Field Peas for Feed

- Forage
- Grain
Table 2. Field pea grain, pea co-products and pea forage nutrient analysis.

<table>
<thead>
<tr>
<th>Item</th>
<th>Pea Grain</th>
<th>Pea Hulls</th>
<th>Pea Screenings</th>
<th>Pea Hay</th>
<th>Pea Straw</th>
<th>Pea Silage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter, %</td>
<td>88</td>
<td>92</td>
<td>90</td>
<td>88</td>
<td>89</td>
<td>35</td>
</tr>
<tr>
<td>% Dry Matter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude protein, %</td>
<td>25.5</td>
<td>9.0</td>
<td>23.6</td>
<td>13.6</td>
<td>8.5</td>
<td>15.4</td>
</tr>
<tr>
<td>Total digestible nutrients, %</td>
<td>87.0</td>
<td>60.0</td>
<td>80.0</td>
<td>58.0</td>
<td>46.0</td>
<td>58.0</td>
</tr>
<tr>
<td>NEm, Mcal/lb</td>
<td>1.02</td>
<td>0.59</td>
<td>0.88</td>
<td>0.56</td>
<td>0.38</td>
<td>0.57</td>
</tr>
<tr>
<td>NEg, Macl/lb</td>
<td>0.67</td>
<td>0.33</td>
<td>0.59</td>
<td>0.27</td>
<td>0.13</td>
<td>0.31</td>
</tr>
<tr>
<td>Calcium, %</td>
<td>0.15</td>
<td>0.48</td>
<td>0.14</td>
<td>1.39</td>
<td>1.62</td>
<td>1.32</td>
</tr>
<tr>
<td>Phosphorus, %</td>
<td>0.44</td>
<td>0.09</td>
<td>0.48</td>
<td>0.28</td>
<td>0.11</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Adapted from Lardy et al., 2009. Alternative Feeds for Ruminants. AS-1182 p. 21.
Field Peas

- Very nutrient dense grain
 - High protein
 - High rumen protein degradability
 - Highly digestible
 - Slower rate of digestion than barley
 - Energy similar to corn
 - Palatable
 - Feed value for ruminants 140% bushel of corn
 - Low calcium, high phosphorus

Table 1. Comparison of nutrient value of livestock feed grain with field peas

<table>
<thead>
<tr>
<th>Item</th>
<th>Field peas</th>
<th>Corn</th>
<th>Barley</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter, %</td>
<td>89</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>% Dry Matter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude protein, %</td>
<td>25.5</td>
<td>9.8</td>
<td>13.2</td>
</tr>
<tr>
<td>Total digestible nutrients, %</td>
<td>87.0</td>
<td>90.0</td>
<td>85.0</td>
</tr>
<tr>
<td>NEg, Mcal/lb</td>
<td>0.67</td>
<td>0.68</td>
<td>0.63</td>
</tr>
<tr>
<td>Rumen undegradable protein, %</td>
<td>30.0</td>
<td>60.0</td>
<td>27.0</td>
</tr>
<tr>
<td>Calcium, %</td>
<td>0.15</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>Phosphorus, %</td>
<td>0.44</td>
<td>0.31</td>
<td>0.35</td>
</tr>
<tr>
<td>Fat, %</td>
<td>1.40</td>
<td>4.30</td>
<td>2.20</td>
</tr>
</tbody>
</table>

Adapted from Anderson et al., 2007. AS-1301 and NRC, 1996.
Varietal Variation

<table>
<thead>
<tr>
<th>Item</th>
<th>Profi</th>
<th>Arvika</th>
<th>Carneval</th>
<th>Trapper</th>
<th>SEM<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>CP, % DM</td>
<td>22.6</td>
<td>26.1</td>
<td>22.6</td>
<td>19.4</td>
<td>-</td>
</tr>
<tr>
<td>0 h N disappearance, %</td>
<td>54.3<sup>c</sup></td>
<td>53.0<sup>c</sup></td>
<td>47.4<sup>c</sup></td>
<td>32.0<sup>b</sup></td>
<td>5.65</td>
</tr>
<tr>
<td>Slowly degradable, %</td>
<td>45.7<sup>b</sup></td>
<td>47.0<sup>b</sup></td>
<td>52.6<sup>b</sup></td>
<td>68.0<sup>c</sup></td>
<td>6.00</td>
</tr>
<tr>
<td>Rate of CP digestion, %/h</td>
<td>14.6<sup>d</sup></td>
<td>8.6<sup>c</sup></td>
<td>10.5<sup>d</sup></td>
<td>7.3<sup>b</sup></td>
<td>0.26</td>
</tr>
</tbody>
</table>

Estimated RDP, % of CP

k^f = 0.02	93.4^c	91.5^c	92.7^c	87.4^b	2.05
k = 0.04	88.2^c	85.4^c	86.6^c	77.7^b	3.29
k = 0.06	84.3^c	81.0^c	82.0^c	71.0^b	4.02

^an = 4. ^b,^c,^d,^e Row means with different superscripts are different (P < 0.02).
^fk = ruminal outflow rate (h⁻¹). Adapted from Encinias et al. (2004).
Feeding Trials
NDSU
Carrington
Research
Extension Center

Creep Feed
Receiving Rations
Growing Finishing
Carcass Characteristics
Cow Supplementation
Heifer Supplementation
Processing - pelleting
Creep Feed

• Best combination for adg and feed conversion at 33-67% inclusion with wheat midds (3.1 vs 2.8)
• Gains greater with rolled versus ground or whole peas (3.31 vs 3.13)
Receiving Rations

• Rolled pulse grains at 17% of 60 percent concentrate receiving rations compared to canola as protein source increased intake from 15 lbs to 16.3 and adg from 3.6 to 4.0.

• Greater gains persisted on common corn based finishing diet fed to market weight.
Backgrounding

- Include in high forage diets as an energy and protein supplement
- 2-6 lbs per head per day depending on other feeds
- For higher gain targets feed with corn or oats

<table>
<thead>
<tr>
<th>Feed Name</th>
<th>As Fed Lbs/Head/Day</th>
<th>% of Ration</th>
<th>$/Head/Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRASS HAY</td>
<td>8.000</td>
<td>27.1</td>
<td>$0.20</td>
</tr>
<tr>
<td>SILG CORN</td>
<td>16.000</td>
<td>54.1</td>
<td>$0.24</td>
</tr>
<tr>
<td>PEA GRAIN</td>
<td>5.000</td>
<td>16.9</td>
<td>$0.50</td>
</tr>
<tr>
<td>32-0 BEEF SUPP</td>
<td>0.500</td>
<td>1.7</td>
<td>$0.10</td>
</tr>
<tr>
<td>FORT TM SALT</td>
<td>0.071</td>
<td>0.2</td>
<td>$0.01</td>
</tr>
<tr>
<td>Total</td>
<td>29.571*</td>
<td></td>
<td>$1.05*</td>
</tr>
</tbody>
</table>

* waste factor not included
Finishing

- 15-20% of ration typically will meet protein needs
- Depending on costs could be the only grain
- Peas and corn combination is complimentary
- Tendency for higher intake and performance or better conversion with pea inclusion

<table>
<thead>
<tr>
<th></th>
<th>2.00</th>
<th>2.25</th>
<th>2.50</th>
<th>3.00</th>
<th>3.50</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canola</td>
<td>125</td>
<td>3.53</td>
<td>3.64</td>
<td>3.75</td>
<td>3.86</td>
<td>3.96</td>
</tr>
<tr>
<td>Meal</td>
<td>150</td>
<td>4.03</td>
<td>4.13</td>
<td>4.24</td>
<td>4.34</td>
<td>4.43</td>
</tr>
<tr>
<td>$/ton</td>
<td>175</td>
<td>4.52</td>
<td>4.63</td>
<td>4.73</td>
<td>4.83</td>
<td>4.94</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>5.02</td>
<td>5.12</td>
<td>5.23</td>
<td>5.33</td>
<td>5.44</td>
</tr>
</tbody>
</table>
Carcass Traits “Pea Fed Beef”

• Peas in finishing ration at over 10% for over 76 days has resulted in increased tenderness and juiciness
• Warner-Bratzler shear test values reduced 1.5 lbs
• Taste Panel evaluation of juiciness and flavor
• Potential for specialty beef brand
Cow Supplementation

• Excellent protein and energy supplement for breeding herd
• Replacement for oilseed-grain mixes
• Source of rumen degraded protein for enhancing intake and digestibility of low quality forage
• Can be combined with ddg and other ingredients in cubes
Processing

- Not always a benefit
- Roll for calves in creep and in receiving rations
- Generally a benefit for cracking for feedlot cattle
- Do not need to be processed for cows
- Work well as an ingredient for binding pellets
- Heating or extruding not cost beneficial for cattle
Pea Forage

• High quality hay and silage
• Low fiber
• High protein
• High RFV
• High animal performance
• Difficulty in curing
• Less yield than grasses
• Often grown in combination with cereal
• Long vined forage varieties
Harvested Pea Forage

Table 1. Forage production and nutritional value of field pea and/or cereal grains* (3yr avg).

<table>
<thead>
<tr>
<th></th>
<th>DM Yield</th>
<th>Hay Yield</th>
<th>Silage Yield</th>
<th>Protein %</th>
<th>TDN %</th>
<th>RFV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tons/acre</td>
<td>15% Moist</td>
<td>40% DM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Peas</td>
<td>1.95</td>
<td>2.29</td>
<td>4.88</td>
<td>16.95</td>
<td>67.37</td>
<td>145.57</td>
</tr>
<tr>
<td>Barley</td>
<td>1.78</td>
<td>2.09</td>
<td>4.45</td>
<td>9.74</td>
<td>64.08</td>
<td>126.76</td>
</tr>
<tr>
<td>Field Peas/Barley</td>
<td>2.18</td>
<td>2.56</td>
<td>5.45</td>
<td>13.65</td>
<td>65.12</td>
<td>132.75</td>
</tr>
<tr>
<td>Oats</td>
<td>1.78</td>
<td>2.1</td>
<td>4.45</td>
<td>9.44</td>
<td>60.58</td>
<td>116.09</td>
</tr>
<tr>
<td>Field Peas/Oats</td>
<td>2.17</td>
<td>2.55</td>
<td>5.42</td>
<td>12.48</td>
<td>62.94</td>
<td>118.74</td>
</tr>
</tbody>
</table>

*adapted from S. Zwinger, Carrington Res Ext Center Annual Report, 2011.
Pea Byproducts

• Hulls
 • By product of splitting
 • Very light and difficult to handle and store
 • Hull itself low in digestibility but often pea fragments
 • Feed values vary
 • Crude protein 9
 • TDN 60

• Starch
 • By product of fractionating for pea protein, fiber and flour
 • Fine powder
 • Poor flowability
 • Useful in binding pellets
 • Feed Values
 • Crude protein 13
 • TDN 87
Pea Screenings

• Highly variable in feed value depending on foreign matter and weed seeds
• Likely to include stones and dirt
• Splits equal feed value to peas
• For calves typically blend with other grain
• Good forage extender and supplement for cows

• Analysis:
 • Crude protein 23
 • TDN 80
 • Ca .14
 • Phos .48
Pea Residue

• Palatability best if baled or grazed shortly after harvest
• Generally preferred and higher quality than cereal straw
• Seeding fall cover crop into residue or light tillage to initiate volunteer growth can provide late season grazing

• Analysis:
 • Crude protein 5-8
 • TDN 46
 • Ca 1.6
 • Phos .11
Feed and Forage Report

DAIRYLAND LABORATORIES, INC.
Arcadia, WI 54612
Telephone 608-323-2123
Report date: 2/3/2017
Sample number: 001-1702-010847

TO: John Dhuyvetter
5400 S Highway 83
Minot, ND 58701
SAMPLED BY: John Dhuyvetter
SAMPLED FOR: VEGAS VARY

PRODUCT: field pea straw
(1B - D)

<table>
<thead>
<tr>
<th>Component</th>
<th>Dry Basis</th>
<th>Average</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>%</td>
<td>24.04%</td>
<td></td>
</tr>
<tr>
<td>Dry Matter</td>
<td>%</td>
<td>75.96%</td>
<td></td>
</tr>
<tr>
<td>Crude Protein</td>
<td>%DM</td>
<td>0.58%</td>
<td>2.91 - 16.91</td>
</tr>
<tr>
<td>aNDF</td>
<td>%DM</td>
<td>65.84%</td>
<td>46.37 - 80.25</td>
</tr>
<tr>
<td>aNDFom</td>
<td>%DM</td>
<td>64.11%</td>
<td>45.91 - 78.30</td>
</tr>
<tr>
<td>ND-ICP est w/ SS</td>
<td>%DM</td>
<td>1.37%</td>
<td>0.56 - 6.42</td>
</tr>
<tr>
<td>Fat (EE)</td>
<td>%DM</td>
<td>1.30%</td>
<td>1.25 - 3.61</td>
</tr>
<tr>
<td>Ash</td>
<td>%DM</td>
<td>9.61%</td>
<td>5.44 - 14.08</td>
</tr>
<tr>
<td>NFC</td>
<td>%</td>
<td>17.77%</td>
<td></td>
</tr>
</tbody>
</table>

OARDC
Other Livestock

• Swine
 • Limit use in starter diets due to anti nutritional factors
 • For growing and finishing can replace all SBOM by supplementing synthetic methionine or in combination with canola meal
 • Must be ground or pelleted
 • Up to 30% of lactating sow ration

• Poultry
 • 10-40 % of laying hen ration
 • 20-30% broiler and turkey

• Sheep

• Dairy
OTHER PULSES

LENTIL
CHICKPEA
FABA BEAN

- high protein 25-33%
- some anti nutritional factors
- starch 35-45%
- fiber 5-10%, low fats
- high lysine
- low methionine and threonine
- limit 20-30% diet
Summary

• Pulse crops are widely grown in western ND as part of diverse rotation

• In addition to being an important cash crop can also be homegrown feed/supplement to support livestock operation

• Good feed qualities as forage, grain, low grade grain, or grain processing byproducts