Tan Section: Adjuvant and Application Technology

Clethodim formulations with adjuvants	2
Glyphosate formulation comparisons	3
Surfactant and water conditioner comparison with unloaded glyphosate	4
Glyphosate with water conditioners in hard water	5
Comparison of N Pak AMS and ATS as water conditioners	6
Roundup PowerMax with Hook, Hook Zero, and Micropac Plus	7
Surfactant comparison with unloaded glyphosate	8
High Surfactant Methylated Seed Oil Concentrate comparison with glyphosate	9
Glyphosate and tembotrione enhancement using HSMOC and surfactant	10
Glyphosate and tembotrione enhancement using HSMOC and varying surfactants	11
Glyphosate and 2,4-D with adjuvants	12
Pulse Width Modulator sprayer-carrier volume comparison	13
Pulse Width Modulator sprayer-Enlist Duo spray quality	14
Pulse Width Modulator sprayer-glyphosate and dicamba spray quality	15
Clopyralid&Fluroxypyr&MCPA + Pinoxaden efficacy with pulse sprayer	16
Carfentrazone&2,4-D + Flucarbazone efficacy with pulse sprayer	17
Pyroxsulam&Florasulam&Fluroxypyr efficacy with pulse sprayer	18
Brox&MCPA + Fenoxaprop efficacy with pulse sprayer	19
Thifensulfuron + Tribenuron + 2,4-D + Clodinafop efficacy with pulse sprayer	20
Bromoxynil&Pyrasulfotole&Thiencarbazone efficacy with pulse sprayer	21

Page

Clethodim formulations with adjuvants. Zollinger, Richard K., Devin A. Wirth, Jason W. Adams. An experiment was conducted near Hillsboro, ND to evaluate the effect adjuvants have on different formulations of clethodim. Foxtail Millet, Forage Barley, and Corn were planted on June 8, 2016. POST treatments were applied on July 15, 2016 at 10:00 AM with 72 F air, 64 F soil at a four inch depth, 64% RH, 0% cloud cover, 3-5 mph WNW wind, and adequate soil moisture. Weeds present at the time of POST applications were: fomi 14-16" at 50/ft2, foba 12-14" at 40/ft2, and corn 14-16" at 2/yd2. Soil characteristics were: 15.3% sand, 53.9% silt, 30.8% clay, silty clay loam, 6.2% OM, and 7.5 pH. Treatments were applied to the center 6.7 feet of the 10 by 40 foot plots with a backpack-type plot sprayer delivering 8.5 gpa through 11001 TT nozzles at 40 psi. The experiment was a randomized complete block design with three replicates per treatment.

Shadow is a 3 lb ai/gal formulation of clethodim and Vaquero is a 2 lb ai/gal formulation of clethodim. They both contain different formulation packages. Grass control increased: clethodim alone>PO>MSO. Shadow and Vaquero at similar active ingredient rates (3 fl oz = 4.5 fl oz) applied alone, with PO, and with MSO gave similar grass control for each similar comparison.

	,		14 DA/	۹	2	8 DAA		
Treatment	Rate	Fomi	Foba	Corn	Fomi	Foba	Corn	
	(Product/A)	% control		% control				
Shadow 3	3floz	30	30	12	37	30	12	
Shadow 3+PO	3floz+1%v/v	52	52	58	62	69	72	
Shadow 3+MSO	3floz+1%v/v	50	60	70	45	73	78	
Vaquero	4.5floz	30	30	30	33	30	30	
Vaquero+PO	4.5floz+1%v/v	52	62	62	52	68	74	
Vaquero+MSO	4.5floz+1%v/v	52	62	62	60	76	72	
LSD (0.05)		3	3	6	6	3	6	

Table. Clethodim formulations with adjuvants (Zollinger, Wirth, Adams).

Fomi = foxtail millet, Foba = foxtail barley

Glyphosate formulation comparisons. Zollinger, Richard K., Devin A. Wirth, Jason W. Adams. An experiment was conducted near Hillsboro, ND to evaluate the difference between multiple glyphosate formulations. Quinoa, tame buckwheat, and conventional soybean were planted on June 8, 2016. POST treatments were applied on July 9, 2016 at 7:30 AM with 75 F air, 66 F soil at a four inch depth, 79% RH, 0% cloud cover, 1-5 mph SE wind, and adequate soil moisture. Weeds present at the time of POST applications were: quinoa 14-16" 10-15/ft2, tame buckwheat 12-14" at 5-10/ft2, and conventional soybean 6-8" at 5-10/ft2. Soil characteristics were: 15.3% sand, 53.9% silt, 30.8% clay, silty clay loam, 6.2% OM, and 7.5 pH. Treatments were applied to the center 6.7 feet of the 10 by 40 foot plots with a backpack-type plot sprayer delivering 8.5 gpa through 11001 TT nozzles at 40 psi. The experiment had a randomized complete block design with three replicates per treatment.

l'able. Glyphosate formula	tion comparisons (Zollinger	, wirth, Ad	ams).		
		1	4 DAA	۱	28 DAA
Treatment ¹	Rate	Quin ²	Tabw	Soy	Quin Tabw Soy
	(Product/A)	%	contr	ol	% control
Roundup Weathermax	21.3floz	73	71	78	72 75 83
Roundup Powermax	21.3floz	86	70	90	84 70 90
Buccaneer Plus	32floz	62	69	61	62 69 61
Gly Star K+Activator 90	21.3floz+0.25%v/v	83	76	83	86 78 87
Barbarian Max	21.3floz	69	68	65	75 78 65
Credit Xtreme	21.3floz	75	72	70	68 70 70
Touchdown Total	23floz	84	73	84	84 82 86
Roundup Pro	32floz	48	68	70	47 77 82
Imitator Plus	32floz	82	72	94	82 82 94
Abundit Xtra	32floz	63	60	70	63 68 75
Imitator DA	32floz	73	57	62	73 60 62
Durango DMA	24floz	73	70	87	75 80 87
TD HiTech+Rainier EA	19.2floz+0.5%v/v	70	53	64	77 65 73
LSD (0.05)		5	5	9	5 5 6
· · · · · · · · · · · · · · · · · · ·	······································				

Table, Glyphosate formulation comparisons (Zollinger, Wirth, Adams).

¹Glyphosate rates based on active ingredient load in the formulation

²Quin = Quinoa, Tabw = Tame Buckwheat, Soy = Soybean

Surfactant and water conditioner comparison with unloaded glyphosate. Zollinger, Richard K., Devin A. Wirth, Jason W. Adams. An experiment was conducted near Hillsboro, ND to evaluate the effect surfactants and water conditioners have on glyphosate efficacy. Flax, amaranth, sunflower, conventional corn were planted on June 8, 2016. POST treatments were applied on July 9, 2016 at 7:30 AM with 75 F air, 66 F soil at a four inch depth, 79% RH, 0% cloud cover, 1-5 mph SE wind, and adequate soil moisture. Weeds present at the time of POST application were: flax 6" at 20-30/ft2, amaranth 14-16" at 10-20/ft2, sunflower 12-14" at 1-2/yd2, and conventional color 12-14" at 1-2/yd2. Soil characteristics were: 15.3% sand, 53.9% silt, 30.8% clay, silty clay loam, 6.2% OM, and 7.5 pH. Treatments were applied to the center 6.7 feet of the 10 by 40 foot plots with a backpack-type plot sprayer delivering 8.5 gpa through 11001 TT nozzles at 40 psi. The experiment had a randomized complete block design with three replicates per treatment.

Touchdown HiTech plus Class Act NG (a surfactant with AMS) provided the most species control. There was little change in species control as rates of LoadUp or AQ2100 increased.

			14 [DAA			28 E	AA	
Treatment ¹	Rate	Amar	² Flax	Snfl	Corn	Amar	Flax	Snfl	Corn
	(Product/A)		% cc	ontrol			% co	ntrol-	
TDHT ³	9.6floz	20	23	65	47	20	23	80	57
TDHT+AMS	9.6floz+8.5lb/100gal	48	20	80	60	48	20	95	75
TDHT+Activator 90	9.6floz+0.5%v/v								
+AMS	+8.5lb/100gal	53	62	82	60	62	85	92	83
TDHT+Class Act NG	9.6floz+2.5%v/v	80	91	86	62	83	95	95	87
TDHT+LoadUp	9.6floz+0.375%v/v	35	68	70	47	35	72	82	55
TDHT+LoadUp	9.6floz+0.5%v/v	42	72	68	48	42	75	85	60
TDHT+LoadUp	9.6floz+0.5%v/v								
+AQ2092	+0.25%v/v	43	66	70	50	43	68	85	53
TDHT+LoadUp	9.6floz+0.375%v/v								
+Drift Fiant	0.15%v/v	42	69	65	48	42	72	53	52
TDHT+AQ2100	9.6floz+0.25%v/v	45	68	70	50	52	82	80	62
TDHT+AQ2100	9.6floz+0.375%v/v	50	62	63	53	50	65	67	57
TDHT+AQ2100	9.6floz+0.5%v/v	50	68	71	53	58	73	78	58
LSD (0.05)		6	7	7	5	6	5	5	6

Table. Surfactant and water conditioner comparison with unloaded glyphosate (Zollinger, Wirth, Adams).

¹ All treatments were mixed in hard water at 1,000 ppm

² Amar = Amaranth and Snfl = Sunflower

³ TDHT = Touchdown HiTech (unloaded glyphosate formulation)

<u>Glyphosate with water condition</u> Hillsboro, ND to evaluate the er were planted on June 8, 2016. 50% cloud cover, 4-6 mph NE w amaranth 10-12" at 10-20/ft2, 53.9% silt, 30.8% clay, silty clay backpack-type plot sprayer deli three replicates per treatment. The first 4 treatments were api herbicide efficacy with no anta (hard water) to test the level of Revolution 3.0 was applied with additional surfactant or if a diff	Glyphosate with water conditioners in hard water. Zollinger, Richard K., Devin A. Wirth, Jason W. Adams. An experiment was conducted near Hillsboro, ND to evaluate the effect water conditioners have with glyphosate in hard water. Flax, amaranth, sunflower, and conventional corn were planted on June 8, 2016. POST treatments were applied on July 6, 2016 at 10:00 AM with 87 F air, 71 F soil at a four inch depth, 39% RH, 50% cloud cover, 4-6 mph NE wind, and adequate soil moisture. Weeds present at the time of POST applications were: flax 0.5-6" at 20-30/ft2, amaranth 10-12" at 10-20/ft2, sunflower 10-12" at 1-2/yd2, and conventional corn 12-14" at 1-2/yd2. Soil characteristics were: 15.3% sand, 53.9% silt, 30.8% clay, silty clay loam, 6.2% OM, and 7.5 pH. Treatments were applied to the center 6.7 feet of the 10 by 40 foot plots with three replicates per treatment. The first 4 treatment. The first 4 treatments were applied to compare all other treatments. Treatment 3 was applied with undistilled water to evaluation herbicide efficacy with no antagonism from minerals in the spray solution. All other treatments contained 1,000 ppm calcium and magnesium (hard water) to test the level of water conditioning from Brimstone, an acidic AMADS based water conditioner and from Regulator 2.0 to provide the surfactant requirements. Wet-Sol surfactant was also added to determine of additional surfactant or if a different surfactant other than Revolution 3.0 was applied with Regulator 2.0 to provide the surfactant requirements. Wet-Sol surfactant was also added to determine of	linger, Richard K., De s have with glyphosa applied on July 6, 203 moisture. Weeds pre 2/yd2, and conventio 2/yd2, and conventio 2/yd2, and conventio 2/yd2, and conventio 2/yd2, and convention 2/yd2, and convention 2/yd2	vin A. Wirth te in hard w 16 at 10:00 seent at the all corn 12 ere applied 40 psi. The e All other tre dic AMADS dic AMADS vould influe	, Jaso ater. J AM w AM w time o to the to the xperin stmen satme based vet-	n W. Ada Flax, ama of POST a of POST a t 1-2/yd2 center 6. ment had it 3 was a nts conta water co Sol surfac erbicide e	ms. An exp ranth, sunf ir, 71 F soil pplications 7 feet of tl a randomi a randomi randomi a randomi randomi randomi a randomi randomi randomi rand	erime flowe l at a 1 s were s were acteris acteris ized c ized c ized c ized c ized c lso ac	ent wa four in four in e: flax by 40 by 40 omple istilled calciu om Re om Re	s conducted near conventional corn ch depth, 39% RH, 0.5-6" at 20-30/ft2, ere: 15.3% sand, foot plots with a te block design with water to evaluation m and magnesium gulator 2.0. o determine of
Table. Glyphosate with wat	Table. Glyphosate with water conditioners in hard water (Zollinger	(Zollinger, Wirth, Adams).							
Turnerst	D-+-0	Weter	14 DAA Amar ¹ Flax Snfl	14 DAA	Corn	Amar	28 DAA Flax Snfl	A off Corn	
	(Product (A)	VV 41C1	%	% control-	1 1	1 i	-% control	1-2	
TDHT ² +Rainier EA	(Product/A) 14.3floz+0.5%v/v	1,000 ppm	62 53	63	47	62	53		47
TDHT+AMS	14.3floz+8.5lb/100gal	1,000 ppm		95	70	73	10	95 7	70
TDHT+Rainier EA+AMS	14.3floz+0.5%v/v+8.5lb/100gal	Distilled	93 93		84	91	95		95
TDHT+Rainier EA+AMS	14.3floz+0.5%v/v+8.5lb/100gal	1,000 ppm	94 91	97	78	92	66	3 66	88
TDHT+Brimstone	14.3floz+0.5%v/v	1,000 ppm	63 52	67	60	58	52		68
TDHT+Brimstone	14.3floz+1%v/v	1,000 ppm	72 73	78	69	70	22	80	75
TDHT+Revolution 3.0	14.3floz+4floz					C.V	00	5	38
+Regulator 2.0	+2qt/100gal	T,UUU ppm	70 04	8	00	44	20		0
1 DH I +Kevolution 3.0 +Regulator 2.0	14.31102+41102 +4qt/100gal	1,000 ppm	53 37	73	32	50	33	73	32
TDHT+Revolution 3.0	14.3floz+6floz		5	c,	00	2	52	G	32
+Regulator 2.0	+2qt/100gal	T,UUU PPIM	70 70		00	ZC	70		D
TDHT+Revolution 3.0 +Regulator 2 0	14.3tloz+btloz +4.nt/100.eal	1.000 ppm	57 37	62	32	60	37	62	32
TDHT+Revolution 3.0	14.3floz+4floz								
+Regulator 2.0+Wet-Sol 99	+2qt/100gal+4floz	1,000 ppm	53 32	55	42	57	32	55	42
TDHT+Revolution 3.0		1 000	EE 3E	63	00	57	37	Ę3	CV
+Regulator 2.0+Wet-Sol 39	+4qt/ 100gal+41102					5	4		1 -
LSD (0.05)			ر /	ŋ	4	×	n	'n	4
¹ Amar = Amaranth, Snfl = { ² TDHT = Touchdown HiTec	¹ Amar = Amaranth, Snfl = Sunflower, Corn = Conventional Corn ² TDHT = Touchdown HiTech (unloaded glyphosate formulation)								

Comparison of N Pak AMS and ATS as water conditioners. Zollinger, Richard K., Devin A. Wirth, Jason W. Adams. An experiment was conducted near Hillsboro, ND to evaluate the ability of N Pak AMS and ATS to condition water. Flax, amaranth, quinoa, and tame buckwheat were planted on June 8, 2016. POST treatments were applied on July 1, 2016 at 8:30 AM with 66 F air, 64 F soil at a four inch depth, 24% RH, 10% cloud cover, 7-9 mph SSE wind, and adequate soil moisture. Weeds present at the time of POST applications were: flax 4-4" at 20-30/ft2, amaranth 4-6" at 10-20/ft2, quinoa 6-8" at 10-15/ft2, and tame buckwheat 4-6" at 5-10/ft2. Soil characteristics were: 15.3% sand, 53.9% silt, 30.8% clay, silty clay loam, 6.2% OM, and 7.5 pH. Treatments were applied to the center 6.7 feet of the 10 by 40 foot plots with a backpack-type plot sprayer delivering 17 gpa through 11002 TT nozzles at 40 psi. The experiment had a randomized complete block design with three replicates per treatment.

Assay species of flax, amaranth (similar to redroot pigweed), quinoa (similar to lambsquarters), and tame buckwheat were used in this water conditioner comparison experiment because they have shown good treatment separation in previous historical studies. Commercial liquid AMS contains approximately 3.4 lbs of active ingredient (ammonium and sulfate) per gallon while ATS (1.34-0-0-2.89) contains aproximately 4.23 lbs of active ingredient per gallon. Liberty recommends AMS at a rate of 3 lbs/a while ATS recommends a rate of 4.23 lbs/A. Four rates were selected based on the two rates listed above: 2.38 lbs/A, 3 lbs/A, 3.625 lbs/A, and 4.25 lbs/A. Brimstone is a urea + sulfuric acid mixture which is know as AMADS - see page 127 in the ND Weed Control Guide. Commercial rates of products containing AMADS are usually 0.5% v/v but NDSU has shown these rates are low and do not enhance herbicide activity. NDSU recommends at least 4 pt/A. The sulfuric acid in AMADS forms sulfate in water. The conversion of urea to ammonium is slow. Brimstone rates used in this study were calculated to contain similar sulfate rates as AMS rates used but are so cost prohibitive that they would not be used. ET-4000 is a sulfuric acid based water conditioner and was also added as a comparison to AMS and ATS.

			14 [DAA			28 [DAA		
Treatment ¹	Rate	Flax	Amar	² Quin	Tabw	Flax	Amar	Quin	Tabw	
	(Product/A)		% cc	ontrol-			% co	ntrol-		
Liberty	16floz	70	65	63	73	67	45	53	73	
Products and rates co	mparable to 2.38 lbs/	A - see pa	aragra	ph abc	ove					
Liberty+N Pak AMS	16floz+2.8qt	70	58	70	82	68	52	68	90	
Liberty+ATS	16floz+2.25qt	69	62	52	68	63	48	35	73	
Products and rates co	mparable to 3 lbs/A -	see parag	graph	above						
Liberty+N Pak AMS	16floz+3.53qt	82	78	82	90	82	68	83	96	
Liberty+ATS	16floz+2.84qt	68	69	58	67	67	58	37	83	
Products and rates co	mparable to 3.625 lb	s/A - see j	oaragr	aph ab	oove					
Liberty+N Pak AMS	16floz+4.26qt	80	78	80	88	80	73	73	93	
Liberty+ATS	16floz+3.43qt	69	70	61	71	69	63	43	82	
Products and rates co	mparable to 4.25 lbs/	'A - see pa	aragra	ph abo	ove					
Liberty+N Pak AMS	16floz+5qt	84	83	86	87	84	83	83	95	
Liberty+ATS	16floz+4qt	65	68	60	72	63	50	32	78	
Brimstone rates conta	ain similar sulfate rate	es as AMS	show	n abov	/e.					
Liberty+Brimstone	16floz+2.31qt	77	83	77	80	78	90	72	95	
Liberty+Brimstone	16floz+2.8qt	93	94	93	97	93	90	90	98	
Liberty+Brimstone	16floz+3.27	91	87	86	88	90	85	73	99	
ET-4000 - a sulfuric ad	cid based water condi	tioner ap	plied a	it reco	mmende	ed rate				
Liberty+ET-4000	16floz+1%v/v	83	82	85	85	83	69	73	88	
LSD (0.05)		6	7	6	7	7	4	5	6	
1 All treatments work	applied in 1 000 ppm	hard wat	or							

Table. Comparison of N Pak AMS and ATS as water conditioners (Zollinger, Wirth, Adams).

¹All treatments were applied in 1,000 ppm hard water

² Amar = Amaranth, Quin = Quinoa, Tabw = Tame Buckwheat

Roundup Powermax with Hook, Hook Zero, and Micropac Plus. Zollinger, Richard K., Devin A. Wirth, Jason W. Adams. An experiment was conducted near Hillsboro, ND to evaluate Roundup Powermax enhancement with Hook, Hook Zero, and Micropac Plus. Amaranth, quinoa, and RR soybean were planted on June 8, 2016. POST treatments were applied on July 6, 2016 at 10:00 AM with 87 F air, 71 F soil at a four inch depth, 39% RH, 50% cloud cover, 4-6 mph NE wind, and adequate soil moisture. Weeds present at the time of POST applications were: amaranth 10-12" at 10-20/ft2, quinoa 10-14" at 10-15/ft2, and RR soybean 5-7" at 5-10/yd2. Soil characteristics were: 15.3% sand, 53.9% silt, 30.8% clay, silty clay loam, 6.2% OM, and 7.5 pH. Treatments were applied to the center 6.7 feet of the 10 by 40 foot plots with a backpack-type plot sprayer delivering 8.5 gpa through 11001 TT nozzles at 40 psi. The experiment had a randomized complete block design with three replicates per treatment.

The tank-mix of Hook and Micropac Plus lowered species control while individually they increased species control.

		1	4 DAA		2	<u>8 DAA</u>	\	
Treatment ¹	Rate	Amar	² Quin	Soy	Amar	Quin	Soy	
	(Product/A)	%	contr	ol	%	contr	ol	
RUPM	22floz	72	63	0	72	73	0	
RUPM+Hook	22floz+0.25%v/v	83	75	0	80	82	0	
RUPM+Hook+Micropac Plus	22floz+0.25%v/v+0.25%v/v	82	72	0	82	82	0	
RUPM+Hook+Micropac Plus	22floz+0.25%v/v+2.5%v/v	68	53	0	67	53	0	
RUPM+Hook Zero	22floz+0.25%v/v	95	75	0	85	85	0	
RUPM+Micropac Plus	22floz+0.25%v/v	83	72	0	83	95	0	
RUPM+Micropac Plus	22floz+2.5%v/v	80	70	0	80	80	0	
LSD (0.05)		8	11	0	8	5	0	

Table. Roundup Powermax with Hook, Hook Zero, and Micropac Plus (Zollinger, Wirth, Adams).

¹ RUPM = Roundup Powermax

² Amar = Amaranth, Quin = Quinoa, Soy = Soybean

Surfactant comparison with unloaded glyphosate. Zollinger, Richard K., Devin A. Wirth, Jason W. Adams. An experiment was conducted near Hillsboro, ND to evaluate the ability of different surfactants to enhance glyphosate efficacy. Flax, amaranth, tame buckwheat, and conventional soybean were planted on June 8, 2016. POST treatments were applied on July 6, 2016 at 10:00 AM with 87 F air, 71 F soil at a four inch depth, 39% RH, 50% cloud cover, 4-6 mph NE wind, and adequate soil moisture. Weeds present at the time of POST applications were: flax 0.5-6" at 20-30/ft2, amaranth 10-12" at 10-20/ft2, tame buckwheat 8-12" at 5-10/ft2, and conventional soybean 5-7" at 5-10/yd2. Soil characteristics were: 15.3% sand, 53.9% silt, 30.8% clay, silty clay loam, 6.2% OM, and 7.5 pH. Treatments were applied to the center 6.7 feet of the 10 by 40 foot plots with a backpack-type plot sprayer delivering 8.5 gpa through 11001 TT nozzles at 40 psi. The experiment had a randomized complete block design with three replicates per treatment.

Assay species of flax, quinoa (similar to lambsquarters), tame buckwheat, and soybean were used in this surfactant comparison experiment because they have shown good surfactant treatment separation in previous historical studies. R-11, Rainier EA, Activator 90, and LI-700 surfactants were used as standards because previous studies showed a range of herbicide enhancement in in previous historical studies. Standard surfactants were applied at 0.5% v/v because Touchdown Hi-Tech glyphosate was used and is an unloaded glyphosate formulation. Touchdown Hi-Tech glyphosate formulation was used to not confound the activity of the added surfactants.

			14 [DAA			28	DAA		
Treatment ¹	Rate	Flax	Quin	Tabw	Soyb	Flax	Quin	Tabw	Soyb	
	(Product/A)		% cc	ontrol-			% cc	ntrol		
TDHT ²	9.6floz	43	10	32	23	43	10	32	23	
TDHT+R-11	9.6floz+0.5%v/v	70	72	72	78	70	72	72	78	
TDHT+Ranier EA	9.6floz+0.5%v/v	78	80	72	95	80	82	73	95	
TDHT+Activator 90	9.6floz+0.5%v/v	53	33	45	50	50	30	42	47	
TDHT+LI-700	9.6floz+0.5%v/v	52	42	58	60	48	40	57	58	
TDHT+X-Celerate	9.6floz+0.25%v/v	53	43	43	28	50	42	43	27	
TDHT+X-Celerate	9.6floz+0.5%v/v	60	58	45	60	60	57	45	57	
TDHT+X-Celerate	9.6floz+0.75%v/v	50	38	43	37	50	33	43	33	
TDHT+Revolution 3.0	9.6floz+4floz	52	35	37	32	52	32	37	32	
TDHT+Revolution 3.0	9.6floz+6floz	52	45	42	25	52	42	42	25	
TDHT+Wet-Sol 99	9.6floz+4floz	63	70	57	68	63	63	57	70	
TDHT+Wet-Sol 99	9.6floz+6floz	63	70	63	79	63	65	60	72	
TDHT+Wet-Sol 99	9.6floz+6.4floz	65	70	57	86	65	63	57	81	
LSD (0.05)		6	7	7	7	4	4	6	5	

Table. Surfactant comparison with unloaded glyphosate (Zollinger, Wirth, Adams).

¹ Quin = Quinoa, Tabw = Tame Buckwheat, Soyb = Soybean

² TDHT = Touchdown HiTech (unloaded glyphosate formulation)

High Surfactant Methylated Seed Oil Concentrate comparison with glyphosate. Zollinger, Richard K., Devin A. Wirth, Jason W. Adams. An experiment was conducted near Hillsboro, ND to evaluate the effect HSMOC adjuvants have on glyphosate efficacy. Amaranth, quinoa, and RR soybean were planted on June 8, 2016. POST treatments were applied on July 6, 2016 at 10:00 AM with 87 F air, 71 F soil at a four inch depth, 39% RH, 50% cloud cover, 4-6 mph NE wind, and adequate soil moisture. Weeds present at the time of POST applications were: amaranth 10-12" at 10-20/ft2, quinoa 10-14" at 10-15/ft2, and RR soybean 5-7" at 5-10/yd2. Soil characteristics were: 15.3% sand, 53.9% silt, 30.8% clay, silty clay loam, 6.2% OM, and 7.5 pH. Treatments were applied to the center 6.7 feet of the 10 by 40 foot plots with a backpack-type plot sprayer delivering 8.5 gpa through 11001 TT nozzles at 40 psi. The experiment had a randomized complete block design with three replicates per treatment.

		1	4 DAA	·	28 DAA
Treatment ¹	Rate	Amar	² Quin	Soyb	Amar Quin Soyb
· · · · · · · · · · · · · · · · · · ·	(Product/A)	%	contr	ol	% control
TDHT+Laudis+MES 100	9.6floz+1.5floz+1%v/v	40	40	35	38 40 33
TDHT+Laudis+Hot MES	9.6floz+1.5floz+1%v/v	52	40	43	52 40 42
TDHT+Laudis+HL MSO	9.6floz+1.5floz+1%v/v	63	67	48	62 70 48
TDHT+Laudis+Hybrid	9.6floz+1.5floz+1%v/v	77	72	57	77 72 68
TDHT+Laudis+MES 100	9.6floz+1.5floz+1pt	45	43	35	43 43 33
TDHT+Laudis+Hot MES	9.6floz+1.5floz+1pt	67	52	43	60 50 42
TDHT+Laudis+HL MSO	9.6floz+1.5floz+1pt	72	80	50	70 78 50
TDHT+Laudis+Hybrid	9.6floz+1.5floz+1pt	89	80	62	89 82 82
TDHT+Laudis+MES 100	9.6floz+1.5floz+1.5pt	48	42	35	47 40 33
TDHT+Laudis+Hot MES	9.6floz+1.5floz+1.5pt	67	62	55	63 72 55
TDHT+Laudis+HL MSO	9.6floz+1.5floz+1.5pt	72	73	62	70 70 72
TDHT+Laudis+Hybrid	9.6floz+1.5floz+1.5pt	93	86	63	93 86 65
LSD (0.05)		7	5	6	5 3 4

Table. High Surfactant Methylated Seed Oil Concentrate comparison with glyphosate (Zollinger, Wirth, Adams).

¹TDHT = Touchdown HiTech (unloaded glyphosate formulation), HL MSO = High Load MSO

²Amar = Amaranth, Quin = Quinoa, Soyb = Soybean

Glyphosate and tembotrione enhancement using HSMOC and surfactant. Zollinger, Richard K., Devin A. Wirth, Jason W. Adams. An experiment was conducted near Hillsboro, ND to evaluate the enhancement of glyphosate and tembotrione using varying rates of an HSMOC and surfactant. Flax, amaranth, quinoa, and RR soybean were planted on June 8, 2016. POST treatments were applied on July 6, 2016 at 10:00 AM with 87 F air, 71 F soil at a four inch depth, 39% RH, 50% cloud cover, 4-6 mph NE wind, and adequate soil moisture. Weeds present at the time of POST applications were: flax 0.5-6" at 20-30/ft2, amaranth 10-12" at 10-20/ft2, quinoa 10-14" at 10-15/ft2, and RR soybean 5-7" at 5-10/yd2. Soil characteristics were: 15.3% sand, 53.9% silt, 30.8% clay, silty clay loam, 6.2% OM, and 7.5 pH. Treatments were applied to the center 6.7 feet of the 10 by 40 foot plots with a backpack-type plot sprayer delivering 8.5 gpa through 11001 TT nozzles at 40 psi. The experiment had a randomized complete block design with three replicates per treatment.

		1	4 DAA	۱ <u> </u>	28 DAA
Treatment ¹	Rate	Amar	² Quin	Soyb	Amar Quin Soyb
	(Product/A)	%	contr	ol	% control
TDHT+Laudis	9.6floz+1.5floz				
+MES 100+Surf-AC 910	0.89pt+53ml	45	47	47	42 45 45
TDHT+Laudis	9.6floz+1.5floz		1		
+Hot MES+Surf-AC 910	0.78pt+105ml	42	45	45	42 45 45
TDHT+Laudis	9.6floz+1.5floz				
+Hot MES+Surf-AC 910	0.67pt+158ml	73	33	33	72 33 33
TDHT+Laudis	9.6floz+1.5floz				
+Hot MES+Surf-AC 910	0.56pt+210ml	58	32	32	58 32 32
TDHT+Laudis	9.6floz+1.5floz				
+MES 100+Surf-AC 910	1.33pt+79ml	47	40	40	47 40 40
TDHT+Laudis	9.6floz+1.5floz				
+Hot MES+Surf-AC 910	1.67pt+158ml	57	32	32	57 32 32
TDHT+Laudis	9.6floz+1.5floz				
+Hot MES+Surf-AC 910	1pt+237ml	53	55	52	60 65 72
TDHT+Laudis	9.6floz+1.5floz				
+Hot MES+Surf-AC 910	0.83pt+316ml	65	50	43	63 52 43
LSD (0.05)		6	7	9	6 6 9

Table. Glyphosate and tembotrione enhancement using HSMOC and surfactant (Zollinger, Wirth, Adams).

¹TDHT = Touchdown HiTech (unloaded glyphosate formulation)

²Amar = Amaranth, Quin = Quinoa, Soyb = Soybean

Glypohsate and tembotrione enhancement using HSMOC and varying surfactants. Zollinger, Richard K., Devin A. Wirth, Jason W. Adams. An experiment was conducted near Hillsboro, ND to evaluate the enhancement of . Flax, amaranth, quinoa, and RR soybean were planted on June 8, 2016. POST treatments were applied on July 6, 2016 at 10:00 AM with 87 F air, 71 F soil at a four inch depth, 39% RH, 50% cloud cover, 4-6 mph NE wind, and adequate soil moisture. Weeds present at the time of POST applications were: flax 0.5-6" at 20-30/ft2, amaranth 10-12" at 10-20/ft2, quinoa 10-14" at 10-15/ft2, and RR soybean 5-7" at 5-10/yd2. Soil characteristics were: 15.3% sand, 53.9% silt, 30.8% clay, silty clay loam, 6.2% OM, and 7.5 pH. Treatments were applied to the center 6.7 feet of the 10 by 40 foot plots with a backpack-type plot sprayer delivering 8.5 gpa through 11001 TT nozzles at 40 psi. The experiment had a randomized complete block design with three replicates per treatment.

		1	4 DAA	<u>.</u>	2	28 DAA	<u>۱</u>		
Treatment ¹	Rate	Amar	² Quin	Soyb	Amar	Quin	Soyb		
and share a	(Product/A)	%	contr	ol	%	contro	ol		
TDHT+Laudis	9.6floz+1.5floz								
+Hot MES+Rainier EA	+0.67pt+158mls	84	86	63	84	90	65	· ·	**
TDHT+Laudis	9.6floz+1.5floz								1
+Hot MES+Wet Cit	+0.67pt+158mls	67	56	37	68	58	38		
TDHT+Laudis	9.6floz+1.5floz								
+Hot MES+Translate	+0.67pt+158mls	53	30	23	52	30	23		
TDHT+Laudis	9.6floz+1.5floz								
+Hot MES+Wet-Sol 99	+0.67pt+158mls	72	65	45	73	67	47		
TDHT+Laudis	9.6floz+1.5floz								
+Hot MES+Activator 90	+0.67pt+158mls	50	32	22	48	30	22		
TDHT+Laudis	9.6floz+1.5floz								
+Hot MES+Liberate	+0.67pt+158mls	53	62	45	60	62	43		
TDHT+Laudis	9.6floz+1.5floz								
+Hot MES+Preference	+0.67pt+158mls	53	45	30	58	47	30		
TDHT+Laudis	9.6floz+1.5floz								
+Hot MES+Induce	+0.67pt+158mls	61	38	28	64	40	28		,
TDHT+Laudis	9.6floz+1.5floz								
+Hot MES+Prefer 90	+0.67pt+158mls	65	57	43	67	67	47		
TDHT+Laudis	9.6floz+1.5floz								
+Hot MES+Tween 20	+0.67pt+158mls	90	80	62	. 89	83	63		
LSD (0.05)		9	7	9	6	5	6		

Table. Glyphosate and tembotrione enhancement using HSMOC and varying surfactants (Zollinger, Wirth, Adams).

¹TDHT = Touchdown HiTech (unloaded glyphosate formulation)

²Amar = Amaranth, Quin = Quinoa, Soyb = Soybean

Glyphosate and 2,4-D with adjuvants. Zollinger, Richard K., Devin A. Wirth, Jason W. Adams. An experiment was conducted near Hillsboro, ND to evaluate glyphosate and 2,4-D enhancement using adjuvants. Amaranth, quinoa, and RR corn were planted on June 8, 2016. POST treatments were applied on July 9, 2016 at 7:30 AM with 75 F air, 67 F soil at a four inch depth, 79% RH, 0% cloud cover, 1-5 mph SE wind, and adequate soil moisture. Weeds present at the time of POST applications were: amaranth 14-16" at 10-20/ft2, quinoa at 10-15/ft2, and RR corn 12-14" at 1-2/yd2. Soil characteristics were: 15.3% sand, 53.9% silt, 30.8% clay, silty clay loam, 6.2% OM, and 7.5 pH. Treatments were applied to the center 6.7 feet of the 10 by 40 foot plots with a backpack-type plot sprayer delivering 8.5 gpa through 11001 TT nozzles at 40 psi. The experiment had a randomized complete block design with three replicates per treatment.

Control of species in treatment including Touchdown HiTech were lower compared to treatments including Durango DMA because Touchdown HiTech is an unloaded glyphosate. In some treatments, the addition of ET-4000 decreased the control of quinoa while increasing the control of amaranth.

			4 DAA			2	8 DAA	<u> </u>		· .
Treatment ¹	Rate	Amar	² Quin	Corn		Amar	Quin	Corn	1233	
and a straight france and a second	(Product/A)	%	contr	ol		%	contro)		
Durango+2,4-D+NIS	12floz+0.5pt+0.25%v/v	60	85	0		57	85	0		
Durango+2,4-D+ET-4000	12floz+0.5pt+1%v/v									
+NIS	+0.25%v/v	67	78	0		63	85	0		
TDHT+2,4-D+NIS	9.6floz+0.5pt+0.5%v/v	57	73	0		57	77	0		
TDHT+2,4-D+ET-4000	9.6floz+0.5pt+1%v/v									
+NIS	+0.5%v/v	50	60	0		50	60	0		
Durango+Stinger+NIS	12floz+4floz+0.25%v/v	55	77	0		55	75	0		
Durango+Stinger+ET-4000	12floz+4floz+1%v/v									
+NIS	+0.25%v/v	52	77	0		52	75	0		
TDHT+Stinger+NIS	9.6floz+4floz+0.5%v/v	40	60	0		40	50	0		
TDHT+Stinger+ET-4000	9.6floz+4floz+1%v/v									
+NIS	+0.5%v/v	52	55	.0		52	52	Q		
Durango+Status+NIS	12floz+4oz+0.25%v/v	58	73	0		52	75	0		
Durango+Status+ET-4000	12floz+4oz+1%v/v									
+NIS	+0.25%v/v	67	75	0	-	60	85	0		
TDHT+Status+NIS	9.6floz+4oz+0.5%v/v	55	60	0		43	57	0		
TDHT+Status+ET-4000	9.6floz+4oz+1%v/v									
+NIS	+0.5%v/v	58	60	0		52	60	0		
Durango+Laudis+NIS	12floz+2floz+0.25%v/v	43	87	0		40	83	0		
Durango+Laudis+ET-4000	12floz+2floz+1%v/v									
+NIS	+0.25%v/v	57	80	0		55	82	0		
TDHT+Laudis+NIS	9.6floz+2floz+0.5%v/v	40	30	0		30	30	0		
TDHT+Laudis+ET-4000	9.6floz+2floz+1%v/v									
+NIS	+0.5%v/v	48	37	0		42	37	0		
LSD (0.05)		5	5	0		5	5	0		

Table. Glyphosate and 2,4-D with adjuvants (Zollinger, Wirth, Adams).

¹TDHT = Touchdown HiTech (unloaded glyphosate formulation), 2,4-D = 2,4-D Amine

² Amar = Amaranth, Quin = Quinoa

Pulse Width Modulator sprayer- carrier volume comparison. Zollinger, Richard K., Devin A. Wirth, Jason W. Adams. An experiment was conducted near Prosper, ND to evaluate the effect carrier volume has on pulse width modulator sprayers. POST treatments were applied on June 29, 2016 at 12:30 PM with 80 F air, 83 F soil at a four inch depth, 44% RH, 0% cloud cover, 6-8 mph NW wind, and adequate soil moisture. Weeds present at the time of POST applications were: colq 8-12" at 20/ft2, cocb 8-12" at 10/ft2, yeft 4-6" at 40/ft2, and corw 8-12" at 10/ft2. Soil characteristics were: 23.1% sand, 52% silt, 24.9% clay, Silt Loam, 4.5% OM, and 7.7 pH. Treatments were applied to the center 10 feet of the 15 by 40 foot plots with a pulse width modulator sprayer mounted on the back of a Polaris Ranger. Nozzles and pressure were changed to achieve different spray qualities. Trial was a randomized complete block design.

		Water	Dropplet	<u>14 DAA</u>	28 DAA	
Treatment	Rate	Volume	Size	Weeds1	Weeds	
	(Product/A)	(GPA)	(Microns)	% co	ntrol	
Untreated				0	0	
Liberty	22floz	5	150	33	60	
Liberty	22floz	5	300	30	67	
Liberty	22floz	5	450	43	55	
Liberty	22floz	5	600	60	60	
Liberty	22floz	5	750	77	60	
Liberty	22floz	5	900	43	60	
Liberty	22floz	20	150	62	70	
Liberty	22floz	20	300	72	55	
Liberty	22floz	20	450	70	65	
Liberty	22floz	20	600	78	60	
Liberty	22floz	20	750	68	50	
Liberty	22floz	20	900	65	57	
Clarity	8floz	5	150	27	40	
Clarity	8floz	5	300	27	50	
Clarity	8floz	5	450	47	55	
Clarity	8floz	5	600	52	67	
Clarity	8floz	5	750	40	70	
Clarity	8floz	5	900	50	55	
Clarity	8floz	20	150	7	13	
Clarity	8floz	20	300	47	60	
Clarity	8floz	20	450	40	60	
Clarity	8floz	20	600	50	72	
Clarity	8floz	20	750	43	65	
Clarity	8floz	20	900	60	65	
LSD (0.05)				8	7	
1	ntrol of all we					

Table. Pulse Width Modulator sprayer- carrier volume comparison (Zollinger, Wirth, Adams).

¹Average control of all weeds

Pulse Width Modulator sprayer- Enlist Duo spray quality. Zollinger, Richard K., Devin A. Wirth, Jason W. Adams. An experiment was conducted near Prosper, ND to evaluate the spray quality of Enlist Duo using a pulse width modulator sprayer. POST treatments were applied on June 29, 2016 at 12:30 PM with 80 F air, 83 F soil at a four inch depth, 44% RH, 0% cloud cover, 6-8 mph NW wind, and adequate soil moisture. Weeds present at the time of POST applications were: colq 8-12" at 20/ft2, cocb 8-12" at 10/ft2, yeft 4-6" at 40/ft2, and corw 8-12" at 10/ft2. Soil characteristics were: 23.1% sand, 52% silt, 24.9% clay, Silt Loam, 4.5% OM, and 7.7 pH. Treatments were applied to the center 10 feet of the 15 by 40 foot plots with a pulse width modulator sprayer mounted on the back of a Polaris Ranger. Nozzles and pressure were changed to achieve different spray qualities. Trial was a randomized complete block design.

Tuble: Tuble	width wooda	ator sprayer	Enlise Buo spru	y quality (Lonni	ger) wir en raamon
		Water	Dropplet	<u>14 DAA</u>	28 DAA
Treatment	Rate	Volume	Size	Weeds ¹	Weeds
	(Product/A)	(GPA)	(Microns)	% co	ntrol
Untreated				0	0
Enlist Duo	3.5pt	10	150	82	85
Enlist Duo	3.5pt	10	300	58	80
Enlist Duo	3.5pt	10	450	53	80
Enlist Duo	3.5pt	10	600	70	85
Enlist Duo	3.5pt	10	750	82	87
Enlist Duo	3.5pt	10	900	67	82
LSD (0.05)				7	8
1.					

Table. Pulse Width Modulator sprayer- Enlist Duo spray quality (Zollinger, Wirth, Adams).

¹Average control of all weeds

Pulse Width Modulator sprayer- glyphosate and dicamba spray quality. Zollinger, Richard K., Devin A. Wirth, Jason W. Adams. An experiment was conducted near Prosper, ND to evaluate the spray quality of glyphosate and dicamba using a pulse width modulator sprayer. POST treatments were applied on June 29, 2016 at 12:30 PM with 80 F air, 83 F soil at a four inch depth, 44% RH, 0% cloud cover, 6-8 mph NW wind, and adequate soil moisture. Weeds present at the time of POST applications were: colq 8-12" at 20/ft2, cocb 8-12" at 10/ft2, yeft 4-6" at 40/ft2, and corw 8-12" at 10/ft2. Soil characteristics were: 23.1% sand, 52% silt, 24.9% clay, Silt Loam, 4.5% OM, and 7.7 pH. Treatments were applied to the center 10 feet of the 15 by 40 foot plots with a pulse width modulator sprayer mounted on the back of a Polaris Ranger. Nozzles and pressure were changed to achieve different spray qualities. Trial was a randomized complete block design.

Table. Pulse Width Modulator sprayer-glyphosate and dicamba spray quality (2011) ger, with, Adams).								
		Water	Dropplet	14 DAA	28 DAA			
Treatment	Rate	Volume	Size	Weeds ¹	Weeds			
	(Product/A)	(GPA)	(Microns)	% cor	trol			
Untreated				0	0			
RUWM+Clarity	22floz+8floz	10	150	50	70			
RUWM+Clarity	22floz+8floz	10	300	73	88			
RUWM+Clarity	22floz+8floz	10	450	60	85			
RUWM+Clarity	22floz+8floz	10	600	73	87			
RUWM+Clarity	22floz+8floz	10	750	68	85			
RUWM+Clarity	22floz+8floz	10	900	60	85			
LSD (0.05)				5	3			

Table. Pulse Width Modulator sprayer-glyphosate and dicamba spray quality (Zollinger, Wirth, Adams).

¹Average control of all weeds

Clopyralid&fluroxypyr&MCPA+Pinoxaden efficacy with pulse sprayer. Howatt, Roach, and Harrington. 'Asgrow 0835' soybean was planted near Fargo on May 20. Treatments were applied to 3 to 4 trifoliolate soybean, 12 to 15 inch redroot pigweed, flowering Venice mallow and wild mustard, and 10 to 12 inch common lambsquarters on July 1 with 72°F, 32% relative humidity, 40% cloud cover, 5.5 to 6 mph wind velocity at 135°, and dry topsoil at 65°F. All treatments received the herbicides listed in the first treatment line. First treatment was applied with a backpack sprayer delivering 8.5 gpa at 40 psi to a 7 foot wide area the length of 15 by 30 foot plots. All other treatments were applied with a pulse-width modulation sprayer mounted on a utility vehicle delivering 8.5 gpa at 40 psi with droplet size, duty cycle, nozzle tip, and travel speed described in the table to a 12-foot wide area the length of 15 by 30 foot plots. The experiment was a randomized complete block design with three replicates.

Weiss and the second s Second second sec				Broadleaf control		
Treatment	Rate	Nozzle tip	Travel	July 15	July 29	
The Statement of Statement	oz/A		mph	%	%	
Pinoxaden+Clpy&Flox&MCPA	0.86+5.75	TT11001	3.5	70	82	
300µm&100% duty cycle		SR04	12	68	77	
300µm&70% duty cycle		ER06	12	67	77	
300µm&30% duty cycle		ER06	4.5	72	83	
750µm&100% duty cycle		UR04	12	58	72	
750µm&70% duty cycle		UR06	12	57	72	
750µm&30% duty cycle		UR06	5.5	68	83	
Untreated Check				0	0.7	
CV				5	4	
LSD P=0.05				5	4	

Compared with the handboom which produced droplets near 300µm for 82% control, the pulsesprayer provided similar control at either droplet size at speeds less than 6 mph. Traveling 12 mph resulted in less than 80% control. At this higher speed, a greater separation between droplet sizes was evident with 77% control using 300µm droplets at either 70 or 100% duty cycle and 72% control using larger droplets near 750µm. **Carfentrazone&2,4-D+Flucarbazone efficacy with pulse sprayer.** Howatt, Roach, and Harrington. 'Asgro 0835' soybean was seeded near Fargo on May 20. Treatments were applied to 3 to 4 trifoliolate soybean and 12 to 15 inch redroot pigweed on July 1 with 72°F, 32% relative humidity, 40% cloud cover, 5 to 6 mph wind velocity at 135°, and dry topsoil at 65°F. All treatments received the herbicides listed in the first treatment line. First treatment was applied with a backpack sprayer delivering 8.5 gpa at 40 psi to a 7 foot wide area the length of 15 by 30 foot plots. All other treatments were applied with a pulse-width modulation sprayer mounted on a utility vehicle delivering 8.5 gpa at 40 psi with droplet size, duty cycle, nozzle tip, and travel speed described in the table to a 12-foot wide area the length of 15 by 30 foot plots. The experiment was a randomized complete block design with four replicates.

				Broadlea	af control
Treatment	Rate	Nozzle tip	Travel	July 15	July 29
	oz/A		mph	%	%
Flcz+Carf+2,4-D+BB	0.32+0.128+6+1%	TT11001	3.5	93	92
300µm&100% duty cycle)	SR04	12	65	84
300µm&70% duty cycle	ER06	12	74	84	
300µm&30% duty cycle	,	ER06	4.5	90	95
750µm&100% duty cycle)	UR04	12	50	76
750µm&70% duty cycle		UR06	12	56	74
750µm&30% duty cycle		UR06	5.5	86	90
Untreated				0	0
CV				11	4
LSD P=0.05				11	4

Compared with the handboom which produced droplets near 300µm for 92% control, the pulsesprayer provided similar control at either droplet size at speeds less than 6 mph. Traveling 12 mph resulted in less than 85% control. At this higher speed, a greater separation between droplet sizes was evident with 84% control using 300µm droplets at either 70 or 100% duty cycle and 75% control using larger droplets near 750µm. **Pyroxsulam&Florasulam&Fluroxypyr efficacy with pulse sprayer.** Howatt, Roach, and Harrington. 'Asgrow 0835' soybean was seeded near Fargo on May 20. Treatments were applied to 3 to 4 trifoliolate soybean and 12 to 15 inch redroot pigweed, flowering wild mustard and Venice mallow, and 5 to 7 inch sage on July 1 with 72°F, 32% relative humidity, 40% cloud cover, 5 to 6 mph wind at 135°, and dry soil at 65°F. All treatments received the herbicides listed in the first treatment line. First treatment was applied with a backpack sprayer delivering 8.5 gpa at 40 psi to a 7 foot wide area the length of 15 by 30 foot plots. All other treatments were applied with a pulse-width modulation sprayer mounted on a utility vehicle delivering 8.5 gpa at 40 psi with droplet size, duty cycle, nozzle tip, and travel speed described in the table to a 12-foot wide area the length of 15 by 30 foot plots. The experiment was a randomized complete block design with four replicates.

				Broadlea	af control
Treatment	Rate	Nozzle tip	Travel	July 15	July 29
-	oz/A		mph	%	%
Pxlm&Flas&Flox+BB	1.68+1%	TT11001	3.5	73	91
300µm&100% duty cycle		SR04	12	9	86
300µm&70% duty cycle		ER06	12	68	86
300µm&30% duty cycle		ER06	4.5	76	90
750µm&100% duty cycle		UR04	12	68	86
750µm&70% duty cycle		UR06	12	64	81
750µm&30% duty cycle		UR06	5.5	79	87
Untreated				0	0
CV				6	4
LSD P=0.05	v			6	4

Compared with the handboom which produced droplets near 300µm for 91% control, the pulsesprayer provided near similar control at either droplet size at speeds less than 6 mph. The pulse sprayer at 750µm gave 87% control which was at the LSD for separation. Traveling 12 mph resulted in 86% control or less. The lowest control value of 81% was obtained from this higher speed and using larger droplets near 750µm. **Brox&MCPA+Fenoxaprop efficacy with pulse sprayer.** Howatt, Roach, and Harrington. 'Asgrow 0835' soybean was seeded near Fargo on May 20. Treatments were applied to 3 to 4 trifoliolate soybean, 12 to 15 inch redroot pigweed, flowering wild mustard and flowering Venice mallow on July 1 with 72°F, 32% relative humidity, 40% cloud cover, 5.6 mph average wind velocity at 135°, dry topsoil at 65°F. All treatments received the herbicides listed in the first treatment line. First treatment was applied with a backpack sprayer delivering 8.5 gpa at 40 psi to a 7 foot wide area the length of 15 by 30 foot plots. All other treatments were applied with a pulse-width modulation sprayer mounted on a utility vehicle delivering 8.5 gpa at 40 psi with droplet size, duty cycle, nozzle tip, and travel speed described in the table to a 12-foot wide area the length of 15 by 30 foot plots. The experiment was a randomized complete block design with four replicates.

		· · ·		Broadlea	f control
Treatment	Rate	Nozzle tip	Travel	July 15	July 29
	oz/A		mph	%	%
Fenx+Brox&MCPA	1+8	TT11001	3.5	69	86
300µm&100% duty cycl	Э	SR04	12	69	90
300µm&70% duty cycle		ER06	12	68	88
300µm&30% duty cycle		ER06	4.5	68	88
750µm&100% duty cycl	e	UR04	12	65	88
750µm&70% duty cycle		UR06	12	40	60
750µm&30% duty cycle		UR06	5.5	54	79
Untreated				0	0
CV				12	10
LSD P=0.05				10	10

Compared with the handboom which produced droplets near 300µm for 86% control, the pulsesprayer provided similar control at either droplet size at speeds less than 6 mph although control was only 79% with 750µm droplet size. Traveling 12 mph did not reduce control across all treatments as was measured in other studies. However, the fast travel speed of 12 mph with larger droplets near 750µm resulted in the least control with these herbicides, 60%. **Thifensulfuron+Tribenuron+2,4-D+Clodinafop efficacy with pulse sprayer**. Howatt, Roach, and Harrington. 'Asgrow 0835' soybean was seeded near Fargo on May 20. Treatments were applied to 3 to 4 trifoliolate soybean, 12 to 15 inch redroot pigweed, and flowering wild mustard and Venice mallow on July 1 with 72°F 32% relative humidity, 40% cloud cover, 5 to 6 mph wind at 135° and dry top soil at 65°F. All treatments received the herbicides listed in the first treatment line. First treatment was applied with a backpack sprayer delivering 8.5 gpa at 40 psi to a 7 foot wide area the length of 15 by 30 foot plots. All other treatments were applied with a pulse-width modulation sprayer mounted on a utility vehicle delivering 8.5 gpa at 40 psi with droplet size, duty cycle, nozzle tip, and travel speed described in the table to a 12-foot wide area the length of 15 by 30 foot plots. The experiment was a randomized complete block design with three replicates.

				Broadleaf control	
Treatment	Rate	Nozzle tip	mph [–]	July 15	July 29
	oz/A		mph	%	%
Clfp+Thifsg+Tribsg+2,4-D	0.8+0.24+0.06+4	TT11001	3.5	83	94
300µm&100% duty cycle		SR04	12	68	88
300µm&70% duty cycle		ER06	12	70	83
300µm&30% duty cycle		ER06	4.5	73	88
750µm&100% duty cycle		UR04	12	*	*
750µm&70% duty cycle		UR06	12	57	75
750µm&30% duty cycle		UR06	5.5	75	92
Untreated Check				0	0
CV				8	3
LSD=0.05				9	3

* Computer was set for 06 tips instead of 04 tips so values are not reported.

Compared with the handboom which produced droplets near 300µm for 94% control, the pulse-sprayer provided similar control at 750µm droplet size at speed less than 6 mph but control at 300µm droplets was lower at 88%. Traveling 12 mph resulted in less control than the standard research method. At this higher speed, a greater separation between droplet sizes was evident with 85% control using 300µm droplets at either 70 or 100% duty cycle and 75% control using larger droplets near 750µm at 70% duty cycle. The lowest control value of 75% was obtained from the higher speed and using larger droplets near 750µm.

Bromoxynil&Pyrasulfotole&Thiencarbazone efficacy with pulse sprayer. Howatt, Roach, and Harrington. 'Asgrow 0835' soybean were seeded near Fargo on May 20. Treatments were applied to 3 to 4 trifoliolate soybean and 12 to 14 inch redroot pigweed on July 1 with 72°F, 32% relative humidity, 40% cloud cover, 5 to 6 mph wind velocity at 135°, and dry topsoil at 65°F. All treatments received the herbicides listed in the first treatment line. First treatment was applied with a backpack sprayer delivering 8.5 gpa at 40 psi to a 7 foot wide area the length of 15 by 30 foot plots. All other treatments were applied with a pulse-width modulation sprayer mounted on a utility vehicle delivering 8.5 gpa at 40 psi with droplet size, duty cycle, nozzle tip, and travel speed described in the table to a 12-foot wide area the length of 15 by 30 foot plots. The experiment was a randomized complete block design with four replicates.

		·····		Broadleaf control	
Treatment	Rate	Nozzle	Travel	July 15	July 29
· · · · · · · · · · · · · · · · · · ·	oz/A		mph	%	%
Brox&Pyst&Thcz+UAN	3+16	TT11001	3.5	74	91
300µm&100% duty cycle		SR04	12	4	3
300µm&70% duty cycle		ER06	12	40	50
300µm&30% duty cycle		ER06	4.5	74	91
750µm&100% duty cycle		UR04	12	54	66
750µm&70% duty cycle		UR06	12	61	78
750µm&30% duty cycle		UR06	5.5	71	87
Untreated Check				0	0
CV				13	20
LSD P=.05				10	17

The results of this study were highly irregular with such low rating for one treatment. While 300µm droplet with 100% duty cycle pulse was barely discernible from the untreated, difference in travel speed was consistent with other products tested. At speeds less than 6 mph, control was similar across sprayer type and droplet sizes. Traveling 12 mph resulted in less than 80% control.