Field evaluation of fungicides for management of Sclerotinia on dry edible (pinto) beans
Carrington, ND (2012) ■ 30-inch row spacing

KEY FINDINGS:

- When applied as sequential applications, Endura (boscalid), ProPulse (prothioconazole + fluopyram), and Switch (cyprodinil + fludioxonil) significantly reduced Sclerotinia disease severity relative to the control.
- Tank-mixing low rates of Quash (metconazole) and Topsin (thiophanate-methyl) gave excellent results. The tank-mix of Quash (2 oz/ac) plus Topsin (20 fl oz/ac) performed similarly to the best products.
- The rotational strategy of Topsin (40 fl oz/ac) followed by Endura (8 oz/ac) performed equivalently as sequential applications of Endura in this trial, but low disease pressure in the two weeks following the first fungicide application made it difficult to assess this treatment rigorously.
- Late disease development was likely responsible for the lack of significant yield differences across treatments. Temperatures did not become favorable for Sclerotinia until early August, and much of the yield potential was likely determined by the time Sclerotinia developed.

SUMMARY OF KEY RESULTS:

Within-column means followed by different letters are significantly different ($P < 0.05$; Tukey multiple comparison procedure).

<table>
<thead>
<tr>
<th>Treatment (application timing) *</th>
<th>Sclerotinia incidence $%$ Aug. 23 w</th>
<th>Sclerotinia severity $%$ Aug. 23 w</th>
<th>Sclerotinia severity index Aug. 23 w</th>
<th>Yield 13% moisture lbs/ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-treated check (water)</td>
<td>55 bc *</td>
<td>43 a *</td>
<td>24 b *</td>
<td>2966 a *</td>
</tr>
<tr>
<td>Toprin 4.5FL 20 fl oz/ac (A,B)</td>
<td>27 abc</td>
<td>28 a</td>
<td>8 ab</td>
<td>3274 a</td>
</tr>
<tr>
<td>Toprin 4.5FL 30 fl oz/ac (A,B)</td>
<td>19 abc</td>
<td>25 a</td>
<td>5 ab</td>
<td>3174 a</td>
</tr>
<tr>
<td>Toprin 4.5FL 40 fl oz/ac (A,B)</td>
<td>23 abc</td>
<td>20 a</td>
<td>5 ab</td>
<td>3421 a</td>
</tr>
<tr>
<td>Endura 70WG 8.0 oz/ac (A,B)</td>
<td>11 a</td>
<td>15 a</td>
<td>2 a</td>
<td>3154 a</td>
</tr>
<tr>
<td>Endura 70WG 8.0 oz/ac (A) / Toprin 4.5FL 40 fl oz/ac (B)</td>
<td>34 abc</td>
<td>35 a</td>
<td>12 ab</td>
<td>3571 a</td>
</tr>
<tr>
<td>Toprin 4.5FL 40 fl oz/ac (A) / Endura 70WG 8.0 oz/ac (B)</td>
<td>8 a</td>
<td>24 a</td>
<td>2 a</td>
<td>3283 a</td>
</tr>
<tr>
<td>Omega 500F 0.85 pt/ac (A,B)</td>
<td>23 abc</td>
<td>49 a</td>
<td>10 a</td>
<td>3685 a</td>
</tr>
<tr>
<td>Proline 480SC 5.7 fl oz/ac + NIS 0.125% v/v (A,B)</td>
<td>35 abc</td>
<td>39 a</td>
<td>14 ab</td>
<td>3428 a</td>
</tr>
<tr>
<td>Rovral 4F 2.0 pt/ac (A,B)</td>
<td>21 abc</td>
<td>29 a</td>
<td>7 ab</td>
<td>2966 a</td>
</tr>
<tr>
<td>Switch 62.5WG 14.0 oz/ac (A,B)</td>
<td>19 abc</td>
<td>23 a</td>
<td>5 a</td>
<td>3029 a</td>
</tr>
<tr>
<td>Aproach 2.08SC 12 fl oz/ac + NIS 0.25% v/v (A,B)</td>
<td>33 abc</td>
<td>28 a</td>
<td>9 ab</td>
<td>3198 a</td>
</tr>
<tr>
<td>ProPulse 400SC 8.6 fl oz/ac + NIS 0.125% v/v (A,B)</td>
<td>13 a</td>
<td>13 a</td>
<td>2 a</td>
<td>2898 a</td>
</tr>
<tr>
<td>ProPulse 400SC 10.3 fl oz/ac + NIS 0.125% v/v (A,B)</td>
<td>18 abc</td>
<td>21 a</td>
<td>6 ab</td>
<td>3191 a</td>
</tr>
<tr>
<td>Vertisan 200EC 20 fl oz/ac + NIS 0.25% v/v (A,B)</td>
<td>44 abc</td>
<td>37 a</td>
<td>15 ab</td>
<td>2986 a</td>
</tr>
<tr>
<td>Quash 50WDG 2.5 oz/ac + NIS 0.25% v/v (A,B)</td>
<td>56 c</td>
<td>31 a</td>
<td>17 ab</td>
<td>3057 a</td>
</tr>
<tr>
<td>Quash 50WDG 2.0 oz/ac + NIS 0.25% v/v (A,B)</td>
<td>36 abc</td>
<td>37 a</td>
<td>16 ab</td>
<td>3068 a</td>
</tr>
<tr>
<td>Toprin 4.5FL 20 fl oz/ac + Quash 50WDG 2.0 oz/ac + NIS 0.25% v/v (A,B)</td>
<td>15 ab</td>
<td>20 a</td>
<td>4 a</td>
<td>3435 a</td>
</tr>
</tbody>
</table>

* Sclerotinia stem rot incidence: The percent of plants exhibiting Sclerotinia stem rot. In each plot, 40 plants were evaluated (20 plants in each of the two center rows of each plot).

w Sclerotinia stem rot severity: Disease severity of those plants exhibiting Sclerotinia stem rot. In each plot, 40 plants were evaluated (20 plants in each of the two center rows of each plot).

x Sclerotinia stem rot disease severity index: Average disease severity (including non-diseased plants). In each plot, 40 plants were evaluated (20 plants in each of the two center rows of each plot).

* Growth stage on Aug. 23 was R7; on average, at least one pod per plant had reached physiological maturity.

$^+$ Fungicide application timing:
- Application A: July 18, 2012 at 8:30 - 9:30 am at 100% bloom (R1 growth stage; beginning flowering with at least one open flower per plant); temperature = 73F, relative humidity = 81%, wind speed = 6.7 miles per hour from the east.
- Application B: July 31, 2012 at 6:00 - 11:00 am at the R2 growth stage (full flower); temperature = 74-80F, relative humidity = 59-71%, wind speed = 8.3 to 8.8 miles per hour from the south.

* Within-column means followed by different letters are significantly different (alpha = 0.05; Tukey multiple comparison procedure)
Methods:

- **Location of trial**: North Dakota State University Carrington Research Extension Center; Carrington, ND
- **GPS coordinates of research trial location**: 47.5084,-99.1343
- **Variety**: 'Maverick' (pinto bean)
- **Experimental design**: randomized complete block
- **Replicates**: 4
- **Seeded plot size**: 5 feet wide (center-to-center) x 25 feet long
- **Harvested plot size**: 5 feet wide (center-to-center) x approx. 19 feet long
- **Row spacing**: 30 inches
- **Rows per plot**: 2
- **Non-treated buffer plots were established between treatment plots.**
- **Previous crop**: hard red spring wheat
- **Planting date**: May 24, 2012
- **Seeding rate**: 91,950 pure live seeds/ac (target plant population = 80,000 plants/ac; presumed seedling mortality = 13%)
- **Fungicide application A**: July 18, 2012 at 8:30 - 9:30 am at 100% bloom (R1 growth stage; beginning flowering with at least one open flower per plant); temperature = 73F, relative humidity = 81%, wind speed = 6.7 miles per hour from the east.
- **Fungicide application B**: July 31, 2012 at 9:00 - 11:00 am at the R2 growth stage (full flower); temperature = 74-80F, relative humidity = 59-71%, wind speed = 8.3 to 8.8 miles per hour from the south.
- **Fungicide application details**: Fungicides were applied with a 60-inch hand boom equipped with four equally spaced Spraying Systems TeeJet XR 8001VS flat-fan nozzles at a spray volume of 17.5 gal water/A operated at 35 psi.
- **Disease establishment**: This trial was established on a site with a history of Sclerotinia epidemics. Ascospores of Sclerotinia sclerotiorum were applied July 23 at 1:00 - 2:00 am (200,000 spores/ml in 32 gallons of water/ac), Aug. 2 at 12:00 - 1:00 am (2,421 spores/ml in 48 gallons of water/ac), Aug. 3 at 12:00-12:40 pm (1,500 spores/ml in 55 gallons of water/ac), and Aug. 3 at 8:30-9:00 pm (13,650 spores/ml, 38.4 gallons of water/ac). Spores were applied to canopy interior using a 60-in. hand boom with four equally spaced Spraying Systems 8003 twin-jet nozzles operated at 20 psi. To facilitate disease development, overhead irrigation was applied to this trial through microsprinklers established on a 20 ft x 20 ft grid.
- **Disease assessments**: Sclerotinia disease incidence and severity were assessed August 23 at the R7 growth stage (at least one pod per plant changed color/striped). In each plot, 40 plants (10 plants in each of two locations in each row) were evaluated individually for the percent of the canopy exhibiting Sclerotinia stem rot disease symptoms.
- **Harvest date**: September 18, 2012.
- **Statistical analysis**: Data were evaluated with analysis of variance. The assumption of constant variance was assessed by plotting residuals against predicted values, and the assumption of normality was assessed with a normal probability plot. All data met model assumptions. Single-degree-of-freedom contrasts were performed for all pairwise comparisons of isolates; to control the Type I error rate at the level of the experiment, the Tukey multiple comparison procedure was employed. Analyses were conducted with replicate and treatment as main factor effects, and they were implemented in PROC GLM of SAS (version 9.2; SAS Institute, Cary, NC).

Funding:

This project was funded by the Northharvest Bean Growers Association.

Important Notice:

- Fungicide performance can differ in response to which diseases are present, levels of disease when products are applied, environmental conditions, plant architecture and the susceptibility to disease of the chickpea variety planted, crop growth stage at the time of fungicide application, and other factors.
- This report summarizes fungicide performance as tested at the NDSU Carrington Research Extension Center in 2012 under the conditions partially summarized in the methods section (above).
- Fungicide efficacy may differ under other conditions; when choosing fungicides, always evaluate results from multiple trials.
- This report is shared for educational purposes and is not an endorsement of any specific products.