

INFLUENCE OF WEANING DATE (EARLY OR NORMAL) ON PERFORMANCE, HEALTH, AND CARCASS CHARACTERISTICS OF MAY BORN ANGUS CALVES

M. M. Stamm¹*, C. S. Schauer ¹, V. Anderson², B. Ilse², D. M. Stecher ¹, D. Drolc ¹, and D. Pearson ¹.

¹Hettinger Research Extension Center, NDSU, Hettinger, ND ²Carrington Research Extension Center, NDSU, Carrington, ND

BACKGROUND

- Cow-calf production (ranching) is an important ag enterprise (ND and SD)
- Estimate > 5.23 million head cattle worth over \$5.4 billion (USDA NASS, 2005)
- Calves produced in early spring months and sold at weaning
- Region has been impacted by drought past 6 years

BACKGROUND

- Regional producers use early weaning as a management tool in times of drought
- Other reasons for early weaning (Myers et al., 1999):
 - Feed in short supply or poor quality
 - Cows are poor milkers or first calf heifers
 - Cows calve late
- Past early weaning research focused on March calving cow herds
- Little research on May-June calving cow herds

ADVANTAGES OF EARLY WEANING

- Lowers nutrient requirements for cow
- Increases pasture carrying capacity reduced forage demand by cow
- Gives cow time to regain body condition
- May improve cow reproductive performance if weaned early enough
- Improves efficiency of gain on EW calf
- May improve quality grade of EW calf
- Can market cull cows before seasonal market lows

DISADVANTAGES OF EARLY WEANING

- Requires more labor
- Higher nutritional requirements
- Requires facilities and feed for calves
- Greater focus on vaccinations and health program
- Possible increased health problems
- Possible EW calves may have lower carcass weights or become fatter at lighter weights
- Increased cash costs up front

EARLY WEANING CONSIDERATIONS

- → Complete castration, dehorning, and branding at least 10-14 days prior to weaning
- → Vaccinate calves against clostridial and viral infections prior to weaning (1 month)
- \rightarrow Treat for internal and external parasites
- \rightarrow Provide protection from flies
- \rightarrow Consider use of growth implants
- → Fence line wean to reduce stress?
- \rightarrow Does it fit my production system?

EARLY WEANING CONSIDERATIONS

 \rightarrow Decide destination for calves:

- Sell straight off cow
- Background
- Retained ownership
- \rightarrow Creep feed calves to aid in starting calves on feed
- \rightarrow Provide access to good quality, clean water
- \rightarrow Monitor calves frequently (2-3X/day) for signs
 - Respiratory disease
 - Digestive disturbances
 - Scours
 - Coccidiosis
 - Intake level

CALF BACKGROUNDING STUDY OBJECTIVE

Evaluate effects of early or normal weaning practices on May born calves:

- Calf growth
- Calf health
- Carcass characteristics

EXPERIMENTAL PROTOCOLS

48 Angus steer and heifer calves

Randomly assigned to weaning date : EW = Sept. 19 or NW = Nov. 15; 24 steers and heifers per wean date

EW calves = 417 lbs, 139 d of age; NW calves = 559 lbs, 197 d of age

Calves stratified by BW, sex and randomly allotted to 12 pens (4 calves/pen; 6 reps/ wean date)

Dry hay receiving ration 14d Growing diet composed of barley silage, whole shell corn, oat hay, 27% CP supplement containing Rumensin[®], calcium carbonate, 44% SBM, and Deccox[®] medicated crumbles. Target gain = 2.5 lbs

EXPERIMENTAL PROTOCOLS

- Calves vaccinated with 7 way clostridial (1x),
 5 way ML viral (2x), Mannheimia hemolytica (1x), and Hemophilus somnus (1x)
- Calves implanted with Ralgro[®] implant
- Calves observed daily for signs of respiratory disease (2-3X/d)
- 2 d weights taken on individual calves at start and end of performance trial; interim weights taken d 36, 52 and 64 to evaluate calf growth performance and health status

EXPERIMENTAL PROTOCOLS

- Diet samples collected d 14, 32, 54, 67, and 78
- Data measured: Weight Gain (ADG), Feed intake, Feed: gain, Cost of gain. Nutritional components measured: DM, Ash, CP, NDF, ADF, Ca, P, K, and Nitrate concentration
- Performance data analyzed as a randomized complete design using SAS PROC MIXED procedures with pen as experimental unit; mean separation by Least Significant Difference (P < 0.05 level)

DIET INGREDIENT COMPOSITIONS FED TO EW AND NW CALVES

	Percent Dry Matter Basis			
Ingredient	EW Receiving	NW Receiving	Growing	
Alfalfa-Grass hay	22.15			
Barley hay	12.80			
Oat hay	13.05	12.30	13.25	
Mixed hay		35.90		
Barley silage			30.05	
Whole shell corn	43.40	39.90	43.80	
Supplement pellet ^a	7.15	5.20	7.02	
Deccox [®] med. crumbles	1.45	1.60	2.20	
Soybean meal, 44%		4.50	2.88	
Calcium carbonate		0.60	0.80	

^a 27% Commercial supplement (as fed): 27% CP, min Ca 2.0%, min P 0.7%, min K 0.7%, min Vitamin A 27,000 IU/Ib, min Vitamin D₃ 1,700 IU/Ib, min Vitamin E 100 IU/Ib, and Rumensin[®] 225 mg/Ib.

DIET NUTRIENT COMPOSITIONS FED TO EW AND NW CALVES

	Percent Dry Matter Basis			
Diet	EW Receiving	NW Receiving	Growing	
DM, %	94.22	95.80	63.26	
CP, %	14.30	13.20	13.00	
ADF, %	26.20	26.30	24.30	
NDF, %	45.60	48.30	41.05	
Ca, %	0.87	0.75	0.59	
Ρ, %	0.38	0.43	0.48	
K, %	1.79	1.84	1.90	
Nitrate, ppm	1200	2500	1950	
NE _m , Mcal/lb	0.79	0.77	0.80	
NE _g , Mcal/lb	0.54	0.51	0.54	
Rumensin [®] , mg/h/d	256	256	320	
Deccox [®] , mg/h/d	154	154	206	

WEANING DATE IMPACT ON BACKGROUNDING PERFORMANCE

WEANING DATE IMPACT ON BACKGROUNDING PERFORMANCE

WEANING DATE IMPACT ON BACKGROUNDING PERFORMANCE

ltem	EW calves	NW calves	SEM ^a	P - value ^b
Feed: gain	5.51	5.25	0.18	0.35
Mortality, %	4.17	0	0.03	0.35
Respiratory treatment,%	12.50	33.33	0.08	< 0.10
Vet Med Costs, \$/h	15.37	14.50	3.50	0.86
Feed Cost of gain, \$/Ib	0.52	0.47	0.02	0.11
Total Cost of gain, \$/Ib	0.57	0.58	0.04	0.76

^aStandard Error of Mean; n = 6.

^b P-value for separation of treatment means.

WEANING DATE IMPACT ON CARCASS CHARACTERISTICS

WEANING DATE IMPACT ON CARCASS CHARACTERISTICS

ltem	EW calves	NW calves	SEM ^a	P-value ^b
Marbling Number	483	465	14.8	0.43
Backfat, in.	0.56	0.53	0.05	0.68
REA, in. ²	11.8	11.08	0.43	0.27
KPH, %	2.41	2.50	0.53	0.29
USDA YG (adjusted)	3.04	3.19	0.22	0.65

^a Standard Error of Mean; n = 6.

^b P-value for separation of treatment means.

IMPLICATIONS

- EW calves were younger and lighter BW at weaning; EW calves heavier at study end
- Weaning date did not affect ADG, DMI, or feed conversions of EW Calves
- Weaning date did not influence calf health, mortality, or carcass characteristics
- Early weaning of calves born between April 15 and June 15 viable option
- More research needed to assess EW effects on backgrounding and finishing phases of late spring born calves

QUESTIONS??

