Soybean and Field Pea Production

Kent McKay
Area Extension Agronomist
NCR EC, Minot
Field Pea

- Cool-season grain legume
- Efficient water user (fallow replacement)
 - 75% of the root biomass is contained in the top two feet of the soil surface
- “Nitrogen fixer”
- Maturity: Grain types; 80 to 95 days from planting
- Adapted to all areas of the state
Field Pea

- Adapted statewide
 - Part of the new farm program
 - LDP/loan issues finally resolved
 - Lower cost of production than other pulses
 - Easier to manage, less risk (disease)
 - Excellent fit in tight rotations with other broadleaves
 - Low sclerotinia threat
Acreage of field pea in North Dakota (FSA), 1991-2003

Acreage

<table>
<thead>
<tr>
<th>Year</th>
<th>1991</th>
<th>1993</th>
<th>1995</th>
<th>1997</th>
<th>1999</th>
<th>2001</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Soybean

- Warm-season grain legume, “Nitrogen fixer”
- Acres moving north and west
- Early maturing Roundup Ready varieties now widely available
- Easier to manage, less risk (disease) than other broadleaves
 - Excellent fit in tight rotations with other broadleaves
 - Low sclerotinia threat
ND soybean acreage (FSA)
North Central*, ND
Field Pea and Soybean Acreage (FSA)

* Bottineau, Renville, Ward, McHenry, Pierce Counties
1993 - 2003 Field Pea and Soybean Yields
North Central Research Extension Center

Yield bu/acre

* Soybean trial lost due to cool August/early frost
** Soybean variety trial planted on Fallow
10 year (93-02) average Field Pea and Soybean Yields. NCREC, Minot, ND

Yield bu/acre

10 yr ave. Field Peas 41 Soybeans 21
Field Pea Production

Food Grade vs Feed
Food Grade vs Feed

- **Starts with high quality seed**
 - Green or yellow
 - Contrasting classes is a major issue for human food grade peas (Beware of bin run seed quality)

- **% Germination very important**
 - 85-90% considered good
 - Vigor issues becomes important with seed below 75 – 80%

- **PVP list important to know**
Current PVP Listings for Field Pea (as of 01/1/2004)

- **Green Peas:**
 - Espace
 - Majoret
 - Toledo
 - Crusier
 - Ariel
 - SW Parade
 - Stratus
 - Nitouche

www.ars-grin.gov/cgi-bin/npgs/html/pvplist.pl
Current PVP Listings for Field Pea (as of 01/1/2004)

Yellow Peas:
- Swing
- Carneval
- Grande
- Highlight
- Integra
- SW Circus
- SW Capri
- Cebeco Eclipse
- DS-Admiral

www.ars-grin.gov/cgi-bin/npgs/html/pvplist.pl
Field Pea Variety Selection

- **Field pea PVP list changes frequently**
 - Example: Nitouche green pea
 - Late 1990’s through 2002 not protected could have been sold as common (bin run) seed
 - As 2003 PVP now applied for; can not be sold as a common class of seed anymore

- **Human food market or feed pea**
 - Contact potential buyer(s) if the variety meets human food grade specs
Field Pea Selection Criteria:

- **Harvest Ease:**
 - straw strength/standability very important consideration for straight combining
 - *Ex. CDC Mozart:* high yielding pea, short vine; however, susceptible to lodging

- **Powdery Mildew Resistance:**
 - has the potential of being the most serious disease in field pea (planting date issue)
 - Yellow pea: resistant varieties available
 - Green pea: no” true” resistant varieties yet
Food Grade vs Feed

- **Harvest: most critical factor**
 - On time (Malt barley?)
 - Acres per combine?
 - Green vs yellow:

Food Grade vs Feed

- Harvest needs to be on time for quality
 - Harvest issues come up:
 - Malt barley or peas?
 - Peas should be combined at 16% moisture, 18% the high end
 - Once dry: below 13% splitting can occur
 - handling issues to avoid cracking (augers, etc.)
Green peas need timely harvest to avoid the potential of bleach

- “Green peas can be compared to raising durum”
 - More quality issues
- ‘Yellow peas are like raising spring wheat”

What to grow? Green or yellow

- Most processors will say raise one type to avoid contamination
- “Yellow” the best choice if raising considerable amount of malt barley
Food Grade vs Feed

- **Powdery Mildew:**
 - 2003: more of a harvest issue than a yield loss issue
 - Should not affect seed quality or germination
Seed Treatment Considerations:

- **2002/2003: Isolated seed rot issues**
 - Cold, wet May: delayed emergence
 - Tight rotation: peas on canola
 - Fusarium, Rhizoctonia, and Pythium caused isolated problems and reduced pea stands

- **Seed Treatment Options:**
 - NDSU Extension Service circular PP622
 - North Dakota Field Crop Fungicide Guide
 - Apron, Allegiance: pythium
 - Apron/Max: pythium, fusarium, rhizoc
Field Pea Seeding Date Trials
Carrington 96-98, Minot 97-98, Langdon 98

Bu/acre

Early May	Mid May	Late May	E-M June
Carrington | Minot | Langdon

Graph showing the yield (Bu/acre) for different seeding dates and locations.
Rolling Peas

- Should one roll right after planting or after crop emergence
- Depends on tillage system
 - No-till; anytime
 - Conventional; after emergence
 - Peas 1 - 2 inch height
- Soil type:
 - Heavy soil
 - best to wait after emergence
Seeding Rate/Optimum Stand

- Seeding rate of 300,000 PLS/acre
 - Equates to 7 plants/square foot
- Minimum stand: 3 to 4 plants sq/ft
 - Will lead to increased weed pressure, uneven maturity and lodging issues
Impact of N Fertility Strategy on Field Pea Seed Yield

Carrington Research Extension Center Studies, 1995-97.

<table>
<thead>
<tr>
<th>N Fertility Strategy</th>
<th>Seed Yield Bu/Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Inoculant + 0 N Fertilizer</td>
<td>50.3</td>
</tr>
<tr>
<td>Inoculation (Dry)</td>
<td>63.8</td>
</tr>
<tr>
<td>Inoculation + 45# N</td>
<td>59.8</td>
</tr>
<tr>
<td>Nitrogen Fertilizer (90#N)</td>
<td>61.5</td>
</tr>
</tbody>
</table>
Fertility Recommendations

- Soil test of >30 lbs N: Inoculate and go!!
- Seed is sensitive to fertilizer salts
- Lack of response to phosphorus and starter fertilizer
 - No pea yield response to phosphorus across 9 sites years on very low testing phosphorus soils in ND
Field Pea Diseases

- **Sclerotinia:**
 - Not as susceptible as sunflower, canola or dry bean
 - Semi-leafless field pea similar tolerance or even better tolerance than soybean
 - Can be successfully used with other broadleaf crops in “stacked” rotations
Field Pea Diseases

Powdery Mildew:
- Most significant disease in pea
- Causes white “powdery” spots on leaves
- Wet, heavy dews help spread the disease to the pods
- Infected plants will not mature normally
- Can result in harvest problems, seed size issues and yield loss
Field Pea Diseases

Powdery Mildew:
- Most often a problem with late plantings (mid-May or later)
- Infection typically occurs late in the season (late July-August)
- Yield loss typically doesn’t occur unless infection occurs prior to pod set
- Resistant varieties becoming available
- Quadris fungicide labeled for control
 - 2004 research trials planned Mohall/Minot
New Developments

- **US Pulse Breeding Program:** USDA-ARS, WSU
 - Kevin McPhee, Fred Muehlbauer
 - NDSU is now an active part of their programs

- NDSU cooperating in joint releases with USDA-ARS; WSU; IDAES
 - Breeders seed increased in 2003
 - Foundation seed will be planted at REC’s in 2004
 - 2005 Foundation seed available
Variety Selection

- Most crucial decision
 - Maturity Group
 - Seed size
 - Herbicide tolerant vs conventional
Maturity Groups

(Early) 000

(Mid-early) 00.0 → 00.5 → 00.9

(Mid) 0.0 → 0.5 → 0.9

(Late) 1

Note: For each decimal point consider 0.75 day later maturity!!
Soybean Performance in Central, North and Western North Dakota

<table>
<thead>
<tr>
<th>Location</th>
<th>1997</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>AVE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carring.</td>
<td>49.8</td>
<td>53.9</td>
<td>40.0</td>
<td>46.6</td>
<td>47.5 bu.</td>
</tr>
<tr>
<td>Minot</td>
<td>11.6</td>
<td>22.6</td>
<td>16.7</td>
<td>19.3</td>
<td>17.6 bu.</td>
</tr>
<tr>
<td>Langdon</td>
<td>48.0</td>
<td>49.0</td>
<td>37.5</td>
<td>37.2</td>
<td>42.9 bu</td>
</tr>
<tr>
<td>Williston</td>
<td>14.0</td>
<td>11.0</td>
<td>11.0</td>
<td>12.5</td>
<td>12.1 bu.</td>
</tr>
<tr>
<td>Hetting.</td>
<td>11.6</td>
<td>----</td>
<td>Frosted</td>
<td>26.1</td>
<td>12.6 bu.</td>
</tr>
</tbody>
</table>

(No-Till)
2001-2003 Soybean Performance
NCREC, Minot, ND

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2002*</th>
<th>2003*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>34 bu/A</td>
<td>53 bu./A</td>
<td>26 bu/A</td>
</tr>
<tr>
<td></td>
<td>24 var.</td>
<td>9 traditional</td>
<td>10 traditional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35 RR var.</td>
<td>55 RR var.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 yr. Ave.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38 bu/A</td>
</tr>
</tbody>
</table>

* Planted on fallow
August rainfall, Minot

Inches

- 2000 (light blue)
- 2001 (dark blue)
- 1999 (gray)
- 1998 (dark red)
- 1997 (red)

- Data for the years 1997 to 2003 are shown.
- The bar chart represents rainfall in inches for various years.
- The average rainfall for each year is indicated.
Water Needs of Soybeans

60% of soybeans water needs occur from flowering through pod fill
Soybean water use scheduling for irrigation

Total water needs: 14.1 inches

- First 8 weeks: May 20 - July 20 (40%)
- Next 6 weeks (Flower - Pod fill): July 20 - Sept 1 (60%)
The Mandan ARS Lab has measured crop water use by alternative crops from 1995 to 1997. The results of this study are drawn out below.

Average Yearly Water Use By Crop

<table>
<thead>
<tr>
<th>Crop</th>
<th>Total Water Used (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunflower</td>
<td>14.4</td>
</tr>
<tr>
<td>Safflower</td>
<td>14.1</td>
</tr>
<tr>
<td>Soybean</td>
<td>13.3</td>
</tr>
<tr>
<td>Dry Bean</td>
<td>10.6</td>
</tr>
<tr>
<td>Dry Pea</td>
<td>10.5</td>
</tr>
<tr>
<td>Crambe</td>
<td>9.8</td>
</tr>
<tr>
<td>Canola</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Source: Mandan USDA-ARS 1995-1997
No-Till Soybeans

The graph shows the comparison of soybean yield (bushels/acre) between conventional (Conv) and no-till (No-till) systems at Minot and Washburn locations.

- **Minot**:
 - Conv: 15 bushels/acre
 - No-till: 19 bushels/acre

- **Washburn**:
 - Conv: 21 bushels/acre
 - No-till: 28 bushels/acre

The data indicates a higher yield in the no-till system compared to the conventional system at both locations.
Soybean yield with tillage systems, NCREC, 1998-2002

![Graph showing soybean yield with tillage systems from 1998 to 2001, comparing Conv-Till and No-Till systems. The 4 Year Avg is also included.](image)

24% yield advantage with no-till.
Fertility

- Inoculate new fields of soybean.
 - Have seen poor N-fixation with dry July conditions in north central, ND.
 - May benefit from 2X labeled rates of inoculum.
- Inoculate as routine procedure on all fields
- Soybean/Soybean rotation
Apply 20 to 40 lbs of N if soil levels are less than 40 lbs. per Acre.

- Can’t rely solely on N-fixation (as with pea) for soybeans in low N testing soils, especially in western ND

- Limited N fertilizer with the seed

10% yield advantage with narrow vs. wide rows
Narrow row spacing comparison for impact on soybean yield, Carrington and Minot, 2002.

10% yield advantage with solid-seeded
Seeding Rate of Early Soybean

<table>
<thead>
<tr>
<th>Seeding rate (seeds/acre)</th>
<th>Yield (bu/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150,000</td>
<td>39.5</td>
</tr>
<tr>
<td>200,000</td>
<td>43.8</td>
</tr>
<tr>
<td>250,000</td>
<td>44.9</td>
</tr>
</tbody>
</table>

Ave. 4 Varieties-6 sites, 1998 & 1999