aug. 1980	21 July 1981
herbicide				(%)		9 000 600 600 600 600 600 600 600
Chlorsulfuron Chlorsulfuron Dowco-290 ^a (M-3972) Dowco-290 ^a (M-3972) 2,4-D LVE	0.25 0.375 0.5 0.75 2.0	95 97 100 100 28	85 98 86 95 46	10 55 53 94 8	30 28 8 0 86	100 100 0 40
LSD (0.05)		11	26	45	30	35

a Dowco-290 is the monoethanolamine salt of 3,6-dichloropicolinic acid (3 lb/gal).

Roller and wick application of picloram for Canada thistle control. Lym, Rodney G. and Calvin G. Messersmith. An experiment was established to compare roller and wick application of picloram with standard broadcast treatments of dicamba, glyphosate and picloram for Canada thistle control. The experiment was established on 4 September 1980 near Carrington, ND under a clear sky at 56 F and 71% relative humidity. It had rained 0.14 inch the day before treatment and the soil was moist and 54 F at 1 inch. The Canada thistle stand was dense, the plants were 18 to 36 inches tall and had set seed. The picloram:water (v:v) solution concentration ranged from 1:3 to 1:11 and the roller and wick were adjusted so that the top 3/4 of most Canada thistle plants were treated. The broadcast applications were made with a tractor sprayer set to deliver 8.5 gpa with 35 psi. The treatments were applied in 10 by 330 ft strips and were replicated twice. Evaluation was based on percent stand reduction as compared to the control and data are reported in the table.

Type of	R and American	Solution Rate	Con	trol
application	Herbicide	$conc.^{a}/(1b/A)$	14 July 1981	14 Sept. 1981
based back dig	aparters da be o	TERRA BOLISSIADAY		%)
Roller	Picloram	1:11	. 0	73
Roller	Picloram	1:7	25	80
Roller	Picloram	1:3	0	85
Wick	Picloram	1:11	0	20
Wick	Picloram	1:7	3	40
Wick	Picloram	1:3	25	70
Broadcast	Picloram	0.5	80	93
Broadcast	Picloram	1.0	100	99
Broadcast	Dicamba	2.0	0	5
Broadcast	Glyphosate	2.0	0	Ō
LSD (0.05)	S INTERPORT	ab at nor 1001-00651	36	22

a Picloram (Tordon 22K):water (v:v).

The July 1981 evaluation indicated that the roller and wick treatments had provided poor Canada thistle control. The plants were stunted at all application rates but it appeared that they would recover. However, a dramatic increase in stand reduction was observed by the September 1981 evaluation for treatments applied by either applicator. The roller application of picloram at 1:7 and 1:3 provided 80 and 85% control, respectively. The wick application of picloram at 1:3 increased from 25 to 70% control with less dramatic increases at lower concentrations. Picloram at 0.5 and 1.0 lb/A gave 93 and 99% control, respectively, 1 year following treatment. No control was observed in plots treated with dicamba or glyphosate at 2.0 lb/A. The roller and wick applicators provided fair control of Canada thistle and are an option for treating large areas of infestation more economically. (Dep. of Agron., published with the approval of the Agric. Exp. Stn., North Dakota State University, Fargo.) <u>HOE-00661 for perennial weed control</u>. Lym, Rodney G. and Calvin G. Messersmith. An experiment to screen HOE-00661 for control of several perennial weeds was established on 16 June 1981 in a lowland area near Carrington, ND. Perennial weed species present included Canada thistle, hemp dogbane, common milkweed, perennial sowthistle and quackgrass. Prickly lettuce was the only annual weed present in all plots. Absinth wormwood, Arkansas rose, water parsnip and western snowberry were scattered throughout the plot area. HOE-00661 was applied at various rates alone and in combination with a 28% nitrogen or 10% NH₄SO₄ solution at 1 gpa. Glyphosate and paraquat were applied at 0.75 lb/A. The surfactant WK was added to all treatments at 5% (v:v). Treatments were applied using a tractor sprayer that delivered 8.5 gpa at 35 psi. The plots were 15 by 50 ft in a randomized block design and replicated twice. The sky was partly cloudy, 75 F, 54% relative humidity and the soil temperature at one inch was 66 F.

Preliminary observations on 14 July 1981 showed that HOE-00661 at 0.75, 1.0 and 1.5 lb/A severely stunted all broadleaf species but the only species killed was water parsnip. All vegetation sprayed with paraquat had been burned down but perennials were beginning to resume growth. Most species treated with glyphosate were either controlled or very chlorotic.

Visual evaluation based on percent stand reduction as compared to the control were taken on 14 September 1981 and data are shown in the table. Quackgrass control by HOE-00661 seemed very good; however, paraquat treatments also indicated 60% quackgrass control. It was not clear whether the plants were being controlled by the herbicide or had not resumed growth after being burned down.

HOE-00661 at 0.75 lb/A plus nitrogen provided 90% perennial sowthistle and prickly lettuce control, but other HOE-00661 treatments had low weed control. Glyphosate gave excellent control of perennial sowthistle and prickly lettuce. Three months after application, HOE-00661 showed some control of water parsnip, prickly lettuce, perennial sowthistle and possibly quackgrass but further evaluations are needed. HOE-00661 did not control any other perennial weed species present.

Messersmitt.			Spec	ies			
Herbicide	Rate	Qugr	Cath	Pest	Prle		
herbicide	lb/A		(%)				
HOE-00661	. 0.5	. 50	10	0	0		
HOE-00661	0.75	100	0	0	0		
HOE-00661	1.0	90	10	0	0		
	1.5	100	10	0	0		
HOE-00661	0.5+50	75	10	45	45		
HOE-00661+N	0.75+50	80	0	90	90		
HOE_00661+N HOE_00661+NH SO	0.5+50	80	0	45	45		
	0.75+50	84	0	0	0		
HOE-00661+NH SO	0.75	90	0	90	100		
Glyphosate	0.75	60	0	90	0		
Paraquat	0015		and the subscription of the subscription of the				

Table. HOE-00661 control of various weeds - Casselton, ND. (Lym and Messersmith.

Fall applied fallow herbicides, Fargo 1980-81. Treatments were applied Octtober 24 to soil with 2000 lb/A of wheat stubble using a bicycle wheel sprayer delivering 17 gpa at 35 psi. Precipitation for a 2 week period following application totaled 1.1 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were heavy.

	Percent control					
-	Rate	Jun	-		-July 1-	
Treatment	lb/A	Kocz	Fxtl	Kocz	Fxtl	Veg
Hexazinone	0.75	58	68	44	75	59
Chlorsulfuron	0.06	99	95	100	96	59 96
Chlorsulfuron	0.12	100	100	100	100	100
DPX-5648	0.015	100	100	100	100	100
DPX-5648	0.03	100	99	99	100	99
Cyanazine	2.5	96	58	96	33	65
Atrazine	1	99	30	94	15	54
Metribuzin	1	96	79	98	79	86
EL-187	0.5	88	60	65	61	61
EL-187	0.6	79	75	60	85	68
EL-187	0.75	100	93	100	95	97
EL-8778	1	96	73	84	74	79
EL-8778	1.2	95	68	83	81	82
EL-8778	1.5	98	83	86	93	89
Hexazinone+Metribuzin	0.5+0.5	98	85	89	91	88
Hexazinone+Metribuzin	0.5+0.75	96	86	91	92	90
Hexazinone+Chlorsulfuron	0.5+0.06	100	98	100	97	98
Hexazinone+DPX-5648	0.5+0.03	100	100	100	100	100
Hexazinone+Diuron	0.5+1	91	95	81	96	83
Buthidazole+Metribuzin	1+0.5	99	93	98	97	98
Cyanazine+Atrazine	2.5+0.5	95	73	88	59	69
Cyanazine+Atrazine+Propham	2.5+.5+3	85	91	95	65	79
Terbutryn+Atrazine	2+0.5	89	54	84	33	63
Chlorsulfuron+Metribuzin	0.06+0.5	100	98	100	99	99
EL-187+Atrazine	0.6+0.6	96	89	95	99	96
Pronamid	1.5	78	66	0	0	0
Control		0	0	0	0	0
Mean		90	78	82	75	78
High mean		100	100	100	100	100
Low mean		0	0	0	0	0
Coeff. of variation		11	19	17	19	16
LSD(1 Percent)		18	27	26	26	24
LSD(5 Percent)		13	20	20	20	18
No. of reps		4	4	4	4	4

Summary

Broadspectrum weed control was good with chlorsulfuron and DPX-5648 alone or in combination with other herbicides, metribuzin combinations with hexazinone or buthidazole and EL-187 at 0.75 lb/A alone or 0.6 lb/A with atrazine.

Fall applied fallow herbicides, Minot 1980-81. Treatments were applied October 7 to soil with 1500 lb/A of wheat stubble using a bicycle wheel sprayer delivering 17 gpa at 35 psi. Precipitation for a 2 week period following application totaled 1.5 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were heavy.

	en en general andre ag a desertant	Percent					control				
	Rate			ne 2	2T	otal		Ju	ly 2	1T(otal
Treatment	1b/A	Fyt.1	Rut.h	Fipe	Kocz	Veg	Fxtl	Ruth	Fipe	Kocz	Veg
Treatment	10/11									an and a state of the state of	and the state of t
Hexazinone	0.75	83	64	100	35	68	83	53	95	8	59
Chlorsulfuron	0.06	86	81	100	100	85	75	96	100	98	89
Chlorsulfuron	0.12	91	89	100	100	92	91	98	100	100	96
DPX-5648	0.015	83	79	80	100	81	73	91	100	94	88
DPX-5648	0.03	90	85	100	100	91	91	98	100	99	96
	2.5	24	60	100	95	49	28	78	97	90	65
Cyanazine	2.0	0	65	88	90	40	0	70	100	90	53
Atrazine Metribuzin	1	41	73	100	98	65	0	65	97	90	51
EL-187	0.5	73	20	95	90	50	53	10	93	75	45
EL-187	0.6	84	55	100	83	69	63	28	95	71	55
EL-187	0.75	88	78	100	98	83	89	65	99	83	76
EL-107 EL-8778	1	68	56	95	75	65	45	45	95	75	51
EL-8778	1.2	85	73	100	78	77	65	48	99	84	66
	1.5	88	75	100	93	82	71	50	99	80	68
EL-8778	0.5+0.5	84	76	100	100	84	79	58	100	90	76
Hexazinone+Metribuzin Hexazinone+Metribuzin	0.5+0.75	94	94	100	100	96	94	100	100	100	98
Hexazinone+Metribuzin Hexazinone+Chlorsulfuron	0.5+0.06	93	88	100	100	91	91	98	100	99	97
Hexazinone+DPX-5648	0.5+0.03	90	91	100	100	93	94	98	100	98	97
Hexazinone+Diuron	0.5+1	90	71	100	55	73	86	53	93	55	69
	1+0.5	98	95	100	100	98	94	83	100	97	92
Buthidazole+Metribuzin	2.5+0.5	-	70	98	100	56	10	68	99	90	56
Cyanazine+Atrazine			60	95	100	60	10	43	99	85	49
Cyanazine+Atrazine+Propham	2+0.5	_	50	80	88	36	0	48	95	85	45
Terbutryn+Atrazine Chlorsulfuron+Metribuzin	0.06+0.5		85	100	100	88	77	97	100	98	90
	0.6+0.6		83	100	93	83	43	79	100	91	74
EL-187+Atrazine	1.5		18	50	0	15	0	Ó	0	0	0
Pronamid	1.0	0	0	0	õ	0	0	0	0	0	0
Control		•	U		v	Ĩ					
		67	68	92	84	69	56	63	91	79	67
Mean		98	95	100	100	98	94	100	100	100	98
High mean		90	0	0	0	0	0	0	0	0	0
Low mean		17	17	-	-	10	25	23	-	11	11
Coeff. of variation		21	21			13	26	28		15	14
LSD(1 Percent)		16	16			10	20	21	4	12	10
LSD(5 Percent)		4	4			4	4	4		4	4
No. of reps		4	4	2	-		,	,			
	and the subscript of th										

Summary

Broadspectrum weed control was good with chlorsulfuron or DPX-5648 alone or in combination with other herbicides and metribuzin combinations with hexazinone or buthidazole. Fall applied fallow herbicides, Williston 1980-81. Treatments were applied October 8 to soil with 1500 lb/A of wheat stubble using a bicycle wheel sprayer delivering 17 gpa at 35 psi. Precipitation for a 2 week period following application totaled 1.9 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were moderate to heavy.

		Percent				controlJuly 9Total					
Treatment	Rate		J1	une2	3			J	uly	9T	otal
	1b/A	Fxtl	Tamu	Tumu	Ruth	Kocz	Fxtl	Tamu	Ruth	Kocz	Veg
Hexazinone	0.75	35	100	100	100	100				-	
Chlorsulfuron	0.06	89			94	100	-	100	93	85	91
Chlorsulfuron	0.00	94		100	94	100	90 94		100	100	96
DPX-5648	0.015	65	100	100	99		94	100		100	98
DPX-5648	0.03	90	100	100	96	100	100	100 100	100 100	100	95
Cyanazine	2.5	0			98	100	11	100	95	100 100	100 81
Atrazine	1	8	100	98	94	100	35	100	92	100	82
Metribuzin	1	10			100	100	35	100	92	100	82
EL-187	0.5	40	100	100	95	100	83	100	88	96	86
EL-187	0.6	53		100	95	100	89	100	90	100	89
EL-187	0.75	56	100		100	100	91	100	96	100	94
EL-8778	1	32	100	100	98	100	79	100	92	100	91
EL-8778	1.2	33		100	100	100	82	100	91	100	88
EL-8778	1.5	65		100	100	100	93		100	100	97
Hexazinone+Metribuzin	0.5+0.5	33		100	98	100	90	100	94	96	93
Hexazinone+Metribuzin	0.5+0.75	44	100	100	100	100	94	100	98	100	97
Hexazinone+Chlorsulfuron	0.5+0.06	75	100	100	100	100	98	100	100	100	99
Hexazinone+DPX-5648	0.5+0.03	79	100	100	98	100	99	100	100	100	99
Hexazinone+Diuron	0.5+1	96		100	96	100	98	100	98	100	98
Buthidazole+Metribuzin	1+0.5	80	100	100	100	100	97	100	100	100	98
Cyanazine+Atrazine	2.5+0.5	5	100	100	94	100	31	100	65	100	76
Cyanazine+Atrazine+Propham		0	100	100	100	100	15	100	83	100	76
Terbutryn+Atrazine	2+0.5	5	100	100	93	90	15	98	84	95	75
Chlorsulfuron+Metribuzin	0.06+0.5	79	100	100	100	100	91	100	100		96
EL-187+Atrazine	0.6+0.6	60		100	100	100	91	100	100	99	95
Pronamid	1.5	0	60	60	68	60	0	0	0	0	0
Control		0	0	0	0	0	0	0	0	0	0
Mean		45	95	95	93	94	70	93	87	91	84
High mean		96	100	100	100	100	100	100	100	100	100
Low mean		0	0	0	0	0	0	0	0	0	0
Coeff. of variation		21	4	4	6	3	15	1	8	3	6
LSD(1 Percent)		18	7	7	10	8	19	2	13	5	9
LSD(5 Percent)		13	5	6	8	6	15	1	10	4	9 7
No. of reps		4	4	4	4	2	4	4	4	4	4

Summary

Broadspectrum weed control was good with hexazinone, chlorsulfuron, and DPX-5648 alone or in combination with other herbicides and EL-187 in combination with atrazine. Weed control was better with fall than early spring treatments.

Fall applied herbicides for chemical fallow, Hettinger County 1980-81. Treatments were applied October 28 in wheat stubble with a back pack sprayer delivering 17 gpa at 35 psi. Precipitation for a 2 week period following application totaled 0.1 inch. The experimental design was a randomized complete block with 3 replications and experimental units were 8 by 20ft. Weed densities were light to moderate.

	and the state of the		Perc	ent cont		
	Rate 1b/A	June8 Total	July7 veg	Fxtl	August Kocz	5 Wioa
Cyanazine Cyanazine+Atrazine Cyanazine+Metribuzin Chlorsulfuron Hexazinone Hexazinone+Atrazine Hexazinone+Metribuzin Hexazinone+Diuron Hexazinone+Chlorsulfuron Control	2.5 2+0.5 2+0.5 0.06 0.5 0.5+0.5 0.5+0.5 0.5+1 0.5+0.06	80 77 87 84 83 91 88 85 94 0	47 60 72 73 45 83 87 57 85 0	57 80 93 100 98 100 100 100 100 0	80 93 100 82 90 100 83 100 0	53 20 58 50 62 88 91 80 89 0
Mean High mean Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent) No. of reps		77 94 0 8 14 11 3	61 87 0 24 34 25 3	83 100 0 15 28 21 3	82 100 0 11 21 15 3	59 91 0 39 54 39 3

Summary

Broadspectrum weed control was good with hexazinone in combination with atrazine, metribuzin or chlorsulfuron and fair in combination with diuron.

Fall applied atrazine and metribuzin for chemical fallow, Hettinger County 1980-81. Treatments were applied October 28 in wheat stubble with a back pack sprayer delivering 17 gpa at 35 psi. Precipitation for a 2 week period following application totaled 0.1 inch. The experimental design was a randomized complete block with 3 replications and experimental units were 8 by 20 ft. Weed densities were light to moderate.

	Percent control							
Rate	June8	July7		August				
Treatment 1b/A	Total	veg	Fxtl	Kocz	Wioa			
Atrazine+Metribuzin 0.5+0.5	72	37	77	98	37			
Atrazine+Metribuzin 0.75+0.5	75	52	87	98	53			
Atrazine 0.5	38	12	0	87	0			
Atrazine 0.75	35	10	7	78	7			
Metribuzin 0.5	45	8	40	87	0			
Terbutryn 1.5	50	17	23	17	25			
Control	0	0	0	0	0			
Mean	45	19	33	66	17			
High mean	75	52	87	98	53			
Low mean	0	0	Ó	0	0			
Coeff. of variation	18	78	56	22	86			
LSD(1 Percent)	20	37	47	37	37			
LSD(5 Percent)	14	27	33	26	27			
No. of reps	3	3	3	3	3			

Summary

No treatment adequately controlled wild oat. Weed control was better with atrazine - metribuzin combinations than with either herbicide alone. Fall applied herbicides for chemical fallow, Golden Valley 1980-81. Treatments were applied October 27 in wheat stubble with a back pack sprayer delivering 17 gpa at 35 psi. Precipitation for a 2 week period following application totaled 0.5 inch. The experimental design was a randomized complete block with 3 replications and experimental units were 8 by 20 ft. Primary weed species present were green foxtail tansy mustard and Russian thistle.

Treatment	Rate 1b/A	<pre>% Control Total vegJuly2</pre>
Cyanazine Cyanazine+Atrazine Cyanazine+Metribuzin Chlorsulfuron Hexazinone Hexazinone+Atrazine Hexazinone+Metribuzin Hexazinone+Diuron Hexazinone+Chlorsufur Control	0.5+1	12 60 63 83 85 88 83 92 92 92 0
Mean High mean Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent) No. of reps		66 92 0 11 16 12 3

Summary

Weed control was good with chlorsulfuron and hexazinone alone or in combination with other herbicides. Fall applied herbicides for chemical fallow, Mohall 1980-81. Treatments were applied November 6 in wheat stubble with a bicycle wheel sprayer delivering 17 gpa at 35 psi. Precipitation for a 2 week period following application totalled 0.8 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were heavy.

	Rate	Percent	control	July 22
Treatment	lb/A	Grft	Tamu	Fach
Cyanazine	2.5	10	100	
Cyanazine+Atrazine		49	100	100
	2+.5	56	100	100
Cyanazine+Metribuzin	2+.5	88	100	100
Chlorsulfuron	0.06	100	100	100
Hexazinone	•5	88	100	100
Hexazinone+Atrazine	.5+.5	97	100	100
Hexazinone+Metribuzin	.5+.5	95	100	99
Hexazinone+Diuron	.5+1	96	100	100
Hexazinone+Chlorsulfuron	.5+0.6	100	100	100
EL-187	.6	69	83	98
EL-8778	1.2	56	100	100
Control		0	0	
		0	v	0
Mean		74	90	91
High mean		100	100	100
Low mean		0	0	0
Coeff. of variation		21	11	2
LSD(1 Percent)		30		
LSD(5 Percent)			19	3
		22	14	2
No. of reps		4	4	4

Summary

False chamomile and tansy mustard control was good to excellent with all treatments. Green foxtail control was good with treatments containing chlorsulfuron or hexazinone.

Fall applied herbicides for chemical fallow, Renville Co. 1980-81. Treatments were applied November 6 in wheat stubble with a bicycle wheel sprayer delivering 17 gpa at 35 psi. Precipitation for a 2 week period following application totalled 0.8 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were moderate to heavy.

Summary

False chamomile control was excellent with all treatments except cyanazine or EL-187. Kochia control was good with treatments containing chlorsulfuron or metribuzin and green foxtail control good with chlorsulfuron or hexazinone treatments. Herbicides for weed control in fallow, Devils Lake. Preemergence treatments were applied on undisturbed wheat stubble on October 20, 1980 (F) or April 20, 1981 to 2 to 4 inch weeds. Glyphosate at 0.2 lb/A was applied as a cleanup operation on June 22 (Ju), July (Jy) and August (Au) to previously treated plots. Treatments were applied in 17 gpa at 30 psi to sandy loam soil with pH 8.0 and 4% organic matter. Precipitation for a 2 week period totaled 1.2 and 1.1 inch following fall and spring applications, respectively. June, July and August precipitation was near normal. The experiment was a randomized complete block with five replications.

		Weed	control	Soil
Treatment	Rate	Kocz		moisture
	lb/A		.(%)	(%)
Cyanazine+Atrazine F+(glyp Ju, Jy, Au)		100	100	12.5
Cyanazine+atrazine F+(glyp Ju, Jy)	2+0.5+(0.2)	100	94	8
Cyanazine+atrazine F+(glyp Jy)	2+0.5+(0.2)	100	85	12.2
Cyanazine+atrazine F	2+0.5	99	30	11.4
Atrazine F+(glyp Ju, Jy, Au)	0.75+(0.2)	100	99	12.4
Atrazine F+(glyp Ju,Jy)	0.75+(0.2)	100	95	
Atrazine F+(glyp Jy)	0.75+(0.2)	98	90	12.0
Atrazine F	0.75	90	20	11.1
Chlorsulfuron F+(glyp Ju, Jy, Au)	0.06+(0.2)	100	100	12.5
Chlorsulfuron F+(glyp Ju, Jy)	0.06+(0.2)	100	100	
Chlorsulfuron F+(glyp Jy)	0.06+(0.2)	100	99	12.5
Chlorsulfuron F	0.06	100	90	12.3
Chlorsulfuron F+(glyp Ju,Jy,Au)	0.03+(0.2)	100	100	12.7
Chlorsulfuron F+(glyp Ju,Jy)	0.03+(0.2)	100	100	
Chlorsulfuron F+(glyp Jy)	0.03+(0.2)	100	99	12.6
Chlorsulfuron F	0.03	100	78	12.2
Cyanazine+atrazine S+(glyp Ju, Jy, Au)	2+0.5+(0.2)	100	100	12.5
Cyanazine+atrazine S+(glyp Ju,Jy)	2+0.5+(0.2)			
Cyanazine+Atrazine S+(glyp Ju,Jy)	2+0.5+(0.2)	100	97	
Cyanazine+atrazine S+(glyp Jy)	2+0.5+(02)	100	83	12.1
Cyanazine+atrazine S	2+0.5	95	40	11.5
Chlorsulfuron S+(glyp Ju, Jy, Au)	0.06+(0.2)	100	100	12.7
Chlorsulfuron S+(glyp Ju, Jy)	0.06+(0.2)	100	100	
Chlorsulfuron S+(glyp Jy)	0.06+(0.2)	100	99	12.5
Chlorsulfuron S	0.06	99	86	12.3
Chlorsulfuron S+(glyp Ju, Jy, Au)	0.03+(0.2)	100	100	12.4
Chlorsulfuron S+(glyp Ju, Jy)	0.03+(0.2)	100	100	
Chlorsulfuron S+(glyp Jy)	0.03+(0.2)	100	98	12.5
Chlorsulfuron S	0.03	100	85	12.2
Glyphosate P+(glyp Ju,Jy,Au)	0.4+(0.2)	97	100	12.3
Glyphosate P+(glyp Ju, Jy)	0.4+(0.2)	95	94	
Glyphosate P+(glyp Jy)	0.4+(0.2)	85	88	12.2
Glyphosate P	0.4	64	55	11.4
a Soil moisture values were not dete			wag gimi	lon to

Soil moisture values were not determined because weed control was similar to Ju, Jy, Au cleanup treatment.

Summary

Kochia control was good to excellent with all preemergence treatments regardless if applied in the fall or early spring. A single application of glyphosate in July to preemergence treatments for green foxtail control was only slightly less effective than multiple applications in June and July or June, July and August. Soil moisture levels related to weed control. Spring preemergence fallow herbicides, Fargo 1981. Treatments were applied March 27 to soil with 2000 lb/A of wheat stubble using a bicycle wheel sprayer delivering 17 gpa at 35 psi. Precipitation for a 2 week period following application totaled 0.2 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were moderate to heavy.

	400 CO		ercent co	ontrol	
		June 9	900 mm 410 900 00		Total
Treatment 11	o/A Koe	z Fxtl	Kocz	Fxtl	Veg
	0.5 9	0 88	89	65	78
		9 96	95	90	89
	.05 9		94	96	92
			100	100	98
		9 95	97	94	94
				98	97
2111 J				99	96
				51	68
Cyanazine-W		8 73		41	68
		19 70		70	73
		3 84		46	60
		13 61	51	80	66
		8 74		88	89
	0.6 10				
		84		81	72
EL-8778		6 93		91	85
EL-8778		94		95	89
MC10108	1 10			38	50
MC10108		3 73		35	50
MC10108	2 8	33 75		40	50
	0.5	76 56		55	31
R-40244		8 60	93	5	48
Hexa+Metr-W 0.5+	0.5 10	0 95	100		95
Hexa+Chlorsulfuron 0.5+0		98 00	3 99	97	95
Hexa+DPX-5648 0.5+0.		00 95	5 97	95	96
Hexa+Diuron 0.5+		39 76		81	73
Buthidazole+Metr-W 1.0+		00 100			96
EL-187+Atra-W 0.5+		85 75			75
		96 75			73
Terbutryn+Atra-W 1.5+		00 80			72
Clsu+DPX-5648 0.06+0.		00 100			99
C1su+DPX-5648 0.06+0.		00 99			99
Chlorsulfuron+Metr-W 0.064		00 100			99
		99 86			73
Oxyfluorfen		83 90			91
Hexa+Oxyfluorfen 0.54	-0.5				0
Control		U (,		
Mean		91 83	3 85	72	76
High mean		00 100	0 100) 100	99
Low mean			o c) 0	C
Low mean Coeff. of variation		12 18			18
LSD(1 Percent)		21 21			26
		16 2			20
LSD(5 Percent)			4 L		<u>)</u>
No. of reps					
					and the second state of th

Summary

Kochia and foxtail control was good with chlorsulfuron and DPX-5648 alone or in combination with other herbicides, EL-187 at 0.61b/A alone or in combination with atrazine, and metribuzin combinations with hexazinone or buthidazole.

Spring preemergence fallow herbicides, Minot 1981. Treatments were applied April 7 to soil with 1500 lb/A of wheat stubble using a bicycle wheel sprayer delivering 17 gpa at 35 psi. Precipitation for a 2 week period following application totaled 0.1 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were moderate to heavy.

Data	Perce			ent controlTotal				
Rate Treatment 1b/A								
	Fxtl	Ruth	Veg	Fxtl	Ruth	Kocz	Veg	
Hexazinone 0.5	89	44	55	86	60	0	50	
Chlorsulfuron 0.03	90	78	82	71	75	80	76	
Chlorsulfuron 0.06	96	78	86	96	82	90	91	
Chlorsulfuron 0.12	93	89	91	99	85	90 95	91	
DPX-5648 0.004	88	36	55	50	35	53	92 45	
DPX-5648 0.008	84	60	75	80	58	55 67	45 66	
DPX-5648 0.015	90	71	75	73	65	80	71	
Cyanazine-W 2	59	49	53	13	60	93	54	
Atrazine-W 0.75	10	46	28	0	35	85	38	
Metribuzin-W 0.75	81	79	79	35	58	88	58	
EL-187 0.4	85	21	48	63	38	63	55	
EL-187 0.5	84	23	51	60	35	55	49	
EL-187 0.6	85	28	55	76	20	28	42	
EL-8778 0.8	68	23	43	48	40	70	53	
EL-8778 1	78	28	51	70	43	45	55	
EL-8778 1.2	84	38	54	88	56	56	65	
MC10108 1	74	48	58	68	18	18	39	
MC10108 1.5	87	75	79	71	50	60	61	
MC10108 2	84	80	81	79	59	65	67	
R-40244 0.5	38	23	29	Ó	25	78	34	
R-40244 1	60	71	69	10	40	91	42	
Hexa+Metr-W 0.5+0.5	93	60	73	89	41	53	62	
Hexa+Chlorsulfuron 0.5+0.06	95	86	89	99	85	90	92	
Hexa+DPX-5648 0.5+0.015	95	83	88	93	70	73	81	
Hexa+Diuron 0.5+1.0	94	21	50	92	15	46	48	
Buthidazole+Metr-W 1.0+0.5	95	59	76	94	64	95	81	
EL-187+Atra-W 0.5+0.5	84	29	46	75	28	64	50	
Cyan-W+Atra-W 2+0.5	88	43	61	66	55	79	62	
Terbutryn+Atra-W 1.5+0.5	16	54	38	0	30	90	40	
Clsu+DPX-5648 0.06+0.008	97	90	94	96	86	99	92	
Clsu+DPX-5648 0.06+0.015	97	91	94	97	85	95	92	
Chlorsulfuron+Metr-W 0.06+0.5	95	89	93	96	79	97	88	
Oxyfluorfen 0.5	46	15	30	5	20	49	26	
Hexa+Oxyfluorfen 0.5+0.5	93	29	55	90	20	38	48	
Control	0	Ō	0	0	0	0	0	
Mean	77	52	62	64	49	66	59	
High mean	97	91	94	99	86	99	92	
Low mean	0	0	0	Ő	Ő	Ő	0	
Coeff. of variation	14	39	17	21	47	33	21	
LSD(1 Percent)	20	37	19	25	42	40	23	
LSD(5 Percent)	15	28	15	19	32	31	17	
No. of reps	4	4	4	4	4	4	4	
							,	

Summary

Broadspectrum weed control was good with chlorsulfuron alone or in combination with other herbicides at rates of 0.06 lb/A or higher.

Spring preemergence fallow herbicides, Williston 1981. Treatments were applied April 8 to soil with 1500 lb/A of wheat stubble using a bicycle wheel sprayer delivering 17 gpa at 35 psi. Precipitation for a 2 week period following application totaled 0.1 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 feet. Weed densities were moderate.

				F	Percer	nt. co	ontrol			
	Rate		June	22-				July	9T	otal
	lb/A	Fy+1	Tami	Ruth	Kocz	Fxtl	Tamu	Ruth	Kocz	Veg
Treatment	10/1	1 1 0 1	T CATTAGE		- Constanting	CHERTOPHER CONTRACT			and the second	
Hamainono	0.5	46	30	45	0	91	48	65	28	59
Hexazinone Chlorsulfuron	0.03	90	91	85	69	90	93	75	83	87
Chlorsulfuron	0.06	91	100	93	69	98	100	91	78	91
Chlorsulfuron	0.12	99	100	99	100	100	100	98	99	99
DPX-5648	0.004	86	73	73	33	93	80	89		70
DPX-5648	0.008	81	58	73	40	92	84	85		71
DPX-5648	0.015	91	79	75	58	95	81	88		75
Cyanazine-W	2	55	66	70	45	50	56	64		50
Atrazine-W	0.75	0	50	68	55		41	68		51
Metribuzin-W	0.75	45	84	88	96		89	91		82
EL-187	0.4	49	65	10	43		55	29		58
EL-187	0.5	75	58	28	60		48	28		53
EL-187	0.6	79	66	33	91		63	45		67
EL-8778	0.8	64	52	50				66		62
EL-8778	1	75	69	56				78		75
EL-8778	1.2	86	75	74				81		77
MC10108	1	90	75	82						72
MC10108	1.5	96	96							75
MC10108	2	98	100							86
R-40244	0.5	59	68		-					54 84
R-40244	1	93	80							
Hexa+Metr-W	0.5+0.5	75	90							97 92
Hexa+Chlorsulfuron 0	.5+0.06	96	99							86
	5+0.015	94	76							80
Hexa+Diuron	0.5+1.0	98	70							97
Buthidazole+Metr-W	1.0+0.5	98								83
EL-187+Atrazine-W	0.5+0.5	84								82
Cyan-W+Atra-W	2+0.5	81	68							74
Terbutryn+Atra-W	1.5+0.5	30								95
	6+0.008	99								99
	6+0.015	100								99
Chlorsulfuron+Metr-W (.06+0.5	98				-				59
Oxyfluorfen	0.5	88							-	85
Hexa+Oxyfluorfen	0.5+0.5	99) (0 0	0
Control		0) () (5 (U (, ,		· ·	
		77	76	5 73	3 6	8 8	3 80) 7	6 72	75
Mean		100			-					
High mean									0 0	
Low mean		10							0 28	13
Coeff. of variation		14								18
LSD(1 Percent)		10						5 2	1 29	14
LSD(5 Percent)		4							4 4	4
No. of reps										

Summary

Broadspectrum weed control was good with chlorsulfuron alone or in combination with other herbicides and metribuzin combinations with hexazinone or buthidazole. Spring preemergence fallow herbicides, Grant County 1981. Treatments were applied April 30 in wheat stubble with a back pack sprayer delivering 17gpa at 35 psi. Precipitation for a 2 week period following application totaled 0.2 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were variable.

and the second s	Percent control							
	Rate	June8	July24			5-Total		
Treatment	lb/A	-Tota	al Veg-	Fxtl	Bdlf	Veg		
Cyanazine	2	70	58	34	85	59		
Cyanazine+Atrazine	2+0.5	64	55	28	91	58		
Cyanazine+Metribuzin	2+0.5	79	65	48	95	68		
Chlorsulfuron	0.06	86	86	98	100	99		
Hexazinone	0.5	73	76	88	80	84		
Hexazinone+Atrazine	0.5+0.5	86	91	93	98	95		
Hexazinone+Metribuzin	0.5+0.5	88	90	89	95	92		
Hexazinone+Chlorsulfuro	n 0.5+0.06	95	96	100	100	100		
DPX-5648	0.015	76	74	63	94	76		
Chlorsulfuron+DPX-5648	0.06+0.008	92	95	97	100	99		
EL-187	0.5	60	49	33	80	54		
EL-8778	1	59	53	40	84	59		
MC-10108	2	97	91	94	99	97		
Terbutryn+Metolachlor	1.5+3	63	58	30	80	56		
Terbutryn+Atrazine	1.5+0.5	63	53	23	96	58		
Control		0	0	0	0	0		
Mean		72	68	60	86	72		
High mean		97	96	100	100	100		
Low mean		0	0	0	0	0		
Coeff. of variation		13	13	25	9	10		
LSD(1 Percent)		18	16	28	14	14		
LSD(5 Percent)		14	12	21	11	10		
No. of reps		4	4	4	4	4		

Summary

Season long weed control was good with chlorsulfuron alone or in combination with other herbicides, the methyl ester of acifluorfen (MC10108) and hexazinone in combination with atrazine or metribuzin. Spring applied fallow herbicides, Hettinger County 1981. Treatments were applied April 30 in wheat stubble with a back pack sprayer delivering 17gpa at 35 psi. Precipitation for a 2 week period following application totaled 0.5 inch. The experimental design was a randomized complete block with 3 replications and experimental units were 8 by 20 ft. Weed densities were moderate.

		Percent control				
	Rate	June8	July7			5
Treatment	1b/A	Total	veg	Fxtl	Kocz	Wioa
					75	0
Cyanazine	2	43	20	33	75	10
Cyanazine+Atrazine	2+0.5	58	35	72	93	20
Cyanazine+Metribuzin	2+0.5	65	37	87	95	0
Chlorsulfuron	0.06	47	40	100	100 13	58
Hexazinone	0.5	45	35	98	55	53
Hexazinone+Atrazine	0.5+0.5	62	47	78	25 85	50
Hexazinone+Metribuzin	0.5+0.5	68	48	100	100	47
Hexazinone+Chlorsulfuro	on $0.5+0.06$	67	60	100	20	67
DPX-5648	0.015	83	65	97 100	100	62
Chlorsulfuron+DPX-5648	0.06+0.008	87	70		40	10
EL-187	0.5	53	43	73	73	7
EL-8778	1	60	40	77 100	100	30
MC-10108	2	80	57 28	77	30	0
Terbutryn+Metolachlor	1.5+3	37	40	40	95	23
Terbutryn+Atrazine	1.5+0.5	63	40	40	0	0
Control		0	0	U	U	
		57	42	77	67	27
Mean		87	70	100	100	
High mean		0	0	0	0	
Low mean		25	30	19	31	62
Coeff. of variation		32	28	33	46	_
LSD(1 Percent)		24	21	25	34	
LSD(5 Percent)		3	3	3	3	
No. of reps		C	,	5		

Summary

No treatment provided adequate control of wild cat. Foxtail and kochia control was good with chlorsulfuron alone or in combination with hexazinone and DPX-5648, metribuzin combinations with cyanazine or hexazinone, or the methyl ester of acifluorfen (MC10108). Spring applied herbicides for chemical fallow, Mohall 1981. Treatments were applied May 11 in wheat stubble with a bicycle wheel sprayer delivering 17 gpa at 35 psi. First rainfall was 0.7 inch over a 3 day period from May 22 to 24. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were moderate to heavy.

The sector sector	Rate	Percent	control	July	22
Treatment	lb/A	 Grft	Tamu		Fach
Cyanazine-W	2	83	18		65
Cyanazine-W+Atrazine-W	2+0.5	80	53		69
Cyanazine-W+Metribuzin-W	2+0.5	93	85		68
Chlorsulfuron	0.06	100	99		92
Hexazinone	0.5	94	81		92 84
Hexazinone+Atrazine-W	0.5+0.5	98	96		100
Hexazinone+Metribuzin-W	0.5+0.5	98	96		92
Hexazinone+Chlorsulfuron	0.5+0.06	100	99		100
DPX-5648	0.015	100	85		81
Chlorsulfuron+DPX-5648 0	.06+0.008	100	100		100
EL-187	0.5	98	13		66
EL-8778	1	96	13		65
MC-10108	2	94	91		68
Terbutryn+Metolachlor	1.5+3	92	30		80
Terbutryn+Atrazine-W	1.5+0.5	76	20		71
Control		0	0		0
		, in the second s	0		0
Mean		87	61		75
High mean		100	100		100
Low mean		0	0		0
Coeff. of variation		9	21		16
LSD(1 Percent)		14	24		22
LSD(5 Percent)		11	18		17
No. of reps		4	4		4
					-

Summary

Broad spectrum weed control was excellent with chlorsulfuron alone or with hexazinone in combination with atrazine or metribuzin and good with hexazinone or DPX-5648 alone.

Postemergence fallow herbicides, Fargo 1981. Treatments were applied May 14 to 1 to 2 inch kochia and sunflower (VSF) using a bicycle wheel sprayer delivering 17 gpa at 35 psi. Precipitation for a 2 week period following application totaled 3.5 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were moderate.

	and the second secon	CON CON CON CON CON	Percent control					
	Rate	Jun	June 1		July 1			
Treatment	lb/A	Kocz	VSF	Kocz	Fxtl	VSF		
Paraquat+Cyanazine-W	0.5+2	100	96	85	49	70		
Paraquat+Metribuzin-F	0.5+0.5	100	97	97	86	87		
Paraquat+Atrazine-W	0.5+0.5	100	91	73	36	38		
Paraquat+Chlorsulfuron	0.5+0.03	100	95	97	99	87		
Paraquat+Chlorsulfuron	0.5+0.06	100	95	97	99	97		
Paraquat+DPX-5648	0.5+0.004	99	95	94	92	79		
Paraquat+DPX-5648	0.5+0.008	100	89	92	95	58		
Terbutryn	2	100	93	74	36	56		
Terbutryn+Cyanazine-W	1.5+1.5	100	98	96	69	84		
Terbutryn+Dicamba	1.5+0.25	100	93	91	20	85		
Terbutryn+Meto&Atra	1.5+.84	100	93	88	82	63		
Terbutryn+Metribuzin-F	1.5+0.5	100	98	99	89	95		
Terbutryn+Metolachlor	1.5+3	100	99	79	73	71		
Terbutryn+Meto+Metr-F	1.5+3+0.5	100	100	97	87	93		
Terbutryn+Chlorsulfuron	n 1.5+0.03	100	99	99	99	99		
Terbutryn+Hexazinone	1.5+0.5	100	94	91	77	70		
R-40244	0.5	100	84	91	28	23		
R-40244	1	100	96	95	13	64		
MC10108	1	100	93	90	64	70		
MC10108	1.5	100	93	96	78	66		
MC10108	2	100	100	98	94	95		
Control		0	0	0	0	0		
Mean		95	90	87	66	70		
High mean		100	100	99	99	99		
Low mean		0	0	0	0	0		
Coeff. of variation		1	6	6	28	29		
LSD(1 Percent)		1	11	10	35	37		
LSD(5 Percent)		1	8	8	26	28		
No. of reps		4	4	4	4	4		
			List provident					

Summary

Broadspectrum weed control was good with the methyl ester of acifluorfen (MC10108) at 2 lb/A, paraquat combinations with metribuzin and chlorsulfuron, or terbutryn combinations with metribuzin and chlorsulfuron.
Postemergence fallow herbicides, Minot 1981. Treatments were applied May 20 to 2 to 4 inch weeds using a bicycle wheel sprayer delivering 17 gpa at 35 psi. Precipitation for a 2 week period following application totaled 2.1 in. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 feet. Weed densities were moderate to heavy.

Rate TreatmentJune 23-Total Fxtl RuthJuly 21Total VegParaquat+Cyanazine-W0.5+295949386839686Paraquat+Metribuzin-F0.5+0.59798978610010093Paraquat+Atrazine-W0.5+0.5096430969564Paraquat+Chlorsulfuron0.5+0.050969390951009997Paraquat+Chlorsulfuron0.5+0.0691859095948792Paraquat+DPX-56480.5+0.00493848795948683Terbutryn22392515949464Terbutryn+Cyanazine-W1.5+1.591939173949685Terbutryn+Meto&Atra1.5+0.2525996125999777Terbutryn+MetoActra1.5+0.595979651999997Terbutryn+MetoLachlor1.5+398979783889489Terbutryn+MetoHactler <f< td="">1.5+3+0.597979792979996Terbutryn+MetoHactler<f< td="">1.5+0.596969299999996R-402440.53368490788554R-40244183888363809380<</f<></f<>					-Perce	nt co	ntrol-		
Paraquat+Cyanazine-W 0.5+2 95 94 93 86 83 96 86 Paraquat+Metribuzin-F 0.5+0.5 97 98 97 86 100 100 93 Paraquat+Atrazine-W 0.5+0.5 0 96 43 0 96 95 64 Paraquat+Chlorsulfuron 0.5+0.03 91 89 90 95 100 99 97 Paraquat+DPX-5648 0.5+0.06 91 85 90 99 99 99 99 Paraquat+DPX-5648 0.5+0.008 80 83 81 87 90 88 83 Terbutryn 2 23 92 51 5 94 94 64 Terbutryn+Disamba 1.5+1.5 91 93 91 73 94 96 85 Terbutryn+Meto&Atra 1.5+0.25 95 97 96 51 99 97 7 Terbutryn+Meto&Atra 1.5+340.5 </td <td></td> <td></td> <td>Ju</td> <td>ine 23-</td> <td>Total</td> <td></td> <td>July</td> <td>21</td> <td>Total</td>			Ju	ine 23-	Total		July	21	Total
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Treatment	lb/A	Fxtl	Ruth	Veg	Fxtl	Ruth	Kocz	Veg
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-					and the second			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-	-	86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-				100	93
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								95	64
Paraquat+DPX-5648 0.5+0.004 93 84 87 95 94 87 92 Paraquat+DPX-5648 0.5+0.008 80 83 81 87 90 88 83 Terbutryn 2 23 92 51 5 94 94 64 Terbutryn+Cyanazine-W 1.5+1.5 91 93 91 73 94 96 85 Terbutryn+Dicamba 1.5+0.25 25 99 61 25 99 97 Terbutryn+Meto&Atra 1.5+0.5 95 97 96 51 99 99 77 Terbutryn+Metolachlor 1.5+3 98 97 97 83 88 94 89 Terbutryn+Metolachlor 1.5+3 98 97 97 83 88 94 89 Terbutryn+Metolachlor 1.5+3 98 97 97 83 88 94 89 Terbutryn+Metolachlor 1.5+3 96 96 96 92 99 99 96 R-40244						95	100	99	97
Paraquat+DPX-5648 0.5+0.008 80 83 81 87 90 88 83 Terbutryn 2 23 92 51 5 94 94 64 Terbutryn+Cyanazine-W 1.5+1.5 91 93 91 73 94 96 85 Terbutryn+Dicamba 1.5+0.25 25 99 61 25 99 97 Terbutryn+Meto&Atra 1.5+0.25 25 99 61 25 99 97 Terbutryn+Meto&Atra 1.5+0.25 95 97 96 51 99 99 77 Terbutryn+Metolachlor 1.5+3 98 97 97 83 88 94 89 Terbutryn+Metolachlor 1.5+3 98 97 97 83 88 94 89 Terbutryn+Metosulfuron 1.5+0.03 97 96 97 98 100 100 99 Terbutryn+Hexazinone 1.5+0.5 96 96 92 99 99 96 R-40244 0.5 33 </td <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>99</td> <td>99</td> <td>99</td> <td>99</td>	-				-	99	99	99	99
Terbutryn22392515949464Terbutryn+Qyanzine-W $1.5+1.5$ 91939173949685Terbutryn+Dicamba $1.5+0.25$ 25996125999974Terbutryn+Meto&Atra $1.5+0.25$ 259961259997Terbutryn+Meto&Atra $1.5+0.5$ 95979651999997Terbutryn+Metribuzin-F $1.5+0.5$ 95979651999977Terbutryn+Metolachlor $1.5+3.90.5$ 979792979996Terbutryn+Metolachlor $1.5+0.5$ 979792979996Terbutryn+Metolachlor $1.5+0.5$ 96969692999999Terbutryn+Hexazinone $1.5+0.5$ 96969692999996R-402440.53368490788554R-40244183888363809380MC101081.598979883909788MC101081.598979883909788MC101081.598979883999687Control0000000Mean74888065889080 <td></td> <td></td> <td>93</td> <td>84</td> <td>87</td> <td>95</td> <td>94</td> <td>87</td> <td>92</td>			93	84	87	95	94	87	92
Terbutryn+Cyanazine-W 1.5+1.5 91 93 91 73 94 96 85 Terbutryn+Dicamba 1.5+0.25 25 99 61 25 99 97 Terbutryn+Meto&Atra 1.5+0.25 25 99 61 25 99 97 Terbutryn+Meto&Atra 1.5+0.5 95 97 96 51 99 99 77 Terbutryn+Metolachlor 1.5+3 98 97 97 83 88 94 89 Terbutryn+Metolachlor 1.5+3 98 97 97 83 88 94 89 Terbutryn+Meto+Metr-F 1.5+0.03 97 96 97 98 100 100 99 Terbutryn+Hexazinone 1.5+0.5 96 96 92 99 99 96 R-40244 0.5 33 68 49 0 78 85 54 R-40244 1 83 88 83 63 80 93 80 MC10108 1.5 98 97 <td></td> <td>0.5+0.008</td> <td>80</td> <td>83</td> <td>81</td> <td>87</td> <td>90</td> <td>88</td> <td>83</td>		0.5+0.008	80	83	81	87	90	88	83
Terbutryn+Dicamba $1.5+0.25$ 25 99 61 25 99 99 74 Terbutryn+Meto&Atra $1.5+.84$ 98 99 98 96 95 99 97 Terbutryn+Metribuzin-F $1.5+0.5$ 95 97 96 51 99 99 77 Terbutryn+Metolachlor $1.5+3$ 98 97 97 83 88 94 89 Terbutryn+Meto+Metr-F $1.5+3+0.5$ 97 97 92 97 99 96 Terbutryn+Meto+Metr-F $1.5+3+0.5$ 97 97 92 97 99 96 Terbutryn+Meto+Metr-F $1.5+3+0.5$ 97 97 98 100 100 99 Terbutryn+Meto+Metr-F $1.5+3+0.5$ 96 96 96 92 99 99 96 Terbutryn+Hexazinone $1.5+0.5$ 96 96 92 99 99 96 R-40244 0.5 33 68 49 0 78 85 54 R-40244 1 83 83 63 80 93 80 MC10108 1.5 98 97 98 39 96 87 Control 0 0 0 0 0 0 0 MC10108 29 99 98 99 100 100 99 Low mean 0 0 0 0 0 0 0 Low mean 0 0 0 <td></td> <td>2</td> <td>23</td> <td>92</td> <td>51</td> <td>5</td> <td>94</td> <td>94</td> <td>64</td>		2	23	92	51	5	94	94	64
Terbutryn+Dicamba $1.5+0.25$ 25 99 61 25 99 99 74 Terbutryn+Meto&Atra $1.5+.84$ 98 99 98 96 95 99 97 Terbutryn+Metribuzin-F $1.5+0.5$ 95 97 96 51 99 99 77 Terbutryn+Metolachlor $1.5+3$ 98 97 97 83 88 94 89 Terbutryn+Meto+Metr-F $1.5+3+0.5$ 97 97 92 97 99 96 Terbutryn+Meto+Metr-F $1.5+3+0.5$ 97 97 98 100 100 99 Terbutryn+Meto+Metr-F $1.5+0.5$ 96 96 92 99 99 96 Terbutryn+Meto+Metr-F $1.5+0.5$ 96 96 92 99 99 96 Terbutryn+Meto-Metr-Metr-F $1.5+0.5$ 96 96 92 99 99 96 R-40244 0.5 33 68 49 0 78 85 54 R-40244 1 83 88 83 63 80 93 80 MC10108 1.5 98 97 98 39 96 87 Control 0 0 0 0 0 0 Mc10108 29 99 98 99 100 100 99 Low mean 0 0 0 0 0 0 0 0 LSD(1 Percent) 28 14 <			91	93	91	73	94	96	85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				99	61	25	99	99	
Terbutryn+Metolachlor1.5+398979783889489Terbutryn+Meto+Metr-F1.5+3+0.597979792979996Terbutryn+Chlorsulfuron1.5+0.039796979810010099Terbutryn+Hexazinone1.5+0.5969692999996R-402440.53368490788554R-40244183888363809380MC10108169867638787966MC101081.598979381939687Control00000000Mean74888065889080High mean9899989910010099Low mean0000000Coeff. of variation20911268510LSD(1 Percent)2814173113815LSD(5 Percent)2111132410611		1.5+.84	98	99	98	96	95	99	97
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				97	96	51	99	99	77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	1.5+3	98	97	97	83	88	94	89
Terbutryn+Hexazinone $1.5+0.5$ 96969692999996R-402440.53368490788554R-40244183888363809380MC10108169867638787966MC101081.598979883909788MC10108290979381939687Control00000000Mean74888065889080High mean9899989910010099Low mean0000000Coeff. of variation20911268510LSD(1 Percent)2814173113815LSD(5 Percent)2111132410611				97	97	92	97	99	96
R-402440.53368490788554 $R-40244$ 183888363809380MC10108169867638787966MC101081.598979883909788MC10108290979381939687Control0000000Mean74888065889080High mean9899989910010099Low mean0000000Coeff. of variation20911268510LSD(1 Percent)2814173113815LSD(5 Percent)2111132410611				96	97	98	100	100	99
R=40244183888363809380MC10108169867638787966MC101081.598979883909788MC10108290979381939687Control00000000Mean74888065889080High mean9899989910010099Low mean0000000Coeff. of variation20911268510LSD(1 Percent)2814173113815LSD(5 Percent)2111132410611		1.5+0.5	96	96	96	92	99	99	96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.5	33	68	49	0	78	85	54
MC10108 1.5 98 97 98 83 90 97 88 MC101082 90 97 93 81 93 96 87 Control0000000Mean74 88 80 65 88 90 80 High mean98 99 98 99 100 100 99 Low mean0000000Coeff. of variation 20 9 11 26 8 5 10 LSD(1 Percent) 28 14 17 31 13 8 15 LSD(5 Percent) 21 11 13 24 10 6 11		1	83	88	83	63	80	93	80
MC10108290979381939687Control000000000Mean74888065889080High mean9899989910010099Low mean0000000Coeff. of variation20911268510LSD(1 Percent)2814173113815LSD(5 Percent)2111132410611		1	69	86	76	38	78	79	66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MC10108	1.5	98	97	98	83	90	97	88
Control00000000Mean74888065889080High mean9899989910010099Low mean0000000Coeff. of variation20911268510LSD(1 Percent)2814173113815LSD(5 Percent)2111132410611	MC10108	2	90	97	93	81	93	96	87
High mean9899989910010099Low mean0000000Coeff. of variation20911268510LSD(1 Percent)2814173113815LSD(5 Percent)2111132410611	Control		0	0		0			
High mean9899989910010099Low mean0000000Coeff. of variation20911268510LSD(1 Percent)2814173113815LSD(5 Percent)2111132410611	N								
Low mean00000000Coeff. of variation20911268510LSD(1 Percent)2814173113815LSD(5 Percent)2111132410611						-		-	
Coeff. of variation20911268510LSD(1 Percent)2814173113815LSD(5 Percent)2111132410611	-								
LSD(1 Percent)2814173113815LSD(5 Percent)2111132410611									
LSD(5 Percent) 21 11 13 24 10 6 11									
No. or reps 4 4 4 4 4 4 4									
	No. of reps		4	4	4	4	4	4	4

Summary

Broadspectrum weed control was good with the methyl ester of acifluorfen (MC10108) at 1.5 and 21b/A, paraquat combinations with chlorsulfuron and DPX-5648, or terbutryn combination with chlorsulfuron, hexazinone and metolachlor. Postemergence fallow herbicides, Williston 1981. Treatments were applied May 21 to 2 to 4 inch weeds using a bicycle wheel sprayer delivering 17 gpa at 35 psi. Precipitation for a 2 week period following application totaled 2.9 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were moderate.

					Percer	nt co	ontrol		1 (20) (20) (20) (20) (20) (20) (20) (20)	
	Rate		June	22				July 9)T	Vac
Treatment	lb/A	Fxtl	Tamu	Ruth	Kocz	Fxtl	Tamu	Ruth	KOCZ	Veg
Paraquat+Cyanazine- Paraquat+Metribuzin Paraquat+Atrazine-W Paraquat+Chlorsulfu Paraquat+Chlorsulfu Paraquat+DPX-5648 Paraquat+DPX-5648 Terbutryn Terbutryn+Cyanazine Terbutryn+Meto&Atra Terbutryn+Meto&Atra Terbutryn+Metolach Terbutryn+Metolach Terbutryn+Metolach Terbutryn+Metolach Terbutryn+Metolach Terbutryn+Metolach Terbutryn+Hexazinon R-40244 R-40244 Mc10108 Mc10108 Mc10108 Control	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	93 60 96 95 91 23 85 91 76 90 94 93 85 91 76 90 94 93 86 94 94 94	98 90 95 98 100	99 100	100 100 98 100 100 100 100 94 95 91 93 93 100	48 95 96 94 99 65 96 76 89 89	100 91 98 63 71 95 100 100 88 81 5 91 5 100 100	100 100 78 75 88 96 100	87 93	97 80 70 98 99 95 92 71 96 76 97 77 77 87 98 99 80 86 81 92 91 0
Mean High mean Low mean Coeff. of variatio LSD(1 Percent) LSD(5 Percent) No. of reps	n	73 96 01 11 15 11	5 100 9 0 5 15 12	100) 100) 00 2 5 4 5 3 7) 99) (5 19) 25 7 19) 100) 0) 17 5 27) 100) 0 7 9 7 15) 11	100 0 5 9 7	84 99 0 9 13 10 4

Summary

Broadspectrum weed control was good with the methyl ester of acifluorfen (MC10108) at 1.5 to 2 lb/A, paraquat combinations with cyanazine, chlorsulfuron and DPX-5648, or terbutryn combinations with cyanazine, chlorsulfuron, hexazinone and metolachlor. Cyanazine for chemical fallow, Fargo 1981. Treatments were applied May 18 to 1.5 to 2 inch kochia and sunflower using a bicycle wheel sprayer delivering 17 gpa at 35 psi. First rain after application was 3.3 inch over a 3 day period of May 22 to 24. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were heavy.

			-Perc	ent cor	itrol	
	Rate	June	1		July 6-	
Treatment	lb/A	Kocz	VSF	Kocz	Fxtl	VSF
Cyan-DF+Atrazine-W+2,4-D	2.0 1.0 5	00				0.0
	2+0.4+0.5	98	97	79	60	83
Cyan-DF+Atrazine-W+2,4-D	3+0.6+0.5	100	100	91	63	91
Cyan-W+Atrazine-W+2,4-D	2+0.4+0.5	100	96	83	44	85
Cyan-W+Atrazine-W+2,4-D	3+0.6+0.5	100	99	88	75	88
Cyan-W+Atrazine-W+Glyphosate	2+0.4+0.37	100	98	84	39	80
Cyan-LF+Atra-W+Glyphosate	2+0.4+0.37	100	98	86	39	85
Cyan-W+Atrazine-W+Paraquat	2+0.4+0.5	100	97	84	48	86
Cyan-W+Atrazine-W+LOTM	2+0.4+0.25G	100	100	81	49	91
Control	0	0	0	0	0	0
		° °	U	v	0	U
Mean		89	87	75	46	77
High mean		100	100	91	75	91
Low mean		0	0	0	0	0
Coeff. of variation		1	3	11	35	8
LSD(1 Percent)		2	5	17	=	
LSD(5 Percent)		1	4		32	13
No. of reps		4	4	12	23	9
not of topb		4	4	4	4	4

Summary

Burndown of kochia and volunteer sunflower was excellent with all treatments. Residual weed control with cyanazine plus atrazine was similar regardless of cyanazine formulation. Cyanazine for chemical fallow, Minot 1981. Treatments were applied May 6 to 1 to 1.5 inch Russian thistle using a bicycle wheel sprayer delivering 17 gpa at 35 psi. Rainfall for a 2 week period following application totaled 0.1 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were moderate to heavy.

			P					
	Rate	-June	22-T	otal	2020 4000 9320 4000 M	July	7 21-T	otal
Treatment	1b/A	Fxtl	Ruth	Veg	Fxtl	Ruth	Kocz	Veg
						-		
Cyan-DF+Atrazine-W+2,4-D	2+0.4+0.5	91	91	91	66	79	91	78
Cyan-DF+Atrazine-W+2,4-D	3+0.6+0.5	98	98	98	86	91	95	91 82
Cyan-W+Atrazine-W+2,4-D	2+0.4+0.5	90	94	94	68	84	94	
Cyan-W+Atrazine-W+2,4-D	3+0.6+0.5	96	97	97	85	89	95	90
Cyan-W+Atrazine-W+Glyphosate	2+0.4+0.37	86	89	87	61	76	91 89	75 75
Cyan-LF+Atra-W+Glyphosate	2+0.4+0.37	86	90	88	63 65	78 75	90	77
Cyan-W+Atrazine-W+Paraquat	2+0.4+0.5	89	94	91 92			93	83
Cyan-W+Atrazine-W+LOTM	2+0.4+0.25G		92	92	15	0	0	0
Control	0	0	0	U	0	0	0	
		81	83	82	63	72	82	72
Mean		98	98	98	-		95	91
High mean		90	90	0			0	0
Low mean		3	4	3			2	6
Coeff. of variation		5	6	5		-		8
LSD(1 Percent)		4	5	3				6
LSD(5 Percent)		4	4	4				4
No. of reps								

Summary

Weed control was better with the higher than lower rate of cyanazine plus atrazine regardless of cyanazine formulation.

Cyanazine for chemical fallow, Williston 1981. Treatments were applied May 7 to 1 to 3 inch tansy mustard and Russian thistle using a bicycle sprayer delivering 17 gpa at 35 psi. Rainfall for a 2 week period following application totaled 0.4 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were moderate.

				Pe	erce	nt con	ntro:	L		
	Rate		-June	e22			J1	ly g	9To	otal
Treatment	lb/A	Fxtl	[amu]	Ruth	Kocz	Fxt1	[amu]	Ruth	Kocz	Veg
Cyan-DF+Atrazine-W+2,4-D	2.0 1.0 5	oli	100	100	100	00	100	400	400	~~~
	2+0.4+0.5		100		100	96	100	100	100	99
Cyan-DF+Atrazine-W+2,4-D	3+0.6+0.5		100	100		100	100	100	100	100
Cyan-W+Atrazine-W+2,4-D	2+0.4+0.5		100	100	100	98	100	99	100	98
Cyan-W+Atrazine-W+2,4-D	3+0.6+0.5	100	100	100	100	100	100	100	100	100
Cyan-W+Atrazine-W+Glyphosate	2+0.4+0.37	93	100	100	100	97	100	100	100	99
Cyan-LF+Atra-W+Glyphosate	2+0.4+0.37	90	100	100	100	91	100	100	99	96
Cyan-W+Atrazine-W+Paraquat	2+0.4+0.5	96	100	100	100	99	100	100	100	99
Cyan-W+Atrazine-W+LOTM	2+0.4+0.25G	-	98	100	98	99	97	100	100	98
Control	0		0	0	0	Ő	Ó	0	0	0
Mean		82	89	89	89	86	88	89	89	87
High mean		100	100	100	100	100	100	100	100	100
Low mean		0	0	0	0	0	0	0	0	0
Coeff. of variation		19	2	0	2	2	1	1	1	1
LSD(1 Percent)		31	3	0	3	3	3	2	2	2
LSD(5 Percent)		23	2	0	2	2	2	1	1	2
No. of reps		4	4	4	4	4	4	4	4	4
1100 02 1000		7	т	-	-7	7	-	-	4	4

Summary

Weed control was excellent with all treatments.

PP009 in fallow systems, Fargo 1981. Treatments were applied July 1 to 2 to 6 inch weeds with a bicycle wheel sprayer delivering 8.5 gpa at 35 psi. The experimental design was a randomized complete block with 3 replications and experimental units were 8 by 20 ft. Weed densities were moderate to heavy.

and a second		1997 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -			control		10
	Rate			NAT AND MED HAR OUT	AL		
Treatment	oz/A	Kocz	Fxtl	VSF	Kocz	Fxtl	VSF
			00	0	0	82	0
PP009+0C	2+1qt	0	99	0			
PP009+0C	4+1qt	0	98	0	0	94	0
PP009+0C	8+1qt	0	98	0	0	88	0
PP009+Chlorsulfuron+OC	4+0.5+1qt	99	99	99	95	90	96
Control	110091140	Ő	0	0	0	0	0
		20	79	20	19	71	19
Mean						94	96
High mean		99	99	99	95		
Low mean		0	0	0	0	0	0
Coeff. of variation		0	1	0	11	11	12
LSD(1 Percent)		0	2	0	6	21	6
		0	1	0	4	14	4
LSD(5 Percent) No. of reps		3	3	3	3	3	3

Summary

Foxtail control was good with PP009 at rates of 2 to 8 oz/A. PP009 combinations with chlorsulfuron provided good control of all weed species. Non-selective fallow herbicides, Fargo 1981. Treatments were applied June 3 to 2 to 4 inch kochia and sunflower (VSF) using a bicycle wheel sprayer delivering 8.5 gpa at 35 psi. Precipitation for a 2 week period following application totaled 1.3 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 feet. Weed densities were moderate.

Percent control 98 95 99 98 100 100 75 68 90 88 98 95 96 91 95 94 85 93 90 96 95 94
99 98 100 100 75 68 90 88 98 95 96 91 95 94 85 93 90 96 90 96
99 98 100 100 75 68 90 88 98 95 96 91 95 94 85 93 90 96 90 96
100 100 75 68 90 88 98 95 96 91 95 94 85 93 90 96
75 68 90 88 98 95 96 91 95 94 85 93 90 96
90 88 98 95 96 91 95 94 85 93 90 96
98 95 96 91 95 94 85 93 90 96
96 91 95 94 85 93 90 96
95 94 85 93 90 96
85 93 90 96
90 96
- ,.
95 98
00 100
99 100
89 94
00 96
71 80
97 93
00 100
00 100
97 95
00 95
99 96
98 95
00 100
00 99
00 100
00 100
00 95
00 100
99 98 98 0 0
÷ 0
92 92
00 100
0 0
5 6
9 10
9 10 7 7

Summary

Weed control was excellent with glyphosate at 3, 6 or 12 oz/A; paraquat at 4 or 8 oz/A and HOE-00661 at 8, 12, or 16 oz/A. Weed control with 3 oz/A glyphosate was reduced by the addition of 8 gpa nitrogen when no surfactant was added. Non-selective herbicides for fallow, Minot 1981. Treatments were applied June 22 to 1 to 4 inch Russian thistle, kochia, or greenflowering pepperweed and 6leaf wild oat using a bicycle wheel sprayer delivering 8.5 gpa at 35 psi. Precipitation for a 2 week period following application totaled 1.2 inch. The experimental design was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were moderate.

		an a	-Percent	control	
	Rate			Ruth	Kocz
Treatment	oz/A	Wioa	Gfpw	1(4011	
	907 B. B. B. B. B.		0	34	28
Glyphosate	3	55	10	86	45
Glyphosate		93	75	96	90
Glyphosate	12	100	0	18	20
Glyphosate+S	1.5+0.5%	55	0	66	65
Glyphosate+S	3+0.5%	90	60	98	100
Glyphosate+S	6+0.5%	98	0	62	78
Glyphosate+2,4-D	3+8	30	10	76	94
Glyphosate+2,4-D+S	3+8+0.5%	60	33	50	65
Glyphosate+Dicamba+S	1.5+2+0.5%	38	58 58	72	65
Glyphosate+Dicamba	3+2	58	18	79	93
Glyphosate+Dicamba+S	3+2+0.5%	75	40	88	92
Glyphosate+Bromoxynil	3+4	63	50	85	70
Glyphosate+Bromoxynil+S	3+4+0.5%	63	0	39	25
Glyphosate+NH3NO3	3+1G	45	0	76	75
Glyphosate+NH3NO3+S	3+1G+0.5%	88	10	23	0
Glyphosate+NH3NO3	3+8G	25	0	44	30
Glyphosate+NH3NO3+S	3+8G+0.5%	25 45	40	94	83
Paraquat+S	4+0.5%	45 75	78	96	95
Paraquat+S	8+0.5%	48	65	96	90
Paraquat+2,4-D+S	4+8+0.5%	40 50	70	93	93
Paraquat+Dicamba+S	4+2+0.5%	43	28	96	93
Paraquat+Bromoxynil+S	4+4+0.5%	45	25	93	90
Paraquat+NH3NO3+S	4+1G+0.5%	45	15	90	35
Paraquat+NH3NO3+S	4+8G+0.5%	40 80	98	83	80
HOE-00661	8	95	95	95	95
HOE-00661	12 16	95	100	93	95
HOE-00661	8+1%	84	93	73	68
HOE-00661+NH3SO4		93	98	95	88
HOE-00661+NH3SO4	12+1% 8+1%	90	93	81	89
HOE-00661+NH3NO3	0-+1,0	0	Ő	0	0
Control		· · · ·			
		63	41	73	68
Mean		100	100	98	100
High mean		0	0	0	0
Low mean		21	33	19	18
Coeff. of variation		36	37	25	34
LSD(1 Percent)		27	27	19	25
LSD(5 Percent)		2	2	4	2
No. of reps					

Summary

The addition of 2,4-D, dicamba, or bromoxynil increased broadleaf weed control and the addition of surfactant increased wild oat control with 3 oz /A glyphosate. Weed control with 4 oz/A paraquat was influenced only slightly by the addition of 2,4-D, dicamba, or bromoxynil but reduced by the addition of 8 gpa nitrogen. HOE-00661 at 12 or 16 oz/A provided good broadspectrum weed control.

24

False chamomile control with non-selective herbicides, Mohall 1981. Treatments were applied to 4 to 6 inch false chamomile on May 27 with a bicycle wheel sprayer delivering 8.5 gpa at 35 psi. Rainfall for a 2 week period following application totalled 1.2 inch. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. False chamomile densities were heavy.

Treatments	Rate lb/A	% Control July 22
		Fach
Glyphosate+S	0.37+.5%	84
Glyphosate+S	0.75+.5%	
Glyphosate+Dicamba+S	0.37+0.12+.5%	90
Glyphosate+2,4-D+S	0.27+0.5+.5%	77
Glyphosate+Bromoxynil+S	0.37+0.25+.5%	85
Paraquat+S	0.37+.5%	51
Paraquat+S	0.75+.5%	69
Paraquat+Dicamba+S	0.37+0.12+.5%	58
Paraquat+2,4-D+S	0.37+0.5+.5%	55 60
Amitrol	1	94
Amitrol+2,4-D	1+0.5	
Amitrol	1.5	97
Amitrol	2	98
HOE-00661	0.5	99 82
HOE-00661	1	
Control		90
		0
Mean		74
High mean		
Low mean		99 0
Coeff. of variation		
LSD(1 Percent)		12 16
LSD(5 Percent)		
No. of reps		12 4
		4

Summary

False chamomile control was 80% or greater with amitrol at 1 to 2 lb/A, HOE-00661 at 0.5 to 1.0 lb/A and glyphosate at 0.37 to 0.75 lb/A. False chamomile control with paraquat was not adequate at 0.37 to 0.75 lb/A. The addition of bromoxynil reduced false chamomile control with glyphosate over 30%. False chamomile control with non-selective herbicides, Renville Co. 1981. Treatments were applied to 3 to 4 inch weeds on May 21 with a bicycle wheel plot sprayer delivering 8.5 gpa at 35 psi. Rainfall for a 2 week period following application totalled 0.75 inch. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were moderate.

Summary

False chamomile or tansy mustard control was 90% or greater with HOE-00661 at 0.5 or 1 lb/A, amitrol at 1 to 2 lb/A, and glyphosate at 0.37 to 0.75 lb/A. False chamomile or tansy mustard control was not adequate with paraquat at 0.37 or 0.75 lb/A. The addition of dicamba, 2,4-D or bromoxynil reduced weed control with glyphosate. Evaluation of postemergence herbicides for false chamomile control, Mohall 1981. Treatments were applied May 11 to 3 to 4 inch false chamomile with a bicycle wheel sprayer delivering 8.5 gpa at 35 psi. Rainfall for a 2 week period following application totalled 0.7 inch. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. Weed densities were moderate.

	Rate	-Percent control	July 22-
Treatment	oz/A	Fach	Tamu
			1 Califica
Bromoxynil+MCPA	6+6	8	21
Bromoxynil+Diuron	4+8	9	64
Chlorsulfuron+LOTM	0.25+0.25G	92	97
Chlorsulfuron	0.25	91	90
Chlorsulfuron+WK	0.25+.1%	95	97
Chlorsulfuron+WK	0.5+.1%	97	99
Chlorsulfuron+WK	1+.1%	98	100
R-40244	4	8	84
MC-10108	24	0	44
MC-10108	8	9	85
RH-043-E	4	19	83
Control		0	
		0	0
Mean		44	70
High mean		98	72
Low mean		90	100
Coeff. of variation		17	0
LSD(1 Percent)		14	27
LSD(5 Percent)		11	37 28
No. of reps		4	20
			4

Summary

False chamomile and tansy mustard control was good with chlorsulfuron at rates of 0.25 to 1 oz/A alone or in combination with additives. No other treatments controlled false chamomile.

Fall application of herbicides for false chamomile control in wheat, Mohall 1980-81. Treatments were applied November 6 to false chamomile in the rosette stage using a bicycle wheel sprayer delivering 17 gpa at 35 psi. Trifluralin treatments were rototiller incorporated immediately after application. False chamomile control was evaluated March 19 and May 8 prior to spring seedbed preparation. Rugby durum was seeded May 11. Foxtail and injury ratings were on July22. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 20 ft.

			Pe	rcent contro	
Treatment	Rate 1b/A	Wheat %ir	Grft	Fach 3/19	Fach 5/8
Trifluralin Chlorsulfuron Chlorsulfuron Chlorsulfuron Bromoxynil+MCPA Paraquat+X-77 Paraquat+X-77 Glyphosate+X-77 Glyphosate+X-77 Amitrol Control	.75 .015 .03 .06 .12 .25+.25 .37+.5% .5+.5% .37+.5% .5+.5% 1.0	3 4 0 16 18 0 0 0 0 0 0 0 0	69 89 99 99 0 0 0 0 0 35 0	90 48 54 50 59 58 69 75 56 60 49 0	94 11 31 26 35 25 24 18 14 51 0
Mean High mean Low mean Coeff. of variati LSD(1 Percent) LSD(5 Percent) No. of reps	.on	3 18 0 315 20 15 4	41 99 0 28 22 16 4	56 90 0 14 15 11 4	29 94 0 65 36 27 4

Summary

Fall application of chlorsulfuron at 1 and 2 oz/A injured wheat 16 and 17%; respectively. Foxtail control was excellent with all rates of chlorsulfuron. The only treatment which adequately controlled false chamomile was trifluralin which was incorporated. False chamomile competition in wheat, Mohall 1981. Len wheat was seeded May 11 in 6 inch row spacing. False chamomile densities were established shortly after wheat emergence. The experiment was a randomized complete block with 3 replications and experimental units were 15 by 12 ft.

Winter Annual	Yield
Plants/yd sq	bu/A
0.0	22.5
0.5	21.5
1.0	16.5
1.5	10.4
Mean	17.7
High mean	22.5
Low mean	10.4
Coeff. of variation	16.5
LSD(1 Percent)	8.8
LSD(5 Percent)	5.8
No. of reps	3.0

Summary

Season long competition from winter annual false chamomile at densities of 1 and 1.5 plants/yd sq reduced wheat yield 27 and 54%; respectively. The area for the competition trial was rototilled at a very fast ground speed so the false chamomile plants were not uprooted and were vigoroulsy growing when the wheat emerged. Glyphosate and liquid nitrogen combinations for quackgrass control, Devils Lake 1981. Glyphosate plus liquid nitrogen combinations were applied to established quackgrass sod to simulate an early season perennial weed problem in notill cropping. The treatments were applied at 32 psi in 17 gpa when the quackgrass was 6 to 10 inches tall and vigorously growing on May 18. The experiment was a randomized complete block design with 4 replications. The liquid nitrogen was 28-0-0 and a non-ionic surfactant was used. May, June and July rainfall was above normal.

and an and an and an all all and an all a state of a state of the stat	Rate	Percent	quackgrass	control
Treatment	oz/A	June 11	July 30	Sept 15
110000010		ann an	2.5	
Glyphosate	24	99	92	95
Glyphosate	18	90	85	91
Glyphosate	12	74	72	55
Glyphosate	6	43	24	0 83
Glyphosate+S	18+.5%	98	92	48
Glyphosate+S	12+.5%	95	93	20
Glyphosate+S	6+.5%	80	65	68
Glyphosate+Nitrogen	18+1G	93	86	58
Glyphosate+Nitrogen	12+1G	87	75	43
Glyphosate+Nitrogen	6+1G	64	55	88
Glyphosate+Nitrogen+S	18+1G+.5%	100	98 86	78
Glyphosate+Nitrogen+S	12+1G+.5%	89	38	20
Glyphosate+Nitrogen+S	6+1G+.5%	43 86	83	80
Glyphosate+Nitrogen	18+3G	84	79	43
Glyphosate+Nitrogen	12+3G	58	39	13
Glyphosate+Nitrogen	6+3G	100	94	95
Glyphosate+Nitrogen+S	18+3G+.5%	99	92	93
Glyphosate+Nitrogen+S		93	93	58
Glyphosate+Nitrogen+S	0+50+020	6	3	0
Control		ő		
		79	72	56
Mean		100	98	95
High mean		6	3	0
Low mean Coeff. of variation		18	25	50
LSD(1 Percent)		27	33	81
LSD(7 Percent)		20	25	59
		4	4	2
No. of reps				

Summary

Quackgrass control with glyphosate at 18 oz/A was not improved by adding surfactant or nitrogen. The September evaluation indicated that quackgrass control with glyphosate at 12 oz/A tended to improve with the addition of nitrogen plus surfactant compared to surfactant alone. Quackgrass control with glyphosate at 12 oz/A tended to be greater with nitrogen at 3 gal/A plus surfactant. Quackgrass control with glyphosate at 6 oz/A increased with nitrogen at 3 gal/A plus surfactant, but total control was not satisfactory.

30

Wheat on fall applied fallow herbicides, Fargo 1979-81. Fallow herbicides were applied on wheat stubble October 29, 1979. Precipitation totalled 19.4 inch during the 18 month period between herbicide application and wheat seeding. Era wheat was seeded April 24, 1981 into untilled soil. Wheat injury and stand reduction were evaluated July 6. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 17 ft.

Theshart	Rate		Wheat		1980
Treatment	lb/A	Yield	%ir	%sr	% Cont
		bu/A			
Hexazinone	•75	38.2	0	0	<i>C</i> 1
Chlorsulfuron	.06	48.3		0	64
Chlorsulfuron	.12		0	0	93
EL-187	•12	50.0	0	0	98
EL-187	•75	42.5	0	0	75
Atrazine	• 15	38.5	4	10	95
Metribuzin	1	41.1	0	3	73
Cyanazine	1	38.7	0	0	92
Hexazinone+Diuron	3	43.7	0	0	81
Hexazinone+Chlorsulfuron	•75+1	41.1	0	3	86
Hexazinone+Chlorsulfuron+IP(.75+.06	47.6	1	0	98
Hexazinone+Atrazine		43.5	0	1	95
Hexazinone+Metribuzin	•75+•75	36.5	0	1	92
	.5+.5	36.1	0	0	97
Hexazinone+Metribuzin	•75+•5	39.4	0	0	97
Hexazinone+Metribuzin	.5+.75	36.6	0	0	99
Hexazinone+Metribuzin	•75+•75	32.9	0	0	98
Hexazinone+Metribuzin+IPC	•75+•75+3	41.8	1	0	99
EL-187+Atrazine	.5+.5	38.7	1	4	93
EL-187+Atrazine	.75+.5	40.6	3	9	97
EL-187+Atrazine	.5+.75	30.3	8	25	96
EL-187+Atrazine	•75+•75	31.6	4	14	97
EL-187+Metribuzin	.5+.75	36.4	0	5	99
EL-187+Cyanazine	.5+2	36.7	1	5	89
EL-187+Terbutryn	.5+2	40.7	0	0	88
EL-187+Chlorsulfuron	.5+.06	45.4	1	4	99
Buthidazole+Atrazine	.75+.75	43.6	0	0	86
Buthidazole+Metribuzin	.75+.75	37.5	1	0	93
Cyanazine+Atrazine	2+.5	41.0	O	0	95 77
Cyanazine+Atrazine	2+.75	35.2	0	0	89
Cyanazine+Atrazine+IPC	2+.75+3	36.8	0	1	91
Cyanazine+Metribuzin	2+.75	32.2	0	Ö	98
Cyanazine+Chlorsulfuron	2+.06	48.9	Ő	0	90
Atrazine+Terbutryn	.75+2	38.8	0	3	
Metribuzin+Chlorsulfuron	.75+.06	44.7	1	0	79
Control		24.0	0	0	99 0
fean		39.4	1	2	00
ligh mean		50.0	8		88
Low mean		24.0	0 0	25	99
Coeff. of variation		17.4	260	185	0
LSD(1 Percent)		12.7	200	185 8	6
LSD(5 Percent)					10
No. of reps		9.6	3	6	8
tot of topp		4.0	4	4	4

Summary

EL-187 alone or incombination with atrazine reduced stand of wheat when seeded 18 months after application. Highest wheat yields were obtained on plots treated with chlorsulfuron at 0.06 and 0.12 lb/A.

1

Wheat on fall applied fallow herbicides, Mohall 1979-81. Fallow herbicides were applied on wheat stubble October 23, 1979. Precipitation totalled 20.1 inch during the 18 month period between herbicide application and wheat seeding. False chamomile control was evaluated May 8 prior to tillage and seeding of Coteau wheat. Wheat injury and in crop false chamomile control were evaluated July 22. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. False chamomile density in control plots was moderate.

			Wheat-		-% C	ontrol-
	Rate	Yield	Twt			ach
1979 Fallow treatments	lb/A	bu/A	lb/A	%ir	May8	July22
Hexazinone	0.5	26.7	57.0	3	55	74
Chlorsulfuron	0.06	27.3	56.5	0	100	100
Cyanazine	2.0	13.8	57.5	0	0	21
Hexazinone+Atrazine	0.5+0.5	35.7	57.0	1	86	99
Hexazinone+Metribuzin	0.5+0.5	25.5	56.9	3	84	86
Hexazinone+Chlorsulfuron	0.5+0.06	35.0	57.5	3	100	100
Cyanazine+Atrazine	2+0.5	13.6	57.8	0	19	38
Cyanazine+Metribuzin	2+0.5	15.3	57.5	0	3	20
Cyanazine+Chlorsulfuron	2+0.06	32.5	57.3	0	100	100
Control		11.6	57.1	0	25	0
		23.7	57.2	1	57	64
Mean High mean		35.7	57.8	3	100	100
High mean Low mean		11.6	56.5	0	0	0
Coeff. of variation		31.2	0.	227	40	27
LSD(1 Percent)		14.5	0.	4	45	33
LSD(7 Percent)		10.7	0.	3	33	25
No. of reps		4.0	1.0	4	4	4
NO. OI Lebs		1.51				

Summary

Residual false chamomile control was excellent with chlorsulfuron alone or in combination with hexazinone and cyanazine and good with hexazinone in combination with atrazine or metribuzin. Treatments containing chlorsulfuron or hexazinone increased wheat yield 14 to 24 bu/A compared to the control. Wheat on spring preemergence fallow herbicides, Fargo 1980-81. Fallow herbicides were applied on wheat stubble April 15, 1980. Precipitation totalled 14.6inch during the 12 month period between herbicide application and wheat seeding. Era wheat was seeded April 24, 1981 into untilled soil. Wheat injury and stand reduction were evaluated July 6. The experiment was a randomized complete block with 4 replications and experimental units were 8 by

man a la l		Rate		Wheat	1980	
Treatment		lb/A	Yield	%ir	%sr	% Cont
			bu/A	,	<i>N</i> O1	ø conc
Hexazinone		-				
Chlorsulfuron		.5	30.3	0	1	37
Chlorsulfuron		.03	42.2	0	0	55
Chlorsulfuron (DF)		.06	45.5	0	0	67
Chlorsulfuron		.06	44.2	1	0	63
EL-187		.12	43.6	0	0	65
EL-187		•5	37.7	0	3	67
Atrazine		•75	42.5	0	3 3	62
Metribuzin (4L)		•75	31.5	0	0	67
Metribuzin (4L)		.75	41.5	0	0	64
Metribuzin (WP)		1	35.3	0	0	79
Metribuzin (WP)		•75	40.4	0	0	62
Cyanazine		1	43.1	0	0	70
		2.5	40.8	0	0	61
Hexazinone+Diuron		•5+1	35.8	0	0	68
Hexazinone+Chlorsulfuron		5+.03	49.7	0	3	67
Hexazinone+Chlorsulfuron		5+.06	48.5	0	1	69
Hexazinone+Atrazine		.5+.5	42.0	0	3	79
Hexazinone+Metribuzin		.5+.5	42.1	0	1	82
Hexazinone+Terbutryn		.5+2	32.7	0	Ó	68
EL-187+Atrazine		.5+.5	43.7	1	8	79
EL-187+Atrazine		75+.5	42.7	Ö	6	
EL-187+Metribuzin		.5+.5	38.0	0	1	79 75
EL-187+Metribuzin	•	75+.5	36.2	0	3	79
EL-187+Cyanazine		.5+2	36.3	õ	0	66
EL-187+Chlorsulfuron	.!	5+.06	47.6	õ	3	65
Buthidazole+Atrazine		.5+.5	40.3	õ	1	60
Buthidazole+Metribuzin		.5+.5	40.9	Ö	0	
Buthidazole+Chlorsulfuron		5+.06	45.1	1	0	71
Cyanazine+Atrazine		2+.5	37.3	0	0	76
Cyanazine+Metribuzin		2+.5	38.2	õ	0	75
Cyanazine+Chlorsulfuron	:	2+.06	46.3	5	0	72
Cyanazine+Atrazine+Clsu		5+.06	46.0	0		65
Terbutryn+Atrazine		2+.5	42.2	0	0	69
Terbutryn+Metribuzin		2+.5	39.9	0	0	72
Terbutryn+Metolachlor+Atrazine	2-	+2+.5	41.7	0	0	71
Control			30.4	0	0	77 0
Mean						
High mean			40.6	0	1	67
Low mean			49.7	5	8	82
Coeff. of variation			30.3	0	0	0
LSD(1 Percent)			16.6	405	218	14
LSD(5 Percent)			12.5	2	4	17
			9.4	1	3	13
No. of reps			4.0	4	4	4

Summary

No treatment reduced wheat stand over 10% with a 12 month interval between application and seeding. Highest wheat yields were obtained on plots treated with chlorsulfuron combinations with hexazinone, buthidazole, cyanazine. or EL-187.

Wheat on spring preemergence fallow herbicides, Minot 1980-81. Fallow herbicides were applied on wheat stubble April 16, 1980. Precipitation totalled 15.9inch during the 12 month period between herbicide application and wheat seeding. The entire experimental area was tilled and Coteau wheat seeded April 24, 1981. Wheat injury and stand reduction were evaluated June 22. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 20 ft.

	Rate		heat	1980
Turetment	lb/A	%ir	%sr	% Cont
Treatment	10/15	an and a subsection of the second	CHANGE OF THE CARE CONTRACTOR AND	
Hexazinone	.5	0	1	87
Chlorsulfuron	.03	0	3	68
Chlorsulfuron	.06	0	4	83
Chlorsulfuron (DF)	.06	0	4	72
Chlorsulfuron	.12	0	5	86
EL-187	.5	0	0	97
EL-187	•75	0	4	98 99
Atrazine	•75	0	1	99
Metribuzin (4L)	.75	0	0	98
Metribuzin (4L)	1	0	3	90
Metribuzin (WP)	•75	0	8	99
Metribuzin (WP)	1	0	0	99
Cyanazine	2.5	0		92
Hexazinone+Diuron	.5+1	0	5	93
Hexazinone+Chlorsulfuron	.5+.03	0	3	95
Hexazinone+Chlorsulfuron	.5+.06	0	2	89
Hexazinone+Atrazine	.5+.5		3 6 3 3 4	98
Hexazinone+Metribuzin	.5+.5	3	9	99
Hexazinone+Terbutryn	•5+2	0	4	96
EL-187+Atrazine	•5+•5 •75+•5	0	6	95
EL-187+Atrazine	.5+.5	3	4	98
EL-187+Metribuzin	.75+.5	õ	4	99
EL-187+Metribuzin EL-187+Cyanazine	.5+2	0	6	95
EL-187+Chlorsulfuron	.5+.06	0	4	98
Buthidazole+Atrazine	.5+.5	0	8	97
Buthidazole+Metribuzin	.5+.5	0	4	93
Buthidazole+Chlorsulfuron		0	0	97
Cyanazine+Atrazine	2+.5	0	8	93
Cyanazine+Metribuzin	2+.5	3	5	97
Cyanazine+Chlorsulfuron	2+.06	0	5	96
Cyanazine+Atrazine+Clsu	2+.5+.06	0	1	97
Terbutryn+Atrazine	2+.5	0	3	100
Terbutryn+Metribuzin	2+.5	0	4	100
Terbutryn+Metribuzin+Atra	zine2+2+.5	0	0	100
Control		0	0	0
			2	91
Mean		0	3	
High mean		3	9	100
Low mean		0	127	07
Coeff. of variation		574	137	12
LSD(1 Percent)		3	9 7	9
LSD(5 Percent)		2 4	1	9 4
No. of reps		4	-	- North Con
		and a subject of the	and the second	

Summary

No chemical fallow treatment reduced wheat stand over 10% with a 12 month interval between application and seeding.

Wheat on preemergence fallow herbicides, Williston 1980-81. Fallow herbicides were applied on wheat stubble April 17, 1980. Precipitation totalled 12.3inch during the 12 month period between herbicide application and wheat seeding. Waldron wheat was seeded April 15. Wheat injury and stand reduction were evaluated July 9. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 17 ft.

Rate Yield Twi \$ Control Ib/A bu/A lb/A bu/A lb/A sir \$ sr 1980 Ruth Hexazinone 0.5 28.2 57.8 0 3 67 0 Chlorsulfuron 0.03 29.7 57.8 0 87 75 Chlorsulfuron 0.06 31.1 57.8 0 0 74 83 Chlorsulfuron 0.106 31.1 57.8 0 0 87 99 EL-187 0.5 26.5 58.2 0 3 41 30 Atrazine .75 15.9 58.3 0 60 60 28 Atrazine .75 28.2 58.3 0 3 53 30 Metribuzin (WP) 0.75 24.5 58.3 0 65 33 Gyanazine 2.5 24.5 57.9 0 11 85 Hexazinone+Chlorsulfuron				Whe	at			
Treatmentlb/Abu/A lb/bu $\$ir$ $\$er$ 1980RuthHexazinone0.528.257.803670Chlorsulfuron0.0329.757.808775Chlorsulfuron0.0630.758.107483Chlorsulfuron0.1232.957.808799EL-1870.526.558.2033580EL-187.7515.956.30606028Atrazine.7528.258.3034130Metribuzin (4L)130.958.2017513Metribuzin (WP)124.458.805313Hexazinone+Chlorsulfuron.5+127.758.8028313Hexazinone+Chlorsulfuron.5+122.258.6033850Hexazinone+Chlorsulfuron.5+522.258.6033850Hexazinone+Atrazine.5+522.258.408918Hexazinone+Atrazine.5+522.558.408918Hexazinone+Atrazine.5+522.558.403620Hexazinone+Metribuzin.5+522.558.403620EL-187.4Metribuzin.5+522.558.403622Hexazinone+Metribuzin.5+522.558.4<		Rate	Yield		a		\$ 00	ntrol
Hexazinone 0.5 28.2 57.8 0 3 67 Chlorsulfuron 0.03 29.7 57.8 0 87 75 Chlorsulfuron 0.06 30.7 58.1 0 75 Chlorsulfuron 0.06 31.1 57.8 0 83 89 Chlorsulfuron .12 32.9 57.8 0 87 99 EL-187 0.5 26.5 58.2 0 3 58 0 Atrazine .75 15.9 58.3 0 60 60 28 Atrazine .75 28.2 58.3 0 3 41 30 Metribuzin (WP) 1 30.9 58.2 0 1 75 13 Metribuzin (WP) 1 24.4 58.8 0 3 64 31 Cyanazine 2.5 30.8 77.9 11 85 89 Hexazinone+Chlorsulfuron .5+0.03	Treatment				Zir	gsr		
Chlorsulfuron 0.03 29.7 57.8 0 0 74 83 Chlorsulfuron 0.06 30.7 58.1 0 0 74 83 Chlorsulfuron 0.06 31.1 57.8 0 83 89 Chlorsulfuron .12 32.9 57.8 0 83 89 Chlorsulfuron .12 32.9 57.8 0 83 89 EL-187 0.5 26.5 58.2 0 3 41 30 Metribuzin (4L) 1 30.9 58.6 0 70 0 Metribuzin (WP) 0.75 24.5 58.3 0 3 64 31 Cyanazine 2.5 30.8 57.9 0 53 13 Hexazinone+Chlorsulfuron .5+0.03 27.6 57.9 0 13 Hexazinone+Chlorsulfuron .5+0.5 22.2 58.6 0 33 85 0 Hexazinone+Metribuzin .5+0.5 22.0 58.6 0 30 50 0						<i>w</i> 01	1900	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hexazinone	0.5	28.2	57.8	0	3	67	0
Chlorsulfuron 0.06 30.7 58.1 0 0 74 83 Chlorsulfuron 0.06 31.1 57.8 0 83 89 Chlorsulfuron .12 32.9 57.8 0 87 99 EL-187 0.5 26.5 58.2 0 33 58 0 Atrazine .75 15.9 58.3 0 60 60 28 Atrazine .75 28.2 58.3 0 3 41 30 Metribuzin (4L) 0.75 30.0 58.6 0 0 70 0 Metribuzin (WP) 0.75 24.5 58.3 0 36 33 64 31 Gyanzine 2.5 30.8 57.9 0 0 53 13 Hexazinone+Chlorsulfuron .5+0.03 27.6 57.9 0 14 89 81 Hexazinone+Metribuzin .5+.5 26.3 57.9 0 21 84 55 Hexazinone+Metribuzin .5+.5 25.0	Chlorsulfuron							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chlorsulfuron							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chlorsulfuron							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chlorsulfuron							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EL-187							
Atrazine .75 28.2 58.3 0 3 41 30 Metribuzin (4L) 0.75 30.0 58.6 0 0 70 0 Metribuzin (4L) 1 30.9 58.2 0 1 75 13 Metribuzin (4P) 0.75 24.5 58.3 0 3 64 31 Cyanazine 2.5 30.8 57.9 0 0 53 13 Hexazinone+Chlorsulfuron .5+10.03 27.6 57.9 0 14 89 81 Hexazinone+Chlorsulfuron .5+0.06 31.0 58.2 0 14 89 81 Hexazinone+Chlorsulfuron .5+0.06 31.0 58.2 0 14 89 81 Hexazinone+Metribuzin .5+5 22.2 58.6 0 38 50 Hexazinone+Hetribuzin .5+5 25.0 58.4 0 89 18 EL-187+Atrazine .75+5 15.1 78.7 0 73 68 20 EL-187+Cyanazine .5	EL-187							
Metribuzin (4L) 0.75 30.0 58.6 0 0 70 0 Metribuzin (4L) 1 30.9 58.2 0 1 75 13 Metribuzin (4L) 1 30.9 58.2 0 1 75 13 Metribuzin (4P) 1 24.4 58.8 0 3 64 31 Cyanazine 2.5 30.8 57.9 0 1 85 89 Hexazinone+Chlorsulfuron .5+0.03 27.6 57.9 0 1 89 81 Hexazinone+Atribuzin .5+5 22.2 58.6 0 33 85 0 Hexazinone+Atribuzin .5+5 22.6 3 57.9 0 21 84 35 Hexazinone+Terbutryn .5+2 23.3 58.4 0 18 93 18 EL-187+Atrazine .5+5 22.1 58.3 0 24 54 8 EL-187+Chorsulfuron .5+5 27.4 58.5 0 25 79 23 B	Atrazine							
Metribuzin (4L) 1 30.9 53.2 0 1 75 13 Metribuzin (WP) 0.75 24.5 58.3 0 3 56 33 Metribuzin (WP) 1 24.4 58.8 0 3 64 31 Cyanazine 2.5 30.8 57.9 0 0 53 13 Hexazinone+Chlorsulfuron .5+0.03 27.6 57.9 0 11 85 89 Hexazinone+Atrazine .5+1 22.7 58.6 0 33 85 0 Hexazinone+Atrazine .5+5 26.3 57.9 0 21 84 35 Hexazinone+Atrazine .5+5 26.3 57.9 0 21 84 35 Hexazinone+Metribuzin .5+5 26.3 57.9 0 21 84 35 L=187.4Atrazine .5+5 25.0 58.6 0 30 50 0 EL-187.4Atrazine .5+5 22.1 58.3 0 24 54 8 EL-187.4Chara	Metribuzin (4L)							
Metribuzin (WP) 0.75 24.5 55.3 0 3 56 33 Metribuzin (WP) 1 24.4 58.8 0 3 64 31 Cyanazine 2.5 30.8 57.9 0 0 53 13 Hexazinone+Chlorsulfuron .5+1 27.6 57.9 0 11 85 89 Hexazinone+Chlorsulfuron .5+0.06 31.0 58.2 0 14 89 81 Hexazinone+Atrazine .5+.5 22.2 58.6 0 33 85 0 Hexazinone+Terbutryn .5+.5 22.0 58.6 0 30 50 0 Hexazinone+Atribuzin .5+.5 25.0 58.6 0 30 50 0 EL-187+Atrazine .5+.5 22.1 58.3 0 24 54 8 EL-187+Atrazine .5+.5 25.0 58.6 0 30 68 24 EL-187+Atrazine .5+.5 30.5 57.7 0 71 16 Buthidazole+Atrazi								
Metribuzin (WP) 1 24.4 58.8 0 3 64 31 Cyanazine 2.5 30.8 57.9 0 0 53 13 Hexazinone+Chlorsulfuron .5+1 27.7 58.8 0 20 82 0 Hexazinone+Chlorsulfuron .5+0.03 27.6 57.9 0 11 85 89 Hexazinone+Chlorsulfuron .5+0.06 31.0 58.2 0 14 89 81 Hexazinone+Atrazine .5+.5 22.2 58.6 0 33 85 0 Hexazinone+Metribuzin .5+.5 25.0 58.6 0 30 50 0 EL-187+Atrazine .5+.5 25.0 58.6 0 30 50 0 EL-187+Metribuzin .75+.5 11.7 58.7 0 73 68 20 EL-187+Metribuzin .75+.5 15.1 58.4 0 33 68 24 EL-187+Metribuzin .5+.5 27.4 58.5 0 25 79 23								
Cyanazine2.530.857.9005313Hexazinone+Diuron.5+127.758.8020820Hexazinone+Chlorsulfuron.5+0.0327.657.90118589Hexazinone+Chlorsulfuron.5+0.0327.657.90118589Hexazinone+Atrazine.5+.522.258.6033850Hexazinone+Metribuzin.5+.526.357.90218435Hexazinone+Terbutryn.5+223.358.40189318EL-187+Atrazine.75+.511.758.70736820EL-187+Atrazine.75+.515.158.3024548EL-187+Atrazine.5+225.558.40336824EL-187+Atrazine.5+527.458.50257923Buthidazole+Atrazine.5+527.458.50257923Buthidazole+Atrazine.5+527.458.505323Cyanazine+Atrazine.5+527.458.505323Cyanazine+Atrazine.5+527.458.505323Cyanazine+Atrazine.2+528.958.305323Cyanazine+Atrazine2+529.458.505942Terbutryn+Atrazine2+529.458.50<								
Hexazinone+Diuron.5+127.758.8020820Hexazinone+Chlorsulfuron.5+0.0327.657.90118589Hexazinone+Chlorsulfuron.5+0.0631.058.20148981Hexazinone+Atrazine.5+.522.258.6033850Hexazinone+Terbutryn.5+.223.357.90218435Hexazinone+Terbutryn.5+.223.358.40189318EL-187+Atrazine.5+.525.058.6030500EL-187+Atrazine.75+.511.758.70736820EL-187+Metribuzin.5+.522.158.3024548EL-187+Chorsulfuron.5+0.0626.058.10338971Buthidazole+Atrazine.5+.527.458.50257923Buthidazole+Atrazine.5+.530.557.7007116Buthidazole+Chlorsulfuron.5+0.0630.157.618683Cyanazine+Atrazine2+.528.958.305323Cyanazine+Atrazine2+.529.458.505942Cranazine+Atrazine2+.528.258.70620Cyanazine+Atrazine2+.528.258.70620Cyanazine+Atrazine2+.526.								
Hexazinone+Chlorsulfuron $5+0.03$ 27.6 57.9 0 11 85 89 Hexazinone+Chlorsulfuron $5+0.06$ 31.0 58.2 0 14 89 81 Hexazinone+Atrazine $5+5$ 22.2 58.6 0 33 85 0 Hexazinone+Metribuzin $5+5$ 22.2 58.6 0 33 85 0 Hexazinone+Terbutryn $5+5$ 22.2 58.6 0 30 50 0 EL-187+Metribuzin $5+5$ 25.0 58.6 0 30 50 0 EL-187+Metribuzin $.5+5$ 22.1 58.3 0 24 54 82 EL-187+Metribuzin $.5+5$ 22.1 58.3 0 24 54 82 EL-187+Metribuzin $.5+5$ 22.1 58.3 0 24 54 82 EL-187+Chlorsulfuron $.5+0.06$ 26.0 58.1 0 33 89 71 Buthidazole+Atrazine $.5+5$ 27.4 58.5 0 25 79 23 Buthidazole+Atrazine $.5+0.06$ 30.1 57.6 0 168 83 Cyanazine+Atrazine $2+55$ 28.9 58.3 0 53 23 Cyanazine+Atrazine $2+55$ 28.7 0 0 0 62 0 Cyanazine+Atrazine $2+55$ 26.2 58.7 0 62 0 Cyanazine+Atrazine $2+55$ 26.2 58.7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Hexazinone+Chlorsulfuron $.5+0.06$ 31.0 58.2 0 14 89 81 Hexazinone+Atrazine $.5+.5$ 22.2 58.6 0 33 85 0 Hexazinone+Metribuzin $.5+.5$ 22.2 58.6 0 33 85 0 Hexazinone+Metribuzin $.5+.5$ 22.2 58.6 0 33 85 0 Hexazinone+Terbutryn $.5+2$ 23.3 58.4 0 18 93 18 Hexazinone+Terbutryn $.5+2$ 23.3 58.4 0 18 93 18 EL-187+Atrazine $.75+.5$ 11.7 58.7 0 73 68 20 EL-187+Metribuzin $.5+.5$ 22.1 58.3 0 24 54 8 EL-187+Chlorsulfuron $.5+.5$ 22.1 58.3 0 24 54 8 EL-187+Chlorsulfuron $.5+.5$ 27.4 58.5 0 25 79 23 Buthidazole+Atrazine $.5+.5$ 27.4 58.5 0 25 79 23 Buthidazole+Chlorsulfuron $.5+0.06$ 30.1 57.6 1 86 83 Cyanazine+Atrazine $2+.5$ 28.9 58.3 0 0 53 23 Cyanazine+Chlorsulfuron $2+0.06$ 32.7 58.6 0 59 42 Terbutryn+Atrazine $2+.5$ 29.4 58.5 0 59 42 Control 26.2 58.1								
Hexazinone+Atrazine.5+.522.258.6033850Hexazinone+Metribuzin.5+.526.357.90218435Hexazinone+Terbutryn.5+223.358.40189318EL-187+Atrazine.5+.525.058.6030500EL-187+Atrazine.5+.525.058.6030500EL-187+Atrazine.5+.522.158.70736820EL-187+Metribuzin.5+.522.158.3024548EL-187+Cyanazine.5+.522.558.40336824EL-187+Chlorsulfuron.5+0.0626.058.10338971Buthidazole+Atrazine.5+.527.458.50257923Buthidazole+Metribuzin.5+.530.557.7007116Buthidazole+Chlorsulfuron.5+0.0630.157.6018683Cyanazine+Atrazine2+.528.958.3005323Cyanazine+Atrazine+Clsu2+.529.458.505942Terbutryn+Metribuzin2+.529.458.505942Terbutryn+Metribuzin2+.528.258.301710Control26.258.700000Control27.058.2								
Hexazinone+Metribuzin .5+.5 26.3 57.9 0 21 84 35 Hexazinone+Terbutryn .5+2 23.3 58.4 0 18 93 18 EL-187+Atrazine .5+.5 25.0 58.6 0 30 50 0 EL-187+Metribuzin .5+.5 22.1 58.3 0 24 54 8 EL-187+Metribuzin .5+.5 22.1 58.3 0 24 54 8 EL-187+Metribuzin .75+.5 15.1 58.8 0 60 62 40 EL-187+Chorsulfuron .5+0.06 26.0 58.1 0 33 68 24 EL-187+Chlorsulfuron .5+0.06 26.0 58.1 0 33 68 24 EL-187+Chlorsulfuron .5+0.06 30.1 57.6 0 16 83 Buthidazole+Atrazine .5+.5 27.4 58.5 0 53 23 Cyanazine+Atrazine .2+.5 28.9 58.3 0 0 53 23 Cyanazin								
Hexazinone+Terbutryn $.5+2$ 23.3 58.4 0 18 93 18 EL-187+Atrazine $.5+.5$ 25.0 58.6 0 30 50 0 EL-187+Atrazine $.75+.5$ 11.7 58.7 0 73 68 20 EL-187+Metribuzin $.5+.5$ 22.1 58.3 0 24 54 8 EL-187+Metribuzin $.75+.5$ 15.1 58.8 0 60 62 40 EL-187+Metribuzin $.5+.5$ 22.5 58.4 0 33 68 24 EL-187+Chlorsulfuron $.5+0.06$ 26.0 58.1 0 33 89 71 Buthidazole+Atrazine $.5+.5$ 27.4 58.5 0 25 79 23 Buthidazole+Atrazine $.5+.5$ 27.4 58.5 0 25 79 23 Buthidazole+Chlorsulfuron $.5+0.06$ 30.1 57.6 0 1 86 83 Cyanazine+Atrazine $2+.5$ 28.9 58.3 0 0 53 23 Cyanazine+Atrazine+Clsu $2+.5$ 29.4 58.5 0 0 99 69 Cyanazine+Atrazine $2+.5$ 29.4 58.5 0 0 99 99 Cyanazine+Atrazine $2+.5$ 29.4 58.5 0 0 0 0 Control 26.2 58.1 0 0 0 0 0 0 Mean 11.7 57.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
EL-187+Atrazine.5+.525.058.6030500EL-187+Atrazine.75+.511.758.70736820EL-187+Metribuzin.5+.522.158.3024548EL-187+Metribuzin.75+.515.158.80606240EL-187+Cyanazine.5+225.558.40336824EL-187+Chlorsulfuron.5+0.0626.058.10338971Buthidazole+Atrazine.5+.527.458.50257923Buthidazole+Metribuzin.5+.530.557.7007116Buthidazole+Chlorsulfuron.5+0.0630.157.6018683Cyanazine+Atrazine2+.528.958.305323Cyanazine+Atrazine2+.531.057.8016925Cyanazine+Atrazine+Clsu2+.5+0.0632.758.008093Terbutryn+Atrazine2+.526.258.70620Terbutryn+Metribuzin2+.528.258.301710Control26.258.100000Mean33.758.80739399Low mean11.757.20000Coeff. of variation15.50.871581LSD(1 Per								
EL-187+Atrazine.75+.511.758.70736820EL-187+Metribuzin.5+.522.158.3024548EL-187+Metribuzin.75+.515.158.80606240EL-187+Cyanazine.5+225.558.40336824EL-187+Chlorsulfuron.5+0.0626.058.10338971Buthidazole+Atrazine.5+.527.458.50257923Buthidazole+Metribuzin.5+.530.557.7007116Buthidazole+Chlorsulfuron.5+0.0630.157.6018683Cyanazine+Atrazine2+.528.958.305323Cyanazine+Atrazine2+.531.057.8016925Cyanazine+Chlorsulfuron2+0.0632.257.208969Cyanazine+Atrazine+Clsu2+.5+0.0633.758.008093Terbutryn+Atrazine2+.526.258.70620Terbutryn+Metribuzin2+.526.258.301710Control26.258.100000Mean27.058.20146935High mean33.758.8739399Low mean11.757.20000LSD(1 Percent) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
EL-187+Metribuzin.5+.522.158.3024548EL-187+Metribuzin.75+.515.158.80606240EL-187+Cyanazine.5+225.558.40336824EL-187+Chlorsulfuron.5+0.0626.058.10338971Buthidazole+Atrazine.5+.527.458.50257923Buthidazole+Metribuzin.5+.530.557.7007116Buthidazole+Chlorsulfuron.5+0.0630.157.6018683Cyanazine+Atrazine2+.528.958.3005323Cyanazine+Atrazine2+.531.057.8016925Cyanazine+Chlorsulfuron2+0.0632.257.208969Cyanazine+Atrazine+Clsu2+.5+0.0633.758.008093Terbutryn+Atrazine2+.529.458.505942Terbutryn+Metribuzin2+.526.258.70620Mean27.058.20146935High mean33.758.80739399Low mean11.757.20000Coeff. of variation15.500871581LSD(1 Percent)7.800171539								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
EL-187+Cyanazine .5+2 25.5 58.4 0 33 68 24 EL-187+Chlorsulfuron .5+0.06 26.0 58.1 0 33 68 24 Buthidazole+Atrazine .5+.5 27.4 58.5 0 25 79 23 Buthidazole+Metribuzin .5+.5 27.4 58.5 0 25 79 23 Buthidazole+Chlorsulfuron .5+0.06 30.1 57.7 0 0 71 16 Buthidazole+Chlorsulfuron .5+0.06 30.1 57.6 0 1 86 83 Cyanazine+Atrazine 2+.5 28.9 58.3 0 53 23 Cyanazine+Chlorsulfuron 2+0.06 32.2 57.2 0 0 89 69 Cyanazine+Atrazine+Clsu 2+.5+0.06 33.7 58.0 0 80 93 71 0 Cyanazine+Atrazine+Clsu 2+.5+0.06 33.7 58.0 0 62 0 Terbutryn+Metribuzin 2+.5 26.2 58.7 0 62 0								
EL-187+Chlorsulfuron.5+0.0626.058.10338971Buthidazole+Atrazine.5+.5 27.4 58.50 25 79 23 Buthidazole+Metribuzin.5+.5 30.5 57.7 007116Buthidazole+Chlorsulfuron.5+0.06 30.1 57.6 018683Cyanazine+Atrazine $2+.5$ 28.9 58.3 0 53 23 Cyanazine+Metribuzin $2+.5$ 31.0 57.8 01 69 25 Cyanazine+Chlorsulfuron $2+0.06$ 32.2 57.2 0 89 69 Cyanazine+Atrazine+Clsu $2+.5+0.06$ 33.7 58.0 0 80 93 Terbutryn+Atrazine $2+.5$ 29.4 58.5 0 59 42 Terbutryn+Metribuzin $2+.5$ 26.2 58.7 0 62 0Terbutryn+Metribuzin $2+.5$ 28.2 58.3 01 71 0Control 26.2 58.1 0000Mean 33.7 58.8 73 93 99 Low mean 11.7 57.2 0000Coeff. of variation 15.5 0 87 15 81 LSD(1 Percent) 7.8 0. 022 20 52 LSD(5 Percent) 5.9 $0.$ 017 15 39								
Buthidazole+Atrazine .5+.5 27.4 58.5 0 25 79 23 Buthidazole+Metribuzin .5+.5 30.5 57.7 0 0 71 16 Buthidazole+Chlorsulfuron .5+0.06 30.1 57.6 0 1 86 83 Cyanazine+Atrazine 2+.5 28.9 58.3 0 0 53 23 Cyanazine+Atrazine 2+.5 31.0 57.8 0 1 69 25 Cyanazine+Atrazine 2+.5 31.0 57.8 0 1 69 25 Cyanazine+Atrazine+Clsu 2+.5 31.0 57.8 0 1 69 25 Cyanazine+Atrazine+Clsu 2+.5 29.4 58.5 0 0 80 93 Terbutryn+Atrazine 2+.5 26.2 58.7 0 0 62 0 Terbutryn+Metribuzin 2+.5 28.2 58.3 0 1 71 0 Control 26.2 58.1 0 0 0 0 0 0								
Buthidazole+Metribuzin .5+.5 30.5 57.7 0 0 71 16 Buthidazole+Chlorsulfuron .5+.6 30.1 57.6 0 1 86 83 Cyanazine+Atrazine 2+.5 28.9 58.3 0 0 53 23 Cyanazine+Atrazine 2+.5 28.9 58.3 0 1 69 25 Cyanazine+Metribuzin 2+.6 31.0 57.8 0 1 69 25 Cyanazine+Chlorsulfuron 2+0.06 32.2 57.2 0 0 89 69 Cyanazine+Atrazine+Clsu 2+.5+0.06 33.7 58.0 0 0 80 93 Terbutryn+Atrazine 2+.5 29.4 58.5 0 0 59 42 Terbutryn+Metribuzin 2+.5 26.2 58.7 0 0 62 0 Terbutryn+Metolachlor+Atrazine 2+2+.5 28.2 58.3 0 1 71 0 Control 26.2 58.1 0 0 0 0 0								
Buthidazole+Chlorsulfuron .5+0.06 30.1 57.6 0 1 86 83 Cyanazine+Atrazine 2+.5 28.9 58.3 0 0 53 23 Cyanazine+Metribuzin 2+.5 31.0 57.8 0 1 69 25 Cyanazine+Chlorsulfuron 2+0.06 32.2 57.2 0 0 89 69 Cyanazine+Atrazine+Clsu 2+.5+0.06 33.7 58.0 0 0 80 93 Terbutryn+Atrazine 2+.5 29.4 58.5 0 59 42 Terbutryn+Metribuzin 2+.5 26.2 58.7 0 62 0 Terbutryn+Metolachlor+Atrazine 2+2+.5 28.2 58.3 0 1 71 0 Control 26.2 58.1 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Cyanazine+Atrazine 2+.5 28.9 58.3 0 0 53 23 Cyanazine+Metribuzin 2+.5 31.0 57.8 0 1 69 25 Cyanazine+Chlorsulfuron 2+0.06 32.2 57.2 0 0 89 69 Cyanazine+Atrazine+Clsu 2+.5+0.06 33.7 58.0 0 0 80 93 Terbutryn+Atrazine 2+.5 29.4 58.5 0 0 62 0 Terbutryn+Metribuzin 2+.5 29.4 58.3 0 1 71 0 Control 24.5 28.2 58.3 0 1 71 0 Mean 27.0 58.2 0 14 69 35 Low mean 33.7 58.8 73 93 99 Low mean 11.7 57.2 0 0 0 0 Csoff. of variation 15.5 0 0 73 93 99 LSD(1 Percent) 7.8 0 0 22 25 22								
Cyanazine+Metribuzin 2+.5 31.0 57.8 0 1 69 25 Cyanazine+Chlorsulfuron 2+0.06 32.2 57.2 0 0 89 69 Cyanazine+Atrazine+Clsu 2+.5+0.06 33.7 58.0 0 0 80 93 Terbutryn+Atrazine 2+.5 29.4 58.5 0 0 62 0 Terbutryn+Metribuzin 2+.5 26.2 58.7 0 0 62 0 Terbutryn+Metolachlor+Atrazine 2+2+.5 28.2 58.3 0 1 71 0 Control 26.2 58.1 0 0 0 0 0 0 Mean 27.0 58.2 0 14 69 35 Low mean 33.7 58.8 0 73 93 99 Low mean 11.7 57.2 0 0 0 0 LSD(1 Percent) 7.8 0. 0 22 52 52 LSD(5 Percent) 5.9 0. 0 17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Cyanazine+Chlorsulfuron 2+0.06 32.2 57.2 0 0 89 69 Cyanazine+Atrazine+Clsu 2+.5+0.06 33.7 58.0 0 0 80 93 Terbutryn+Atrazine 2+.5 29.4 58.5 0 0 59 42 Terbutryn+Metribuzin 2+.5 26.2 58.7 0 0 62 0 Terbutryn+Metolachlor+Atrazine 2+2+.5 28.2 58.3 0 1 71 0 Control 26.2 58.1 0 0 0 0 0 0 Mean 27.0 58.2 0 14 69 35 Low mean 33.7 58.8 73 93 99 Low mean 11.7 57.2 0 0 0 0 LSD(1 Percent) 7.8 0 0 22 52 52 LSD(5 Percent) 5.9 0 0 17 15 39								
Cyanazine+Atrazine+Clsu 2+.5+0.06 33.7 58.0 0 0 80 93 Terbutryn+Atrazine 2+.5 29.4 58.5 0 0 59 42 Terbutryn+Metribuzin 2+.5 29.4 58.5 0 0 62 0 Terbutryn+Metribuzin 2+.5 26.2 58.7 0 0 62 0 Terbutryn+Metolachlor+Atrazine 2+2+.5 28.2 58.3 0 1 71 0 Control 26.2 58.1 0 0 0 0 0 0 Mean 27.0 58.2 0 14 69 35 Low mean 33.7 58.8 0 73 93 99 Low mean 11.7 57.2 0 0 0 0 LSD(1 Percent) 7.8 0. 0 22 20 52 LSD(5 Percent) 5.9 0. 0 17 15 39								
Terbutryn+Atrazine 2+.5 29.4 58.5 0 0 59 42 Terbutryn+Metribuzin 2+.5 26.2 58.7 0 0 62 0 Terbutryn+Metolachlor+Atrazine 2+.5 28.2 58.3 0 1 71 0 Control 26.2 58.1 0 0 0 0 0 Mean 27.0 58.2 0 14 69 35 High mean 33.7 58.8 0 73 93 99 Low mean 11.7 57.2 0 0 0 0 Coeff. of variation 15.5 0 0 87 15 81 LSD(1 Percent) 7.8 0 0 22 52 52 LSD(5 Percent) 5.9 0 0 17 15 39								
Terbutryn+Metribuzin 2+.5 26.2 58.7 0 0 62 0 Terbutryn+Metolachlor+Atrazine 2+2+.5 28.2 58.3 0 1 71 0 Control 26.2 58.1 0 0 0 0 0 Mean 27.0 58.2 0 14 69 35 High mean 33.7 58.8 0 73 93 99 Low mean 11.7 57.2 0 0 0 0 Coeff. of variation 15.5 0. 0 87 15 81 LSD(1 Percent) 7.8 0. 0 22 20 52 LSD(5 Percent) 5.9 0. 0 17 15 39								
Terbutryn+Metolachlor+Atrazine 2+2+.5 28.2 58.3 0 1 71 0 Control 26.2 58.1 0 0 0 0 0 Mean 27.0 58.2 0 14 69 35 High mean 33.7 58.8 0 73 93 99 Low mean 11.7 57.2 0 0 0 0 Coeff. of variation 15.5 0. 0 87 15 81 LSD(1 Percent) 7.8 0. 0 22 20 52 LSD(5 Percent) 5.9 0. 0 17 15 39								
Control26.258.10000Mean27.058.20146935High mean33.758.80739399Low mean11.757.20000Coeff. of variation15.50.0871581LSD(1 Percent)7.80.0222052LSD(5 Percent)5.90.0171539		2++0						
Mean $27.0 58.2 \\ 33.7 58.8 \\ 0 73 93 99$ High mean $33.7 58.8 \\ 11.7 57.2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 15.5 \\ 0. \\ 0 \\ 22 \\ 20 \\ 52 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$		2+2+•0						
High mean $33.7 58.8 0 73 93 99$ Low mean $11.7 57.2 0 0 0 0$ Coeff. of variation $15.5 0. 0 87 15 81$ LSD(1 Percent) $7.8 0. 0 22 20 52$ LSD(5 Percent) $5.9 0. 0 17 15 39$	CONCRET		20.2	58.1	0	0	0	0
High mean $33.7 58.8 0 73 93 99$ Low mean $11.7 57.2 0 0 0 0$ Coeff. of variation $15.5 0. 0 87 15 81$ LSD(1 Percent) $7.8 0. 0 22 20 52$ LSD(5 Percent) $5.9 0. 0 17 15 39$	Mean		27 0	58 2	0	11	60	25
Low mean $11.7 57.2 0 0 0 0$ Coeff. of variation $15.5 0. 0 87 15 81$ LSD(1 Percent) $7.8 0. 0 22 20 52$ LSD(5 Percent) $5.9 0. 0 17 15 39$								
Coeff. of variation15.50.0871581LSD(1 Percent)7.80.0222052LSD(5 Percent)5.90.0171539								
LSD(1 Percent)7.80.0222052LSD(5 Percent)5.90.0171539								
LSD(5 Percent) 5.9 0. 0 17 15 39								
			T.U	1.0	4	4	4	4

Summary

Wheat stands were reduced 24 to 60% by EL-187 alone or in combination with atrazine, metribuzin, cyanazine or chlorsulfuron and 11 to 33% by hexazinone combinations with diuron, chlorsulfuron, atrazine, metribuzin or terbutryn. EL-187 at 0.75 lb/A alone or in combination with other herbiWheat on postemergence fallow herbicides, Minot 1980-81. Fallow herbicides were applied on wheat stubble May 20, 1980. Precipitation totalled 15.1inch during the 11 month period between herbicide application and wheat seeding. The entire experimental area was tilled and Coteau wheat seeded April 24, 1981. Wheat injury and stand reduction were evaluated June 22. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 20 ft.

	Rate	Whea	t	1980
Treatment	lb/A	%ir	%sr	% Cont
Terbutryn+S Terbutryn+Atrazine+S Terbutryn+Atrazine+S Terbutryn+Metribuzin+S Terbutryn+Chlorsulfuron+S Terbutryn+Metribuzin+2,4-E Metribuzin (L)+Paraquat+S Metribuzin (L)+Paraquat+S Metribuzin+Paraquat+S Metribuzin+Paraquat+S Metribuzin+Clsu+Paraquat+S Atrazine+Paraquat+S Atrazine+Paraquat+S Atrazine+Paraquat+S Cyanazine+Atrazine+Para+S EL-187+Atrazine+Paraquat+S	.5+.5+.5% .75+.5+.5% .5+.5+.5% .75+.5+.5% .5+.06+.5+.5% .75+.5+.5% .75+.5+.5% .5+.06+.5+.5% 2+.5+.5% 2+.5+.5%	0 3 0 3 8 3 0 3 0 3 0 3 0 5	0 4 3 1 6 5 6 3 8 8 4 9 3 3 4 3 0 1 8	46 64 80 85 100 98 100 99 95 100 100 98 79 99 99 99 99 98 98 98
Chlorsulfuron+Paraquat+S Control	• • • • • • • • • • • • • • • • • • • •	0	õ	0
Mean High mean Low mean Coeff. of variation LSD(1 Percent) LSD(5 Percent) No. of reps		2 8 0 219 8 6 4	4 9 0 149 11 8 4	87 100 0 14 22 17 4

Summary

No chemical fallow treatment reduced wheat stand over 10% with an 11 month interval between application and seeding.

Wheat planted on postemergence fallow herbicides, Williston 1980-81. Fallow herbicides were applied on wheat stubble May 19, 1980. Precipitation totalled 12.0 inch during the 11 month period between application and wheat seeding. Waldron wheat was seeded April 15. Wheat injury and stand reduction were evaluated July 9. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 17 ft.

	Wheat					
	Rate	Yield	Twt			% Cont
Treatment	lb/A	bu/A	lb/bu	%ir	%sr	1980
Terbutryn+S	2	29.4	57.8	0	1	5
Terbutryn+Atrazine+S	2+.5	32.5	56.9	0	3	36
Terbutryn+Metribuzin+S	2+.5	29.5	57.7	0	0	51
Terbutryn+2,4-D+S	2+.5	32.0	57.4	0	0	58
Terbutryn+Chlorsulfuron+S	2+.06	34.1	55.9	0	0	94
Terbutryn+Metribuzin+2,4-D+S	2+.5+.5	33.4	57.5	0	0	80
Metribuzin(L)+Paraquat+S	.5+.5	30.2	57.4	0	0	73
Metribuzin(L)+Paraquat+S	.75+.5	32.5	57.9	0	0	70
Metribuzin+Paraquat+S	.5+.5	30.4	57.7	0	0	67
Metribuzine+Paraquat+S	.75+.5	32.0	57.4	0	4	75
	.5+.06+.5	34.3	56.6	0	3	93
Atrazine+Paraquat+S	.5+.5	32.3	57.4	0	0	57
Atrazine+Paraquat+S	.75+.5	32.0	57.2	0	3	65
Atrazine+Chlorsulfuron+Para+S	.5+.06+.5	34.1	57.2	0	0	83
Cyanazine+Paraquat+S	2+.5	30.7	57.5	0	0	72
Cyanazine+Atrazine+Paraquat+S	2+.5+.5	32.0	57.6	0	4	75
EL-187+Atrazine+Paraquat+S	.5+.5+.5	27.2	57.2	0	21	66
Chlorsulfuron+Paraquat+S	.03+.5	29.5	57.1	0	0	75
Chlorsulfuron+Paraquat+S	.06+.5	31.9	57.1	0	1	80
Control		28.0	57.7	0	Ó	0
Mean		31.4	57.3	0	2	64
High mean		34.3	57.9	0	21	94
Low mean		27.2	55.9	0	0	0
Coeff. of variation		8.5	0.	0	183	11
LSD(1 Percent)		5.0	0.	0	7	13
LSD(5 Percent)		3.8	0.	0	5	10
No. of reps		4.0	1.0	4	4	4

Summary

No treatment reduced wheat yields compared to the control. EL-187 at 0.5 lb/A in combination with atrazine reduced wheat stand 21%.

Wheat on spring applied fallow herbicides, Mohall 1980-81. Fallow herbicides were applied on wheat stubble May 21, 1980. Precipitation totalled 16.4 inch during the 12 month period between herbicide application and wheat seeding. False chamomile control was evaluated May 8 prior to tillage and seeding of Coteau wheat. Wheat injury and in crop weed control were evaluated July 22. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 20 ft. False chamomile density in control plots was light.

	021-27-90-00-00-00-00-00-00-00-00-00-00-00-00-		Wheat		Perce		ntrol
	Rate	Yield	Twt		May8	Jun	
Treatment	lb/A	bu/A	lb/bu	%ir	Fach	Fach	Grft
Cyanazine	2.5	23.1	56.8	0	61	0	0
Metribuzin	.75	20.9	56.0	0	20	0	0
Atrazine	2	17.2	56.0	0	81	0	0
Cyanazine+Atrazine	2+.5	27.7	56.4	0	75	25	26
Cyanazine+Metribuzin	2+.5	20.1	56.5	0	68	- 23	23
Cyanazine+Chlorsulfuron	2+0.06	30.7	57.0	0	98	100	98
Control		17.1	56.5	0	0	0	0
Hexazinone+Metribuzin	.75+.5	24.2	56.0	0	94	43	56
Hexazinone+Chlorsulfuron	.75+0.06	26.7	57.0	3	100	99	99
Hexazinone+Diuron	.5+1	20.8	56.5	3	90	21	19
Chlorsulfuron	.12	29.3	57.5	1	100	100	98
Chlorsulfuron	0.06	28.4	56.5	0	100	100	86
Chlorsulfuron	0.03	26.3	56.5	0	98	98	60
Mean		24.0	56.6	0	76	47	43
High mean		30.7	57.5	3	100	100	99
Low mean		17.1	56.0	0	0	0	0
Coeff. of variation		21.5	0.	363	26	50	55
LSD(1 Percent)		9.9	0.	3	38	45	45
LSD(5 Percent)		7.4	0.	2	29	34	34
No. of reps		4.0	1.0	म्	4	4	4

Summary

Residual false chamomile control was excellent with chlorsulfuron alone and in combination with cyanazine or hexazinone. Wheat yields were increased 9 to 13 bu/A by treatments containing chlorsulfuron. Wheat on cyanazine fallow treatments, Fargo 1980-81. Fallow herbicides were applied on wheat stubble May 30, 1980. Precipitation totalled 13.8 inch during the 11 month period between herbicide application and wheat seeding. The Wheat was seeded April 24, 1981 into untilled soil. Wheat injury and stand reduction were evaluated July 6. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 17 ft.

	Rate	Whe	Wheat		
Treatment	lb/A	%ir	%sr	1980 % Cont	
Cyanazine(4LW)+Atrazine(L)+2,4-D	2+ 5+ 5	0	0	17.4	
Cyanazine(4LO)+Atrazine(L)+2,4-D	2+ 5+ 5	0	0	71	
Cyanazine(WP)+Atrazine(L)+2,4-D	2+.5+.5	0	1	80	
Cyanazine(4LW)+Atrazine(WP)+2,4D	2+ 5+ 5	0	1	92	
Cyanazine(WP)+Atrazine(WP)+2,4-D	2+ 5+ 5	0	4	83	
	2+.5+.5	0	0	80	
	2+.5+.5	0	10	100	
Cyan(WP)+Atrazine(WP)+Paraquat	2. 5. 5		3	100	
Cyan(4LW)+Atrazine(L)+2,4-D+Par	2+• 5+• 5	0	3	100	
Control	++.0+1+1	1	4	100	
		0	0	0	
Mean		0	3	81	
High mean		1	10	100	
Low mean		0	0	0	
Coeff. of variation		632	136	0 7	
LSD(1 Percent)		2	7	11	
LSD(5 Percent)		1	=	11	
No. of reps		1	5	84	
		-	7	4	

Summary

No cyanazine-atrazine treatment reduced wheat stand over 10% with a 11 month interval between application and seeding.

Wheat on cyanazine fallow treatments, Minot 1980-81. Fallow herbicides were applied on wheat stubble May 20, 1980. Precipitation totalled 15.1 inch during the 11 month period between herbicide application and wheat seeding. The entire experimental area was tilled and Coteau wheat seeded April 24, 1981. Wheat injury and stand reduction were evaluated June 22. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 20 ft.

Rate	Whe	Wheat			
Treatment 1b/A	%ir	%sr	% Cont		
Cyanazine(4LW)+Atrazine(L)+2,4-D 2+.5+.5	0	3	92		
Cyanazine($4L0$)+Atrazine(L)+2, 4-D 2+.5+.5	õ	3	100		
Cyanazine(WP)+Atrazine(L)+2, $4-D$ 2+.5+.5	0	õ	88		
Cyanazine $(4LW)$ + Atrazine (WP) +2, 4D 2+.5+.5	0	1	94		
Cyanazine(WP)+Atrazine(WP)+2, 4-D $2+.5+.5$	0	8	90		
Cyan(4LW)+Atrazine(L)+Paraquat 2+.5+.5	0	1	100		
Cyan(4LW)+Atrazine(WP)+Paraquat 2+.5+.5	0	5	99		
Cyan(WP)+Atrazine(WP)+Paraquat 2+.5+.5	1	3	99		
Cyan(4LW)+Atrazine(L)+2,4-D+Par 4+.8+1+1	0	Ō	99		
Control	0	0	0		
Mana	0	2	86		
Mean Nich maan	1	. 8	100		
High mean Low mean	0	0	0		
Coeff. of variation	632	196	4		
LSD(1 Percent)	2	9	8		
LSD(5 Percent)	1	6	6		
No. of reps	4	4	4		
not of the					

Summary

No cyanazine-atrazine treatment reduced wheat stand over 10% with an 11 month interval between application and seeding.

Wheat on cyanazine fallow treatments, Williston 1980-81. Fallow herbicides were applied on wheat stubble May 19, 1980. Precipitation totalled 12.0 in. during the 11 month period between herbicide application and wheat seeding. Waldron wheat was seeded April 15. Wheat injury and stand reduction were evaluated July 9. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 17 ft.

	31		Whe	eat		
	Rate	Yield	Twt			% Cont
Treatment	lb/A	bu/A	lb/bu	%ir	%sr	1980
Cyan(4LW) + Atrazine(L) + 2, 4 - D	2+.5+.5	34.0	58.3	0	0	82
Cyan(4LO) + Atrazine(L) + 2, 4-D	2+.5+.5	30.7	58.2	0	10	88
Cyan(WP)+Atrazine(L)+2,4-D	2+.5+.5	31.5	58.4	0	0	68
Cyan(4LW)+Atrazine(WP)+2,4-D	2+.5+.5	31.8	58.3	0	1	81
Cyan(WP)+Atrazine(WP)+2,4-D	2+.5+.5	31.8	58.7	0	3	74
Cyan(4LW)+Atrazine(L)+Paraquat	2+.5+.5	32.2	58.7	0	0	74
Cyan(4LW)+Atrazine(WP)+Paraquat	2+.5+.5	30.3	59.0	0	0	66
Cyan(WP)+Atrazine(WP)+Paraquat	2+.5+.5	28.9	58.5	0	0	62
Cyan(4LW)+Atra(L)+2,4-D+Para	4+.8+1+1	32.0	58.2	0	5	89
Control		26.7	58.6	0	0	0
Mean		31.0	58.5	0	2	68
High mean		34.0	59.0	0	10	89
Low mean		26.7	58.2	0	0	Ō
Coeff. of variation	Persona and	10.1	0.	0	133	9
LSD(1 Percent)		6.1	0.	0	5	- 12
LSD(5 Percent)		4.6	0.	0	4	9
No. of reps		4.0	1.0	4	4	4

Summary

No cyanazine-atrazine treatment reduced wheat stand over 10% with an 11 month interval between application and seeding.

Conventional verses no-till production of several crops, Fargo 1981. Trials were established in silty clay soil (initiated 1976) to compare conventional (fall plowing, spring cultivating and harrowing) or no-till (seeding directly into standing stubble) production systems. Crop, variety, seeding date, plant stand and yield are presented in the table. Small grains and flax were seeded with a modified press drill and row crops with a flex planter.

	and the second se		Conventi	lonal	No-t:	111
		Seeding	Stand	Yield	Stand	Yield
Crop	Variety	date	Plants/3ft	Units/A	Plants/3ft	Units/A
01 01		10-00	an a fha far she fan de fan an fan ste fan ste fan de f			
Wheat	Era	4/28	112	34.1bu	116	34.2bu
Barley	Park	4/28	85	53.6bu	85	53.5bu
Flax	Culbert	5/04	87	16.1bu	72	16.0bu
Corn	Agsco2XA1	5/19	4	66.1bu	4	72.1bu
Sunflower		5/19	5		6	
Soybeans	Evans	5/19	13	23.8bu	10	25.4bu
	t Hillshog	5/15	6	15.8T	7	14.6T
Sugarbee		51.5	A Section of Lateral	S 1 1 1 1 1		
	monica					

Summary

Corn yield was significantly higher under no-till than conventional-till in 1981. Yield of flax, wheat, barley, soybeans, or sugarbeets were similar under both tillage systems.

Conventional verses no-till wheat, Fargo 1981. Trials were established in silty clay soil in 1980 (experiment initiated 1977) to compare conventional and no-till production of seven crops. Era wheat was seeded on this same plot area April 24, 1981. The entire experimental area was treated with diclofop plus bromoxynil when the wheat was in the 3-leaf stage. The expiment was a split block with a randomized block design with 4 replications and experimental units were 15 by 40 ft.

	Wheat	, and and all all all all all all all all all a		Weeds/3 sq ft					
1980 Plants/3ft	row	Yield	bu/A	Ye	ft	Ko			
Crop CT	NT	CT	NT	CT	NT	CT	NT		
Wheat88Barley105Flax93Corn114Soybeans130Sunflowers125Sugarbeets131	116 112 103 105 120 122 118	34.1 42.0 37.3 44.6 45.9 44.9 44.3	32.7 39.3 40.5 43.1 45.4 44.8 42.4	22 25 33 25 23 15 16	30 36 52 33 40 36 40	0 0 1 0 0 1 0	1 1 3 2 5		
Mean 112 LSD(0.05) Till = NS Crop = 11 Crop*Till = 17	114	41.9 NS 4 NS			38 10 17 VS		2 •7 2 3		

Summary

Wheat stand counts and yield were similar in conventional or no-till treatments when averaged over previous crop. Wheat yields ranged from 36 to 46 bu/A under conventional-till and 33 to 45 bu/A under no-till depending on previous crop. Weed counts were higher in no-till than conventional-till treatments and were influenced by previous crop.

Fall herbicides for weed control in no-till wheat, Fargo 1980-81. Treatments were applied in wheat stubble (3000 lb/A residue) September 26, 1980 and Era wheat seeded April 24, 1981 in 6 inch row spacings. All treatments were applied with a bicycle wheel sprayer delivering 17 gpa at 35 psi. The experiment was a randomized complete block with 4 replications and experimental units were 8 by 17 ft. Weed control and crop injury ratings were on July 1.

WheatPlant density/									
Treatment	Rate 1b/A	Yield bu/A	%ir	%sr	% Cont Fxtl	3ftrow Wheat	3square Fxtl		
Cyanazine 80W Cyanazine 80W Cyanazine 4L Cyanazine 4L Pendimethalin Oryzalin Chlorsulfuron Chlorsulfuron Control	2 2.5 2.5 1.5 1 0.03 0.06	32.3 32.9 35.6 43.0 38.6 45.2 50.8 53.0 25.8	0 0 0 0 0 0 3 0	0 0 0 0 0 0 5 0	29 55 29 61 69 73 98 98 98	51 66 71 69 74 68 72 76 54	186 145 181 171 80 39 23 12 214	12 6 9 5 5 10 12 6 7	
Mean High mean Low mean Coeff. of varia LSD(1 Percent) LSD(5 Percent) No. of reps	ation	39.7 53.0 25.8 18.6 14.6 10.8 4.0	0 3 600 3 2 4	1 5 0 346 4 3 4	57 98 0 21 24 18 4	67 76 51 24 31 23 4	117 214 12 24 55 40 4	8 12 57 9 6 4	

Summary

Foxtail control was excellent with chlorsulfuron at 0.03 to 0.06 lb/A. Wheat yields were 25 to 28 bu/A higher in chlorsulfuron treated than control plots.

Weed control in no-till wheat, Williston 1980-81. Fall glyphosate (F) was applied October 14 and spring glyphosate and 2,4-D (S) April 23 to 2 to 3in tansy mustard prior to seeding Len wheat on April 30. Postemergence treatments were applied on May 18 to wheat in the 3-leaf stage. All treatments were applied with a bicycle wheel plot sprayer delivering 8.5 gpa at 35psi. The experiment was a randomized complete block with 3 replications. Weed densities were variable from light to heavy.

	an ann an San San San San San San San Sa	Wh	eat	Concerning the second	Construction specification			
	Rate	Yield	Twt		-Perce	nt co	ntrol-	
Treatment	oz/A	bu/A	lb/bu	Tamu	Mesl	Prlt	Grft	Dobr
Bromoxynil+Diclofop	6+16	0.6	0.	47	7	60	96	0
MCPA+Bromoxynil	6+6	3.2	59.6	75	80	86	0	0
Glyphosate (F)	6	14.9	56.6	94	98	37	0	99
Glyp(F)+MCPA+Diclofop	6+6+16	22.2	56.8	96	99	98	63	99
Glyp(F)+MCPA+Bromoxynil	6+6+6	23.1	57.3	99	99	98	0	91
2,4-D (S)	12	21.8	58.5	100	100	100	0	0
2,4-D(S)+Brox+Diclofop 1		22.4	59.0	100	100	100	63	0
2,4D(S)+MCPA+Bromoxynil	12+6+6	23.6	58.7	100	100	100	0	0
Glyphosate (S)	6	7.2	58.0	96	70	55	0	99
Glyp(S)+Brox+Diclofop	6+6+16	7.1	58.4	92	78	70	96	99
Glyp(S)+MCPA+Bromoxynil		14.3	59.0	98	93	94	0	99
Control		0.5	0.	0	0	0	0	0
Mean		13.4	48.5	83	77	75	27	49
High mean		23.6	59.6	100	100	100	96	99
Low mean		0.5	0.	0	0	0	0	0
Coeff. of variation		26.0	0.	9	8	16	80	6
LSD(1 Percent)		8.0	0.	17	14	28	49	7
LSD(5 Percent)		5.9	0.	12	10	21	36	5
No. of reps		3.0	1.0	3	3	3	3	3

Summary

Weed control was good with fall applied glyphosate or spring applied 2, 4-D. Wheat stands were good in fall glyphosate or spring 2,4-D but only 50% in spring glyphosate and less than 5% in the controls. Wheat yields were generally a reflection of tansy mustard control. Influence of tillage and herbicides on weeds, Fargo 1981. The experiment was established the fall of 1977. Tillage and herbicides have been applied to the same area each year (except chlorsulfuron was first applied Oct 20, 1979). In 1981, Era wheat was seeded and paraquat applied April 24. Diclofop was applied to 2 to 3-leaf wild oat and foxtail May 22 and 2,4-D to 4 to 6 inch broadleaf weeds June 8.

					Wh	eat					
	Plants/3 ft row						bu/A				
Tillage	None	Dicl	2,4-D	Di+D	Mean	None	Dicl	2,4-D	Di+D	Mean	
NT-Clsu NT-Para Disc Plow Chisel plow	121 60 50 50 64	131 70 58 68 67	110 74 73 72 70	123 89 90 81 100	121 73 68 73 75	46.8 20.3 18.9 23.2 16.5	48.0 26.5 30.8 38.4 29.4	44.4 23.1 26.7 26.2 17.1	49.3 41.9 41.0 40.5 39.7	47.1 28.0 29.3 32.1 25.7	
Mean LSD (0.05) Ti He Till*He	rb =	79	80 16 11 24	97		25.1	34.6	27.5 5 4 8	42.5		

	CathCath									
		Dicl 2								
NT-Clsu NT-Para Disc Plow Chisel plow	6 95 76 44 46	4 15 7 17 13	8 84 74 53 42	1 22 21 15 8	5 54 45 32 27	0 8 0 5	0 4 5 0 2	0 2 1 0 1	0 2 0 0 2	0 4 4 0 3
	ll = cb =	1 5	52 4 8 0 Wica-	13		4	2	1 2 1.5 3	1	
NT-Clsu NT-Para Disc Plow Chisel plow	14 15 16 21 29	0 2 0 4 3	8 24 21 20 36	0 3 4 3 3	5 11 10 12 18	0 9 8 3 4	0 11 15 6 8	0 0 1 1 1	0 2 2 1 1	0 5 7 3 3
	19 L1 = cb = cb =	2	20 5 7 9	3		5	8	1 2 2 4	1	

Summary

Fall application of 0.25 oz/A chlorsulfuron effectively controlled all weed species in no-till plots except wild oat. Canada thistle populations were higher in reduced or notill paraquat plots than in plowed or chlorsulfuron treated plots especially without 2,4-D. Wheat yields were higher in notill plots treated with chlorsulfuron than in any other tillage treatment regardless of postemergence herbicide. Weed control in no-till sunflowers, Minot 1981. Sundac sunflowers were seeded and preemergence treatments applied May 19. Postemergence treatments were applied to 1 to 2 inch weeds and 2-leaf sunflowers June 15. Herbicides were applied with a bicycle wheel plot sprayer delivering 17 gpa at 35 psi except diclofop and BAS-9052 were applied in 8.5 gpa. The experiment was a randomized complete block with 4 replications. Weed densities were moderate to heavy.

		-Sunf					
Ra	te Yield			Plant			and the second se
Treatment Application 1b	A 1b/A	%ir	lb/A	/Acre	Kocz	Grft	Ruth
Glyphosate+S PE 0.37+.	5% 434	0		12090	16	28	0
Glyphosate+Alachlor+S PE 0.37+2.5+.	5% 719	0		12480	18	78	0
Glyphosate+Propachlor+S PE 0.37+4+.	5% 336	0		13260	13	68	0
Glyphosate+Pend+S P 0.37+1.5+.	5% 891	0	29.0	13650	76	74	20
Glyphosate+Oryzalin+S PE 0.37+1.5+.	5% 518	0		14170	38	69	85
Glyphosate+Chloramben+S PE 0.37+2+	-5% 496			13000	44	68	50
Glyp+Pend+Clam+S PE 0.37+1.5+1.5+.	.5% 967			10400		86	70
Glyp+Pend+Linuron+S PE 0.37+1.5+1.5+.				11440		89	71
Glyp+Pend+Oxyf+S PE 0.37+1.5+0.25+.				10400		75	85
Glyp+Pend+R40244+S PE 0.37+1.5+0.5+.		0		11440		76	90
Glyphosate+S PE+Dicl P 0.37+.5%+1.	25 288			13130		98	0
Glyp+S PE+Bas9052+0C P .37+.5%+.37+.2	25G 453		A second second second second second	11700		99	0
Control weedy	493			12480		0	0
Control Handweeded	1303	0	30.0	13390	99	99	99
Mean	732		28.9				41
High mean	1387		30.0				99
Low mean	288					0	0
Coeff. of variation	26		0.	15			
LSD(1 Percent)	363			3495			
LSD(5 Percent)	272			2612			23
No. of reps	4	4	1.0	4	4	4	4

Summary

Broadspectrum weed control was good with pendimethalin in combination with linuron, chloramben, oxyfluorfen, and R-40244. Sunflower yields generally related to weed control. Weed control in no-till sunflowers, Mott 1981. Sunflowers were seeded and preemergence treatments applied May 18. Postemergence treatments were applied to 1 to 2 inch weeds and 2-leaf sunflowers June 11. Herbicides were applied with a back pack sprayer delivering 17 gpa at 35psi except diclofop and BAS-9052 were applied in 8.5 gpa. The experiment was a randomized complete block with 4 replications. Weed densities were heavy. Precipitation for a two week period following PE and post treatments totalled 1.1 and 1.8 inch, respectively.

		P	ercent	control.	St	unflower
	Rate	Total		Ruth	Grft	Injury
Treatment Application	lb/A	June11	July16		-August	5
Glyphosate PE	0.37	84	62	56	55	0
	87+1.5	92	77	82	72	0
	5+2.5	96	79	75	75	0
Glyphosate+Oryzalin PE 0.3	87+1.5	97	86	94	85	0
Glyp+Chloramben PE 0.3	7+1.5	97	79	82	78	0
Glyp+Propachlor PE C	.37+4	80	59	72	42	0
Glyp+Pend+Linuron PE 0.37+1.	5+1.5	95	70	67	87	38
Glyp+Pend+Chloramben PE 0.37+1.		100	96	95	99	0
Glyphosate+Pend+Oxyf PE 0.37+1.5		100	80	82	78	0
Glyp+Pend+R-40244 PE 0.37+1.		95	82	88	82	0
	7+1.5	92	72		94	
	+0.37	81	58	55	-	0
Weedy control	10.01			52	70	0
accal control		0	0	0	0	0
LSD (0.0	5)	20		01		
	רכי	20	22	21	20	5

Summary

Linuron at 1.5 lb/A was the only treatment which injured sunflowers. Broadspectrum weed control was good with oryzalin or pendimethalin combinations with chloramben or R-40244.

