Field evaluation of fungicides for management of rust and Sclerotinia head rot on sunflowers

Michael Wunsch, plant pathologist
Michael Schaefer, research specialist
Billy Kraft, research technician
North Dakota State University Carrington Research Extension Center

None of the fungicides evaluated in this trial showed efficacy against Sclerotinia head rot. The relatively weak yield response to rust control observed in this trial was likely due to high levels of Sclerotinia head rot.

Quash provided excellent control of sunflower rust at all application rates tested. The weak yield response to rust control observed in this trial was likely due to the lack of fungicide coverage to the front of the sunflower head when applying fungicides over the top of the sunflower canopy.

Quash was the only fungicide that provided significant control of Sclerotinia head rot. The weak yield response to rust control observed in this trial was likely due to high levels of Sclerotinia head rot.

Quash, Rovral, Omega, Switch, and Quash were the fungicides that provided the greatest control of sunflower rust.

Aproach: 250 grams picoxystrobin per liter
Endura: 700 grams boscalid per kilogram
Omega: 500 grams fluazinam per liter
Quash: 500 grams metconazole per kilogram
Rovral: 480 grams iprodione per liter
Switch: 250 grams fludioxonil + 375 grams cyprodinil per kilogram
Topsin: 540 grams thiophanate-methyl per liter
Vertisan: 200 grams penthiopyrad per liter.

Topsin, Rovral, Omega, Switch, and Quash are not currently labeled for use on sunflowers and should not be used. Results are provided for reference only.

KEY FINDINGS:

Fungicides can differ in their response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors. Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors.

NOTICE:

Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors. Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors.

NOTICE:

Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors. Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors.

NOTICE:

Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors. Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors.

NOTICE:

Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors. Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors.

NOTICE:

Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors. Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors.

NOTICE:

Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors. Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors.

NOTICE:

Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors. Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors.

NOTICE:

Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors. Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors.

NOTICE:

Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors. Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture, and other factors.
Field evaluation of fungicides for management of rust and Sclerotinia head rot on sunflowers
Carrington, ND (2013)

Michael Wunsch, plant pathologist
Michael Schaefer, research specialist
Billy Kraft, research technician
North Dakota State University Carrington Research Extension Center

FUNDING: This project was jointly funded by the North Dakota Crop Protection Product Harmonization and Registration Board, the USDA National Sclerotinia Initiative, and Valent USA.

METHODS:

- **Location of trial:** NDSU Carrington Research Extension Center, Carrington, ND
 GPS coordinates: 47.508, -99.129
- **Soil type:** Heimdal-Emrick loam
 Soil preparation: Disked once in October 2012, and cultivated on May 3 and May 8, 2013.
- **Fertilization:** 78 lbs of nitrogen were applied as urea (46-0-0) on May 8, 2013; the urea was incorporated to 2 to 3 inches with a cultivator within 3 hours of application.
- **Maintenance herbicide applications:** Spartan Charge (carfentrazone-ethyl, 3.53% by weight, and sulfentrazone, 31.77% by weight; FMC Corporation) was applied to the soil surface on May 8, 2013 at an application rate of 5 fl oz/ac in 10 gallons of water/ac. With the exception of the moderate soil disturbance caused by the double-disk drill at seeding, it was not incorporated. The soil was moist at the time of application, and rain (0.3 inches) fell early in the morning on May 9, 2013. Assure II (10 fl oz/ac; quizalofop p-ethyl, 10.3% and 0.88 lb ai/gal; DuPont Corp.) and crop oil concentrate (1% v/v; in Source COC, 83% paraffinic petroleum oil + 17% surfactant/emulsifier) were applied in 12.9 gallons of water/ac on June 26 at 9:15 to 10:30 pm to control foxtail barley and other grasses.
- **Fungicide application methods:** Almaco double-disk drill
- **Hybrid:** Seeds 2000 'Jaguar' (a confection type)
- **Seeding rate:** 3.44 seeds/linear foot of row = 60,000 seeds/ac
- **Final plant population:** 1 plant every 12 inches of row = 17,400 plants/ac
- **Maintenance insecticide applications:** To protect against damage from sunflower midge, the insects Cobalt Advanced (Dow Agrosciences; chlorpyrifos + lambda-cyhalothrin active ingredients; applied at 38 fl oz/ac) and Asana (DuPont; esfenvalerate active ingredient; at 9.6 fl oz/ac) were applied in rotation from the R1 to R4 growth stages (immature bud to early head development). Applications were made with 8003 flat-fan nozzles on July 24 (Cobalt Advanced), July 28 (Asana), and August 1 (Cobalt Advanced) in 10 gallons of water/ac at 45 psi.
- **Fungicide application methods:** Fungicides were applied with a 100-inch tractor-mounted boom equipped with five equally spaced TeeJet 8002VS nozzles at a spray volume of 14.5 gal water/A operated at 30 psi. Fungicides were applied to both rows of the treatment plot plus the outermost row of each of the adjacent buffer or guard plots (a total of four rows).
- **Fungicide application A:** August 12 between 3:30 and 5:30 pm with a north wind of 7.5-9.5 mph, temperature of 77.1-74.8°, and a relative humidity of 39.8-47.2%. The sunflowers were at R5.4-R5.5. No sclerotinia was present at the time of application.
- **Fungicide application B:** August 22 between 9:00 am and 12:00 pm. Sunflowers were at R5.7 to R6.0, with no Sclerotinia head rot or stalk rot present.
- **Inoculation methods:** **Spore solutions were prepared by adding laboratory-grown ascospores of Sclerotinia sclerotiorum to 900 ml water and adding a one to two drops of Tween 20. The spore solutions were adjusted to 3,750 spores per ml. At each inoculation, 4 ml (15,000 spores) were delivered to the front of each head with a spray bottle. (A total of 30,000 spores were applied per head across both inoculation dates). The spray bottle was calibrated to deliver 4 ml per squirt. ** Inoculation 1 was conducted on August 14 at 8:15 to 9:15 am at R5.5 to R5.6 (50 to 60% of the disk flowers in bloom or completed bloom). ** Inoculation 2 was conducted on August 15 at 8:15 to 9:15 am at R5.5 to R5.7 (50 to 70% of the disk flowers in bloom or completed bloom). ** Inoculation 3 was conducted on August 16 at 8:30 to 9:15 am at R5.5 to R5.7 (50 to 70% of the disk flowers in bloom or completed bloom). ** Inoculation 4 was conducted on August 26 at 2:00 to 4:15 am at the R5.9 to R6 growth stage
- **Irrigation:** After each inoculation, the microsprinklers were run such that the heads remained wet for 24 hours subsequent to inoculation. During the daytime hours within this 24-hour period, water was applied 5 minutes every 30 minutes or continuously, as necessary; during the evening and early morning hours, water was applied 5 minutes every 30 minutes. During the remainder of the bloom period, sprinklers were run 5 minutes every 30 minutes either all day or during the evening, nighttime, and early morning hours (from approximately 8 pm until 8 am), depending on environmental conditions.
- **Seed size assessments:** Calculating by evaluating the proportion of a 125-gram sample of cleaned seed that passed through sieves with 22/64-, 20/64-, and 18/64-inch diameter round holes.
- **Sclerotinia head rot assessments:** Sclerotinia head rot assessments should be conducted at the R8 (back of the head is yellow but bracts remain green) and R9 (physiological maturity) growth stages. Evaluate all plants in both rows of each plot. Plants should be evaluated for Sclerotinia head rot on a 0 to 5 scale: 0 = no Sclerotinia head rot, 1 = 25% of head exhibiting symptoms of Sclerotinia head rot, 2 = 25 to 50% of head exhibiting symptoms of Sclerotinia head rot, 3 = 51 to 75% of head exhibiting symptoms of Sclerotinia head rot, 4 = 76 to 99% of head exhibiting symptoms of Sclerotinia head rot, and 5 = 100% of head exhibiting Sclerotinia head rot.
- **Harvest date:** October 10
- **Seed yield and quality:** Plot-level yield was assessed in pounds using the yield monitor in an Almaco plot combine, and, from each plot, subsample of approximately 400 to 600 grams of seed was collected. Seed moisture levels were determined for this sub-sample immediately after harvest. After determining seed moisture, the subsample was placed in a drier until the seed reached approx. 8% seed moisture; the subsample was weighed, cleaned to remove sclerotia and other debris, and weighed again. To account for differential levels of sclerotia and other debris across treatments, the original yield estimates from the combine's yield monitor were adjusted by multiplying by the ratio of the cleaned to uncleaned sub-sample weights. Test weight and seed size were determined using the cleaned sub-sample. Seed yield and test weight were reported at 10% seed moisture.